1998 International Computer Symposium

Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

A FASTER PARALLEL IMPLEMENTATION OF THE KANELLAKIS-SMOLKA
ALGORITHM FOR BISIMILARITY CHECKING

Cheoljoo Jeong

Youngchan Kim

Youngbae Oh

Heungnam Kim

Laboratories for Computer and Software Technology
Electronics and Telecommunications Research Institute
Taejon, 305-350, Republic of Korea
Email:{cjeong, yckim, yboh, hnkim}Getri.re.kr

ABSTRACT

Bisimulation equivalence is one of the most important
equivalence relations that capture the notion of ‘behav-
ioral equivalence’ of concurrent systems. In this paper
we present a randomized parallel implementation of the
Kanellakis-Smolka algorithm that tests the bisimilarity of
two finite CCS specifications in O(n) time with O(n?)
CRCW processors, when the semantic models are given
as (81, A,T1,s1) and (S2, A, T3, s2), respectively (|S1] +
[S2| = n,|T3| + |T2! = m), and |A} = 1. Our implemen-
tation is faster than that of Lee and Rajasekaran [12] by a
factor of O(lgn)!.

1. INTRODUCTION

Over the past decades much attention have been paid to
the study of theories of concurrency such as CCS (Calcu-
lus of Communicating Systems) [9], CSP (Communicating
Sequential Processes) [5], and 7-calculus. And a fair por-
tion of these research efforts were devoted to the study of
the notion of ‘equivalence’ of systems. Since bisimulation
equivalence relation was proposed as a notion of behavioral
equivalence in [8], this equivalence relation has gained pop-
ularity not only in the software engineering community but
in several seemingly unrelated areas: set theory, functional
programming, game theory, computational complexity, and
soon (1, 2,10, 15].

Usually we use the bisimulation equivalence relation to
test if two concurrent system specifications (e.g., in CCS)
have the same behavior. But as the semantic models of pro-
cess specifications encountered in industry are very huge
in size, faster algorithms for determining the bisimulation
equivalence of the models are more desirable.

When a finite CCS specification is given, its semantic
model is usually taken to be a labeled transition system
(LTS), where an LTS is defined to be a 4-tuple (S, 4, T, 5):
S is the set of states, A is the set of actions, and T C SxAxS
is the transition relation, and s € S is the start state. When
(p,a,p') € T, we denote it by p 57,

llg n means the logarithm of 7 to the base 2.

-22_

The bisimilarity checking problem Given an LTS
(S, A,T,s), arelation R C Sx S is a strong bisimulation
if, for any a € A, (p,¢) € R implies that

(1) if p & p', there exists ¢ € S such thatq > ¢ and
(p',d') € R, and

(2) if ¢ = ¢, there exists p' € S such that p = p’ and
(',qd) € R.

When (p, ¢q) € R, we say that p and q are bisimilar and de-
note it by p ~ g. Given an LTS (5, A, =, 5) and two states
p,q € S, the bisimilarity checking problem is to determine
whether p ~ g or not.

Kanellakis and Smolka discovered that the bisimilarity
checking problem can be reduced to the relational coarsest
partition problem® when the input LTS is finite [6] and the
cardinality of the action set is 1.

The relational coarsest partition problem Given a fi-
nite set S, a binary relation T on S, and a partition Il =
{Bi1,---,Bp} on S, the relational coarsest partition prob-
lem finding the partition I = {Cy, - - -, C,} such that

(1) forevery C; € II, there exits B; €Il such that C; C
B,

(2) forevery p,q € C;and C;(# C;), T(p)NC; = B if
and only if T(q) N C; # 0, and?

(3) II is the smallest partition that satisfies the above two
conditions.

In [6], Kanellakis and Smolka showed that, when a rela-
tional coarsest partition IT = {C;} is found, each block C;
is a bisimulation equivalence class of the input LTS (of the
original bisimilarity checking problem), and presented an
algorithm that solves this problem in O(mn) time where
m = |T| and n = |S|*. Later, Fernandez [4] showed
that Kanellakis-Smolka algorithm can be easily extended to

ZIn essence, the two problems are equivalent problems in different set-
tings when the size of the action set is 1.

