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Abstract

Clustering is a basic operation in image process-
ing and computer vision, and it plays an impor-
tant role in unsupervised pattern recognition and
image segmentation. This problem is intensive in
computation and involve paralle] processing on the
patterns of an image. There are many methods for
clustering, the single-link hierarchical clustering is
one of the most popular techniques. In this paper,
with the advantages of both optical transmission
and electronic computation, we design efficient par-
allel hierarchical clustering algorithm on the arrays
with reconfigurable optical buses. We first design
two O(1) and O(log N) time data operations for
computing the matrix multiplication of two N x N
matrices and finding the minimum spanning tree
of a graph with N vertices using N3 processors,
respectively. Then based on these two data opera-
tions, an O(log N) time parallel hierarchical cluster-
ing algorithm is derived using N3 processors. Note
that this result improves the previously known al-
gorithms on various parallel computation models.

1 Introduction

The array with a reconfigurable optical bus system
is defined to be an array of processors connected
to a reconfigurable optical bus system whose con-
figuration can be dynamically changed by setting
up the local switches of each processor, and mes-
sage can be transmitted concurrently on a bus in
a pipelined fashion. Recently, two related mod-
els have been proposed, namely the array with re-
configurable optical buses (AROB) {19] and linear
array with a reconfigurable pipelined bus system
(LARPBS) {17, 18]. A major difference between
them lies in that the counting is not permitted in
the LARPBS model during a bus cycle but it is al-

lowed in the AROB model. The AROB model is
a powerful computation model which incorporates
some of the advantages and characteristics of re-
configurable meshes and meshes with optical buses
[19]. Many algorithms have been proposed for ap-
plications on the AROB model [20, 21, 22).

Cluster analysis is the process of classifying ob-
jects into subsets that have meaning in the context
of a particular problem [7]. Conventionally, the ob-
jects are characterized as patterns, and the patterns
are numerical vectors in the pattern analysis. As-
sume that there are N patterns and each pattern
contains M features. Clustering is a process of par-
titioning these N patterns in M-dimensional spaces
into meaningful subsets or clusters. The cluster-
ing of such patterns is achieved by minimizing in-
tracluster dissimilarity and maximizing intercluster
dissimilarity. Clustering techniques are widely ap-
plied in many aspects such as life sciences, medical
sciences, social sciences, earth sciences, image pro-
cessing and so on, and the applications continue to
grow [1, 7]. Clustering is especially useful when only
a very little prior information about the problem is
available. In image processing, clustering is used
for pattern recognition, image segmentation, reg- .
istration, compression and object detection. The
detailed survey of the cluster analysis can be found
in the literature [1, 4, 7, 8}.

Many hierarchical clustering methods have been
proposed using different distance metrics and tech-
niques [7]. Because its simplicity and efficiency, the
hierarchical clustering with the single-link method
described by Johnson [9] is one of the popular clus-
tering methods. The agglomerative approach starts
with the disjoint partition, where each pattern is
set to a distinct cluster initially. Then, two clus-
ters are merged into together to form a new cluster
from the current level to the next level, aceording
to the dissimilarity among all of the remaining clus-
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ters. Repeating this process to produce a sequence
of nested partitions until a single cluster. Finally, a
dendrogram is constructed.

Efficient sequential and parallel clustering algo-
rithms have been studied extensively by many re-
searchers [5, 10, 11, 12, 24]. Assume that there are
N patterns each with M features. For the hierar-
chical clustering, the sequential algorithm can be
computed in O(N?M + N3) time in a straightfor-
ward manner. Kurita [10] proposed an O(N?log N)
time sequential algorithm to solve this problem. Li
and Fang [12] proposed an O(N log N) time paral-
lel algorithm on the SIMD hypercube multiproces-
sors with M'N processors. Li {11] also proposed an
O(N?) time parallel algorithm on the SIMD shuffle-
exchange networks using N processors. Gower and
Ross (5] first specified that the hierarchical clus-
tering with the single-link method can be derived
from the minimum spanning tree (MST). Recently,
based on the MST of proximity matrix, Tsai et al.
[24] also proposed an O(log? N) time parallel algo-
rithm on the processor array with a reconfigurable
bus system (PARBS) using N3 processors.

In this paper, we are interested in designing par-
allel clustering algorithm on the AROB. By inte-
grating the advantages of both optical transmis-
sion and electronic computation, we first design two
O(1) and O(log N) time basic operations for ma-
trix multiplication of two N x N matrices and find-
ing the MST of a graph with N vertices using N3
processors, respectively. Then, based on these two
basic operations, an O(log V) time parallel hierar-
chical clustering algorithm is also derived using N3
processors. This result is better than that of Tsai
et al. [24] by O(log N) times and is better than the
previously known algorithms.

The remainder of this paper is organized as fol-
lows. We give a brief introduction to the AROB
computation model in Section 2. Section 3 designs
two basic operations which will be used in the paral-
lel clustering algorithm. Section 4 develops our par-
allel clustering algorithm. Finally, some concluding
remarks are included in the last section.

2 The Computation Model
and Basic Notations

In this section, we shall describe the architecture of
the AROB model which is the computation model
adopted in this paper. For the sake of convenience,
we follow the notation which was proposed in the
literature [19, 20].

The AROB model is essential a mesh using the
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basic structure of a classical reconfigurable network
(RN) [2] and optical technology. A linear AROB
(LAROB) of size N contains N processors con-
nected to the optical bus with two couplers. One
is used to write data on the upper (transmitting)
segment of the bus and the other is used to read
the data from the lower (receiving) segment of the
bus. That is, it extends the capabilities of the lin-
ear arrays with pipelined optical buses (APPB) [6]
by permitting each processor to connect to the bus
through a pair of switches. Each processor with a
local memory is identified by a unique index de-
noted as Py, 0 < ip < N, and each switch can
be set to cross or straight by the local processor.
As for the properties of the optical buses, the mes-
sage propagates unidirectionally from right to left
on the upper segment and from left to right on the
lower segment. Each processor uses a set of con-
trol registers to store information needed to control
the transmission and reception of messages by that
processor.

There are two important properties of optical
bus system: unidirectionally signal propagation and
predictable delay of the signal per unit length. Due
to these two properties, the optical buses enable
synchronized concurrent access in a pipelined fash-
ion.

A 2-dimenstonal (2-D) AROB of size M x N con-
tains M x IV processors arranged in a 2-D grid. Each
processor is identified by a unique 2-tuple index
(11, 1), 0 < i1 < M, 0 < iy < N. The proces-
sor with index (i1, 4g) is denoted by F;, i,. Each
processor has four I/0 ports, denoted by —S;, +5;,
0 < Jj < 2, to be connected with a reconfigurable
optical bus system. The interconnection among the
four ports of a processor can be configured during
the execution of algorithms. Thus, multiple arbi-
trary linear arrays like LAROB can be constructed
in a 2-D AROB. Once the LAROB obtained by re-
configuration, we must specify the position of each
processor and which orientation of the waveguides
in the constructed LAROB for implementirig the
time division or coincident pulse techniques. The
two terminal processors which are located in the
end points of the constructed LAROB may specify
as the leader processor. The related position of any
processor on a bus to which it is connected, is its
distance from the leader processor. For more details
on the AROB, see [19].

A 2-D AROB model can be extended to a 3-D
AROB model with two extra ports, —S,, +So, for
the communications of the neighboring processors
in the third dimension. For a 3-D AROB of size
L x M x N, each processor is identified by a unique
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3-tuple index (i2, 71, 10), 0<i2 < L, 0<% < M,
0 < ip < N. The processor with index (32, i1, i)
is denoted by Pis, i, io-

For a unit of time, assume each processor can
either perform arithmetic and logic operations or
communicate with others on a bus. We assume that
a bus cycle length is compatible with the computa-
tion speed of an arithmetic (logic) operation. It
allows multiple processors to broadcast data on the
different buses or to broadcast the same data on the
same bus simultaneously at a time unit, if there is
no collision.