3T(p) = {g: (p,a) €T).

4From now on we will denote the cardinality of the transition relation
and the cardinality of the state set by m and n, respectively.-

solve the the bisimilarity checking problem with multiple
actions with no extra cost. In 1987, Paige and Tarjan [11]
devised a faster algorithm for the problem which requires
O(mlgn) time.

There are not so many research results on parallel al-
gorithms for bisimilarity checking algorithms. In a work
of Zhang and Smolka [16], an attempt has been made to
parallelize the Kanellakis-Smolka algorithm but the algo-
rithm was rather experimental and did not entail complex-
ity analysis of the algorithm. Rajasekaran and Lee [12]}
has devised two CREW PRAM algorithms: one based on
the Kanellakis-Smolka algorithm and the other based on the
Paige-Tarjan algorithm. The former requires O(n!*¢) time
and O(m/n¢) processors for any € > 1 and the latter re-
quires O(nlgn) time and O((mlgn)/n) processors. Both
algorithms assume that |A] = 1 but they can be extended
to handle the case when 4] > 1 without changing the run-
time complexities. In [3], the bisimilarity checking problem
was proved to be P-complete, which implies that the prob-
lem does not seem to have any poly-logarithmic parallel al-
gorithm.

Our algorithm solves the relational coarsest partition
problem in O(n) time using O(n?) processors on the
CRCW PRAM, when [A| = 1. Our algorithm can be ex-
tended to handle the case when | A} > 1 with the same time
and processor complexity using the techniques in [4, 12].
But our algorithm is a Monte Carlo algorithm with one-
sided error: there is a non-zero probability that it errs when
it outputs ‘no.’ Currently, we have not yet found a precise
bound on the probability of the error.

The organization of this paper is as follows. In section 2,
we present the model of computation and some primitive
operations used throughout the algorithm. In section 3, we
present the basic idea of this paper and a parallel algorithm
for the relational coarsest partition problem and in section 4
we present the complexity analysis of our algorithm. Fi-
nally, in section 5 we give the conclusion and some further
research directions.

2. PRELIMINARIES

2.1. Models of computation

Our algorithm assumes the PRAM (Parallel Random Ac-
cess Machine) as its model of computation. The PRAM is a
model for parallel computation with multiple synchronous
processors and a single shared memory [7]. The PRAM
models allow three different methods for resolution of mem-
ory access contention: CRCW (Concurrent Read, Concur-
rent Write), CREW (Concurrent Read, Exclusive Write),
and EREW (Exclusive Read, Exclusive Write) PRAM.
Performance of parallel algorithms is measured by two
functions of input size n: the time complexity T'(n) and the
. processor complexity P(n). A parallel algorithm is said to
be efficient if its time complexity is poly-logarithmic, i.e.,
T(n) = O(lg" n) for some constant k > 0. Let T"(n)

23

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

be the complexity of the optimal sequential algorithm® for
some problem P and let the work, W (n) of a parallel algo-
rithm be defined to be the product of time and processors
needed, i.e., W(n) = T'(n) P(n). Then a parallel algorithm
is optimal when W(n) = O(T*(n)).

2.2. The Kanellakis-Smolka algorithm for
bisimilarity checking

Kanellakis and Smolka’s algorithm [6] is based on the fol-
lowing observation:

Let B be a set of states that are believed to be in
the same bisimulation equivalence class. Given a
set of states, Splitter, we can further partition B
into two blocks By and B, where B is the set
of states that have transitions into some states in
Splitter and B, is the set of states that does not
have any (see Figure 1).

The algorithm KS-BISIMILARITY in Figure 2 takes one
LTS (S, A,T,s0) as its input and finds the bisimulation
equivalence classes with respect to the transition relation
T. We can easily modify the algorithm to take two LTSs,
(So, A,T1, 50) and (51, A, T3, s1), as its input and decide
whether the LTSs are bisimilar. The following algorithm
KS-EXTENDED-BISIMILARITY is a brief sketch of the
modified algorithm.