Let var(k) denote the local variable var (mem-
ory or register) in a processor with index k. For
example, sum(0, 0, 1) is a local variable sum of
processor Pg o, 1.

3 Basic Operations

In this section, we design two data operations, com-
puting the matrix multiplication of two N x N ma-
trices and finding the MST of a graph. These two
data operations will be used for developing efficient
parallel hierarchical algorithm in the next section.
For the sake of completeness, several basic opera-
tions which have been proposed on the AROB are
summarized in the following.

Lemma 1 [21] Given N integer or normalized real
numbers each of size O(log N)-bit, the mazimum
(minimum) of these N integer numbers can be
found in O(1) time on a 1-D AROB if counting is
allowed during a bus cycle.

Lemma 2 (1] Given N integer or normalized real
numbers each of size O(log N)-bit, these N numbers
can be added by the bus split technique in O(log N)
time on a 1-D N AROB.

Lemma 3 [20] Given o data array of size N, the
ordered compaction problem is the problem of mov-
ing the n nonzero (or nonemply) data items 1o the
first n consecutive localions of the array and re-
maining in the same order. The ordered compaction
problem can be computed in O(1) time on a I-D N
AROB.

Lemma 4 [21] Given a data array a;, ;, 0 <
a;, ; < N,0< 1 j< N, these N* number can
be sorted in O(1) time on a D N x N AROB.

Lemma 5 [25] Given an undirected graph G =
(V,E) with |V| = N and a vertezr v, the connected
component of G contains the vertez v, can be com-

puted in O(1) time on a 2-D N x N AROB.
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3.1 Computing the Matrix Multipli-
cation '

Let A =a;,, i, and B =b;,, ;,, 0< 1y, ip < N be
two N x N matrices, and all elements of A and B be

on the same domain D. The matrix multiplication
C = ¢;,, i, is defined by

Cir, fo = O 2o{®iy, iz ®bis, 10}, 0< iy, ig< N, (1)

where @ and ® are two associative operators on the
domain D.

By the reconfigurability and pipelined ability of
the optical bus configuration, we can compute Eq.
(1) efficiently on a 3-D AROB. Initially, a;,, ;, and
bi,, i, are stored in the local variables a(0, iy, o)
and b(0, #1, 4o) of processor Py, i, i0) 0< 11, ip <
N, one item per processor respectively. The result
of ¢, i, is stored in the local variable ¢(0, 741, o)
of processor Py, i,, io, 0 < iy, ip < N. Like Chen et
al. 3], Eq. (1) can be computed on a 3-D AROB
by the following three steps.

1. Broadcast the elements of A and B over the
N x N x N processors through the optical buses
so that a(iz, 41, i) = a;,, ;, for 0 < ip < N
and b(iz, i1, 10) = bi,, i, for 0 < i; < N.

. Compute e(ig, 11, 10) a(ig, 11, ig) ®

b(ia, 1, 1o).
3. Compute ¢(0, 7, i) = @f;’;é e(éa, 1, ig).

The first two steps each takes O(1) time. The
time complexity of Step 3 is dependent on the op-
erator @. That is, by properly replacing the asso-
ciative operator @, the matrix multiplication can be
computed efficiently. For example, if the associative
operator @ is replaced by the maximum/minimum
operation, then Step 3 can be computed in O(1)
time by Lemma lona 3-D N x N x N AROB. Com-
pared to the algorithm proposed by Chen et al. [3],
our algorithm for computing the matrix multipli-
cation with the maximum/minimum operation can
be run in the same time complexity but reduce the
number of processors by a factor N. Hence, this
leads to the following lemma.

Lemma 6 Given two N x N mairices A and B,
if the operator @ is the mazimum (minimum) op-
eralor, then the matriz mulliplicalion of A and B
can be computed in O(1) timeon a 3-DN x Nx N
ARQB. m]



3.2 Finding the Minimum Spanning
Tree

Given a graph G with N vertices, the minimum
spanning tree (MST) problem of G is defined to
find a tree with a minimum total weight. Assume
that the adjacency matrix of G is given by

w(e)

oo

if the edge ¢ is an edge from
vertex i to vertex j,
otherwise.

ai,; =

Based on the approach specified by Maggs and
Plotkin {13}, the MST T of G can be represented
by the following recursive formula:

( Initially, c},j =gq;j 0<4, j<N.

For each iteration !, 2<!< N,

' . 12 172

G, = Og}CIEN {max{c; %, ¢} 1 @)
0<i,j<N.

Finally, Set t;, j = 1if cl'; = a;, j;
\ ti, ; = 0, otherwise.

Like Chen et al. [3], ¢} ; of Eq. (2) at each it-
eration ! can be computed using the matrix mul-
tiplication as mentioned in the previous subsection
by replacing the operators @ and ® with minimum
and maximum, respectively. That is, cf-' j of Eq. (2)
can be computed in O(1) time at the iteration ! by
Lemma 6. Continuing this process at most log NV it-

erations, c{‘yfj can be obtaired from c‘{ i c?, i c:-" i»
RN cf’,/jz. Finally, all edges of the MST T of G can

be determined by setting ¢; ; = 1 if c{v] = a;, j;
t; j = 0, otherwise. Since each iteration ! takes
O(1) time by Lemma 6 and the number of itera-
tions is at most log N, the total time complexity
. of the proposed algorithm is O(log N). Compared
to the algorithm proposed by Chen et al. 3], our
algorithm can be run in the same time complexity
but reduce the number of processors by a factor V.
Hence, this leads to the following lemma. '

Lemma 7 Given a graph G with N wvertices, the
minimum spanning iree of G can be solved in

O(logN) time on a 3-D N x N x N AROB. o

4 Parallel Hierarchical Clus-
tering Algorithm

LetA:a,-,_,-,OSi<N,0$j<M,beapat-
tern matrix of size N x M which consists of N pat-
terns each with M features. In general, N is in
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the range of hundreds and M < 30. A hierarchi-
cal clustering is a sequence of partitions in which
each partition is nested into the next partition in
the sequence. A hierarchical clustering method is a
procedure for transforming a proximity matrix into
a sequence of nested partition [7]. The direct in-
put to the hierarchical clustering is the proximity
matrix D which is usually generated from a pat-
tern matrix A. Each entry of the proximity matrix
D=4d; 0<1, k< N, represent the pairwise in-
dices of proximity according to the row and column
of pattern matrix A. The proximity index is either a
similarity or a dissimilarity. Because the Euclidean
distance is the most common of Minkowski metrics,
we use the Euclidean distance to measure the dis-
similarity between patterns. That is,

M-1
di k= Z(ai,j'—ak,j)z, 0<1i k< N. (3)
j=o0

The output of a hierarchical clustering algorithm
can be represented by a dendrogram (i.e., a level
tree of nested partitions). Each level (denoted as
I;, 1 < i < N) consists of only one node (differ-
ent to the regular tree), each representing a cluster.
We can cut a dendrogram at any level to obtain a
clustering.

Tsai et al. [24] have proposed an O(log® N) time
parallel hierarchical clustering algorithm with the
single-link method on a 3-D N x N x N PARBS.
The main idea of the algorithm proposed by Tsai
et al. {24] can be described by the following three
steps. First, transform the single-link clustering
into building an MST of a graph derived from pat-
tern matrix. Then, distinguish all ¥ —1 clusters si-
multaneously by properly merging the edges of the
MST. Finally, construct the level tree of the nested
partitions of clustering. By the pipelined ability -
and reconfigurability of the optical buses, we also
develop an efficient parallel clustering algorithm on
a 3-D AROB in the following. ‘

Let G = (V,E,W) denote a weighted proxim-
ity graph derived from the proximity matrix D,
where V is the set of vertices, E is the set of edges,