KS-MODIFIED-BISIMILARITY{(Sy, S1, T1, T2, 5o, $1)
1 S+ (SoUSy);

2 T+ (ToUT);

3 KS-BISIMILARITY(S, T);

4 if so and s; are members of the same block

5 then return True;

6 else return False;

The algorithm KS-BISIMILARITY starts with a single
bisimulation equivalence relation, which is the state set S
itself. It repeats the splitting procedure until no more split-
ting is possible.

3. A PARALLEL ALGORITHM BASED
ON MULTIWAY SPLITTING

In the algorithm KS-BISIMILARITY (Figure 2), the while
loop (from line 3 to line 16) is iterated at most O(n) times,

" since at each iteration the number of blocks increases by at

least one.

In this paper we show how we can reduce several iter-
ations into one using multiway splitting technique, which
enables us to split a block, B € II with respect to multiple
splitters.

3.1. Basic Idea: Multiway splitting

Suppose that there are a block B and two splitters, Sp; and
Spa, as in Figure 3. Elements of B can be classified into
22 = 4 categories: those with arcs to both Sp; and Sp»

Sor best known sequential algorithm

1998 Intemational Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

® P RKI°

IS RS

Splitter

? QR ©

AN
S

5 S| 0

Figure 1: Splitting a block with respect to a splitter

KS_BISIMILARITY(S, T)

I« {S};

2 SplitterSet + 1I;

3 while SplitterSet # @

4 do assign an element of Splitter Set to CurrentSplitter;
5 SplitterSet + SplitterSet — {CurrentSplitter};
6
7
8

—

compute T~ (CurrentSplitter);
for each block B € II
doif T~!(CurrentSplitter) N B # @ and

9 T~ !(CurrentSplitter)N B # B
10 then B' « T~ !(CurrentSplitter) N B;
11 B"+~B-B;
12 I+ - {B}u{B' B"};
13 if B € SplitterSet
14 then SplitterSet
15 + SplitterSet — {B} U {B’,B"};
16 else SplitterSet
17 + SplitterSet U {B',B"}
18 else do nothing;

Figure 2: The Kanellakis—Smolka algorithm for bisimilarity
checking

(B3), those with arcs only to Sp; (By), those with arcs only
to Spa (Bs3), and those with arcs to neither Sp; nor Sp»
(B4). When we split a block with respect to k splitters, the
block is split into at most min{2¥, n} new blocks.

3.2. Data structures
3.2.1. Representation of an LTS

Given an LTS (S, A, T, so) where |A| = 1, we can regard it
as a directed graph G = (V, E), where V' = Sand (P, Q) €
E if and only if (P,a,Q) € T fora € A. We can assume
that V = {1,2,---,n = |S|} without loss of generality.

G is represented by an indexed set of adjacency lists " =
{T; : 1 < i < n}. Each adjacency list T, of v € V' is
implemented as a linear array of length n. In addition, for
each vertex v € V/, we maintain an inverse adjacency list
I‘;‘, which contains the vertices from which v is adjacent.
I’ and ! satisfies the following property.

rw=rs'w={ § s

Note that we can test if (u,v) € E or not in O(1) time
using this representation and I is not changed throughout

the execution of our algorithm.

3.2.2. Representation of a partition I1

ApartitionII = {B;} ofastateset S = {1,2,---,n}isrep-
resented by a linear list of ordered tuples {x; = (s;, b;,t:) :
1 <4 < n}. m = {8i,b;,t;) means that for the ith entry
of II contains the information for state s; and s; has block
number b;. The usage of ¢; will be explained later. Two
states s; and s; are in the same block if and only if b; = b;.

For example, let a state set S = {1,2,3,4,5,6} and a
partition II = {{1,2,6},{3,4,5}} is given. Then II can
be represented by [(1,1,%1), (2,1,t2), (3,2,t3), (4,2,t4),
(5,2,t5),<6,1,t6)L

3.2.3. Representation of a splitter set

A splitter set, SplitterSet, is a set of splitters, where each
splitter is a subset of S. As we can see in Figure 2, it is
always the case the SplitterSet C II. So, if we have a
way to mark the blocks of IT which happen to be elements
of SplitterSet, we don’t have to maintain additional heavy
data structures for the splitter set.

For this purpose we add one more bit to each entry of II,
that is, w; € I1 is now represented by (s;, b;, t;, pi) where p;
tells whether b; is a splitter or not (e.g. p; = 1 if and only if
b; is a splitter). Though there may be some redundancy this
representation scheme serves us well.

3.3. Implementation of multiway splitting

Now let's investigate the details of our algorithm, PARAL-
LELBISIMILARITY, given in Figure 4.

PARALLELBISIMILARITY(S, T’)

I+ {S}

// In general, O={8,5, --,5n}-

while SplitterSet # 0

do assign k elements of Splitter Set to CurrentSplitters;
// Let CurrentSplitters = {Sp1, Spz, -+, Sp«x}
// and Spi = {si1,8i2, -, Sijsp;| } -
SplitterSet + SplitterSet — CurrentSplitters;
MULTIWAY SPLIT(II, CurrentSplitters);
CLEANUPPARTITION(IT);

O 00 3 W —

Figure 4: A parallel algorithm for bisimilarity checking

24

??R
///\\

Sp Sp2

T
—]
o b

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.O.C.

Bl Bz Ba B4

Q O

& O

Sm Sp2

Figure 3: Splitting a block with respect to multiple splitters

3.3.1. Marking for splitting

Suppose that we want to use multiway splitting technique
with degree k. Then we assume that each state s is associ-
ated with a linear array m* = [m{, - --,m})] of size k. m!
is used to denote the fact that state ¢ has a transition to ith
splitter. The algorithm for splitting a block with respect to
k splitters, Sp = {Spy, Spe,---,Spx} is as follows:

MULTIWAYSPLIT(S, Sp)
// Let Sp={Sp1,---,Spx}
/7 and Spi = {si1, -, %55, } -
for each state s € S in parallel
do for each 1 < i < k in parallel
domi « 0;
for each splitter Sp; € Sp in parallel
do for each element s;; € Sp; in parallel
do for each element ¢ € T™'(s;) in parallel
dom! « 1;

O 00~ N R W~

MULTIWAYSPLIT procedure can be executed in O(1) time
using O(n?) CRCW processors. This procedure

3.3.2. Cleaning up the partition 11

At the end of each iteration for refining the partition I, we
need to clean up the representation for II so as to guarantee
the integrity of II. That is, at the beginning of next iteration,
it should be that two states s; and s; are in the same block
of IL if and only if b; = b;.

As we can see in step 9 of MULTIWAYSPLIT procedure,
we modify m® = [m§, ---,mj] for each state s € S at each
iteration. We should assign new block numbers to states in
accordance with the new {m* : s € S}.

CLEANUPPARTITION(IT)

1 // Let H=[7f1,"‘,7fj=<3i,b,;,t{,p,'),"',7l'n].
2 // Let M ={m% =[my,--- m;]:s € S}
3 for each m* € M in parallel
4 doforeachl1 <j<kin parallel
5 dom «~ m" x 27,

6 ot Z o m ;

7 sortIl lex1cograph|cally on b; and ¢;;

8 // bi: the new block number of s;.

9 compute {b}} such that b; = b} iff b; = b; and t; = ¢;;
10 foreach 1 < 7 < nin parallel
11 dob; + b

After this cleanup procedure, each state s; has its block

number b;. Step 7 of procedure CLEANUPPARTITION can
be executed using any stable, optimal parallel sort algorithm
and step 9 can be implemented using list ranking operations
and parallel prefix sums operations [13] using O(lg n) time
and O(n) processors (in Figure 5 we can see a result of
step 7 computation.). After all, CLEANUPPARTITION pro-
cedure requires O(Ign) time and O(nk) processors.

3.3.3. Computing the new splitter set

Now let’s consider SplitterSet. If a splitter Sp €
SplitterSet has been split into Sp; and Sp, in procedure
MULTIWAYSPLIT, then we need to add Sp; and Sp; to
SplitterSet (step 13 through step 17 of Figure 2). As we
noted in section 3.2.3., this job amounts to adjusting the val-
ues of {p;}.