-w(e;, j) is the associated weight of the edge e; ;

and e;, ; € E. Thus, the associated weight w(e;, ;)
of edge e;, j is corresponding to the entry d; ; of
D, where e;, ; = (i, j) is the edge incident to ver-
tices v; and v;. For ‘the sake of convenience, we as-
sume that no two edges in the MST have the same
weight. Since D is a symmetric matrixand d;, ; = 0,
0 € i < N, only the upper triangular matrix of D
is enough to specify the N(N — 1)/2 edges of G.
Hence, we canset d; j =ocofor0 < j<i< N.
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Let T = (V, {t:, t2, t3,-*-tN-1}) be the MST of
G, where w(t;) < w(t2) < w(ts) <--- < w(tn-1)-
For agglomerative hierarchical clustering, the edges
in T will be cut in the order of t1, to, t3,---,tn-1,
and each cut corresponds to a level of the dendro-
gram, respectively. That is, cut the edge ¢; in T
will form the (N — i)*® level of the nested parti-
tions of the hierarchical clustering. At level Ix_;,
two clusters containing the patterns corresponding
to the two ending vertices of the cut edge ¢; will be
merged into together to form a new cluster. Since
the newly generated cluster of each cut may contain
many vertices, we set the vertex with the smallest
vertex number among them as a supervertex (de-
noted as sv) to identify the newly generated clus-
ter, and the other vertices in the same cluster can be
discarded. In order to determine which clusters will
be merged at level Iy_;, we may find the connected
components containing the two ending vertices of
the cut edge t; respectively from the subtree which
was made up of ;, 1 < k < i.

As for easily specified the information of each
edge in MST and each nested partition, two arrays
T=t,;and C=¢;j, 0<14, <N, are used to
store the edges of MST and the cluster, respectively.
Each entry ¢;, ; consists of three fields: tw, tI, tr,
where tw represents the distance between vertices ¢
and j, t! denotes the left ending vertex of edge (4, 7)
and tr denotes the right ending vertex of edge (7, j).
Each entry ¢;, ; consists of three fields: ¢n, cl, cr,
where cn represents the cluster number, ¢l denotes
the left child and c¢r denotes the right child.

Following the definition of proximity matrix D,
proximity graph G and the MST 7', the parallel
algorithm for agglomerative hierarchical clustering
can be described by the following three phases.

Phase 1. Compute the proximity matrix D from
pattern matrix A.

Phase 2. Begin with the disjoint clustering and set
each pattern as a cluster, then find an

MST T of proximity graph G.

Cut the N —1 edges in the MST T in the
order of weights simultaneously such that
each cut forms a new clustering.

Phase 3.

These three phases can be easily implemented in
O(log N) time on a 3-D N x N x N AROB. Ini-
tially, the pattern matrix a;, ; is stored in the local
variable a(i, j, 0) of processor P; j 0,0 <i< N,
0 < 7 < M. Finally, the dendrogram consisting of
the level number, cluster number and two children
are stored in the local variable I(7, j, 0), en(i, 7, 0),
(i, j, 0), and cr(i, j, 0) of processor P; ;, o,

0 € i< j < N, respectively. The detailed single-
link hierarchical clustering algorithm (SLHCA) is
shown in the following.

Algorithm SLHCA(A4, |, C );

/* A is an input variable. [ and C are output
variables. */

0: begin.

1: // Phase 1: Compute the proximity matrix D
from pattern matrix A. //

1.1: // Distribute the value of a; ; over the
N x M x N processors, where M < N. Let
features a;, ; and ag, ; of patterns 7 and k
be stored in local variables ai(i, j, k) and
ak(i, j, k), respectively. //

Copy a(t, 7, 0),0< i< N,0<j< M,
to ai(é, j, k), 0 € k < N through
the ig-dimension optical bus; then copy
ai(k, j, £),0 < j < M,0 < k < N,
to ak(i, j, k), 0 < i < N through the
ip-dimension optical bus. Thus, each pro-
cessor P; 5, 054, k<N, 0<j< M,
holds two pattern features a;, ; and ag, ;.

1.2: // Compute the Euclidean distance of the

j** feature of each pair of patterns i and
k. //

Compute d2(i, j, k) := (ai(i, j, k) —
ak(i, §, k)2, 0<i, k< N,0<j <M.
// Compute Eq. (3) //

Compute d(i, 0, k) =
(Xisa' 426, 4, B)M2, 0 < i, k < N,
through the i;-dimension optical bus by
Lemma 2.

// Copy d(i, 0, k) to d(s, k, 0). //
First copy d(i, 0, k), 0 <1, k< N, to
d'(i, k, k) through the i;-dimension opti-
cal bus , then copy d'(3, k, k),0<1, k<
N, to d(i, k, 0) through the i;-dimension
optical bus. Finally, set d(7, k, 0) := oo
for0<k<i<N.

1.3:

1.4:

2: // Phase 2: Initial partition and find all edges
of the MST T from G.//

2.1: // Find all edges of T from G. //
The proximity matrix D is a weighted
matrix corresponding to proximity graph
G. Find the MST T of G by Lemma
7. Let each edge of T be stored in
the local variable t(7, j, 0). That is,
tw(i, 4, 0y =d(s, 7, 0), t(4, 5, 0) =i and
tr(i, 4, 0) = jif the edge (4, ) is an edge
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2.2:

N
W

of T; tw(i, j, 0) = oo, t(i, 7, 0) = nil
and tr(i, j, 0) = nil, otherwise.

// Sort the N — 1 edges of T and put the
sorted edges to diagonal processors. That
is, t;, 1 <1< N, is stored in row i. //
Sort the edge t(Z, j, 0) according to its
associated weight tw(i, 7, 0),0<14, j <
N, into nondecreasing order by Lemma
4. Assume the N2 sorted data items are
stored in the local variable #(i, j, 0) of
processor F; ; 9,0 <14, j < N, according
to row-major order. As the result, the
N — 1 edges of T is moved to the first
row of processor Py j 0,0 < j < N -1
Then, copy t(0, j — 1, 0) to (0, 7, 0)
for 1 € j < N. Finally, copy (0, j, 0)
to t(j4, 4, 0), for 1 < j < N through the
iz-dimension optical bus.

: // Initial partition: set each pattern as a

cluster and row i corresponding to level
N-i//

For 0 < i, j < N, set I(4, j, 0) := N —
i, en{0, 4, 0) := 7, cl(0, 7, 0) := nil,
cr(0, 4, 0) := nil, and sv(0, j, 0) := 1
(this means vertex j is a supervertex).

: // Phase 3: Generate all clusters of each level

in parallel.

For the sake of convenience, a

3-D N x N x N AROB can be partitioned
into N 2-D N x N AROB which denoted as
2D — AROB;,, 0 < iy < N. A 2D~ AROB;,
contains processor P, i, i,, 0 < iz, i3 < N.

/1

3.1:

// Identify the newly generated cluster of
each level. //

3.1.1: // Construct the subtree of level I;,

3.1.2:

1<i<N.//

Copy t(j, j, 0), 1 < j < N, to
t(f, 4, 0) for j < i through the i,-
dimension optical bus. Thus, the sub-
tree of Iy_; consists of edge (3, 7, 0),
1<j <

// Label the vertices of each level
which lie in the same connected com-
ponent with vertices ¢I(, 7, 0) and
tr(i, i, 0) by a new cluster number
N4i-1.//

For those edges belonging to row i of
2D — AROBg, 1 <1 < N, find ‘the
connected component CC; which con-
tains vertices ti(4, 1, 0) and tr(i, 7, 0)
from the subtree by Lemma 5 through
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the 71 x ig-dimension processors. If a

vertex j, 0 £ j < N, is belonged to

the connected component CC; found
above, then set cn(i, j, 0) := N +i—
1; en(i, 4, 0) := nil, otherwise.

// Find the supervertex of each clus-
ter. //

For each row i of 2D — AROB;, 1 <
i < N, find the minimal index j of
en(i, j, 0) with en(i, 7, 0) # nil,
0 < j < N by Lemma 1 through
the i;-dimension processors. Then,
set sv(f, 7, 0) := 1 if the vertex j is
the minimal index; sv(i, j, 0) := 0,
otherwise.

3.2: // Set the left and right children of each
cluster. //

3.2.1:

// Each I; takes the latest cluster
number which may be the child of
the newly generated cluster, from I,
O<i<k<N.//

Processor P; j o with cn(i, j, 0) =
nil, 0 <1, j < N, establishes the lo-
cal connection {-S;,, +S;,}; breaks
this established local connection, oth-
erwise.

: // Find the children of each cluster.

/! .

Processor P; j o with en(i, j, 0) #
nil, 0 < 4, j < N, broadcasts
en(i, j, 0) on the port +S;, of the
established optical bus. Processor
B i, 0 with en(é, 7, 0) # nil, 1 <
1,7 < N, receives the broadcasted
data from its port —S;, on the es-
tablished optical bus, and store it in
pre_cn(i, 7, 0).

: // Set the ¢l and cr of each cluster.

//

For each row i of 2D — AROBy,
1 €14 < N, set i, 7, 0) :=
precen(i, #l(i, i, 0), 0) and
er(i, , 0) : = pre_en(i, tr(i, 4, 0), 0)
if sv(d, , 0) =1for0 < j < N
through the #;-dimension optical bus;
c(i, j, 0) := nil and cr(i, j, 0) :=
nil, otherwise. }

3.3: // Broadcast the cluster of I, 0 < i <

k < N, which has not been merged to I;.

/1

3.3.1:

For each row 7 of 2D — ARODB,,
1 €4 < N, processor P; j o with-
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en(i, 7, 0) = nil, 0 < j <
N, establishes the local connection
{=S:,, +S5i,}; breaks this established
local connection, otherwise.
// Broadcast (i, j,
su(i, 4, 0). //

For each row ¢ of 2D — AROB,,
0 £ 17 < N, processor P; ; ¢ with
en(i, §, 0) # nil, 0 < j < N, broad-
casts ¢(7, j, 0) and sv(i, j, 0) on
the port +5;, of the established opti-
cal bus, respectively. Then, proces-
sor P ; o with en(i, j, 0) = nil,
1 € 4,7 < N, receives the broad-
casted data from its port —S;, on
the established optical bus, and stores
them in the corresponding local vari-
ables, respectively.

3.3.2: 0) .and

3.4: // Compact all clusters of each level into
the left side. //
For each row i of 2D — AROB,y, 0< i <
N, processors F; ;0,0 < j < N, com-
pacts I(i, j, 0) and c(i, j, 0) together
through the i;-dimension processors by
Lemma 3 if the value of sv(i, j, 0) = 1.

end.

Theorem 1 Given N patlerns each with M fea-
tures (N > M ), the algorithm SLHCA can be com-
puled in O(log N) time on a 3-D N x N x N AROB.

proof: The time complexity is analyzed as fol-
lows. Steps 1.1, 1.2 and 1.4 each takes O(1)
time. Step 1.3 takes O(log M) time by lemma
2. Hence, Step 1 takes O(log M) time. Step 2.1
takes O(log N) time using N x N x N processors
by Lemma 7. Step 2.2 takes O(1) time by Lemma
4. Step 2.3 takes O(1) time. Hence, Step 2 takes
O(log N) time. Steps 3.1.1 and 3.1.2 each takes
O(1) time. Step 3.1.3 takes O(1) time by Lemma
1. Hence, Step 3.1 takes O(1) time. Steps 3.2 and
3.3 each takes O(1). time. Step 3.4 takes O(1) time
by Lemma 3. Therefore, the total time complexity
is O(log N) using N* processors. 0

Compared to the algorithm proposed by Tsai et
al. [24], the time complexity can be reduced from
O(log? N) to O(log N) with the same number of

processors.

5 Concluding Remarks

Clustering is a valuable tool for data analysis. In
most applications such as pattern recognition in

which the number of patterns may be very large.
However, this problem can be overcome by using
parallel processing algorithms running on multipro-
cessor computers. By integrating the advantages of
both optical transmission and electronic computa-
tion, it makes the computation power of the paral-
lel processing system enormously. To demonstrate
the computation power of the AROB, we have de-
signed an efficient parallel clustering algorithm on
the AROB. The proposed algorithm is better and
more elegant than the previous known results on
various parallel computation models. The compar-
ison result is summarized in Table 1.
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