The values of {p;} can be decided executing step 9 of
CLEANUPPARTITION. Suppose that after the execution of
step 7 we got an instance of II as in Figure 5(a). Let p; =

= ps = True, which means that the first block of II
is a splitter. It’s obvious that the splitter should be split into
multiple splitters if and only if there exists an element of this
block such that b; # t;. After all, the new splitter set can be
computed in the CLEANUPPARTITION procedure with no
additional cost.

Comments on the algorithm We should consider the
case when the number of blocks in II is less than k. At
the first few iterations this really is the case. To overcome
this problem, we arbitrarily partition II so that the number of
blocks will be greater than k—1. One possible partition may
be obtained by isolating k — 1 vertices from a block of size
> k. Thatis, givenablock B = {s1,- -, 8k, Sk+1, " "> S }>
split this into k blocks {{s1}, -, {sk=1}, {sx,--,s1}}
This job does not incur additional cost but this makes our
algorithm a Monte Carlo algorithm with one-sided error.

Since we may arbitrarily split ‘bisimilar states’ into
different bisimulation equivalences, the equivalence class
found may be finer in granularity than the desired one. So
our algorithm has a non-zero probability of error when it
outputs ‘no.” Currently, we have not yet found a precise
bound on the probability of the error.

25

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

(a) m, 1,1,1)1) [(2,1,1,172) | <6y1127p6> ” (372111133) l (4123211)4).' (5,2,2,p5)]

(b) [(]wlvlvpl) l (271117‘0‘2) ”(6,2,2,176) ” (3,3,1,173) “ (4’4727P4) ‘ (574727175)]

Figure 5: Computing new block number of the states

4. COMPLEXITY ANALYSIS OF THE
ALGORITHM

In this section we claim that when we accelerate each iter-
ation by splitting the blocks of IT with respect to k splitters
we can reduce the number of iterations within a factor of k
though we may not reduce the time complexity to be poly-
logarithmic.

Lemma 1 Suppose that we use multiway splitting of de-
gree k. When there are at least k splitters in SplitterSet at
each iteration, the while loop of PARALLELBISIMILARITY
is iterated at most O(n/k) times.

Proof [Initially, SplitterSet consists of S alone and the
exit condition of the while loop is “SplitterSet # §.” Each
splitter in CurrentSplitters either take part in splitting the
blocks of IT or does no contribution in splitting (let’s call this
splitters idle). In the latter case, the splitter (together with
the elements of splitter) is thrown away and not used any
more.

Let r; be the number of splitters in Splitter Set just after
the ith iteration and 7o = 1. Note that 0 < r; < n. Let
Xi = Upesptitterset P be the set of states that are elements
of some splitter of SplitterSet after the ith iteration. Then,
if’i<j,X,' _D_XJ

Let’s consider two extreme cases: when the splitters are
always idle, and when the splitters are always non-idle. In
the first case, X; = X;_1 — k and the number of iterations
will be O(n/k). In the second case, r; = r;_;/2 and in
O(lgn) iterations, the SplitterSet will contains n splitters.
When there are n splitters in SplitterSet, in the next itera-
tion all the splitters must be idle and thrown away.

So, the worst case is when the splitters are always idle
(though this does not seem to occur in the real computa-
tion), the number of iterations of the while loop is O(n/k).
Q.E.D.

Lemma 2 When we use multiway splitting of degree k,
each iteration of the while loop of PARALLELBISIMLAR-
ITY takes at most O(lg n) time.

Proof The most subtle part of the algorithm is step 3
to step 5 of CLEANUPPARTITION. When k = n then
we should calculate 2" and this number is too big for us
to accept that this computation takes constant time. But
when k = Ign, the largest value produced in step 5 is
2'8™ = O(n) and we can assume that the computation takes
constant time. After all, taking into the time and processor

complexities of the procedures (of section 3.3) used in PAR-
ALLELBISIMILARITY, an execution of the while loop takes
O(lgn) time with O(n?) CRCW processors. Q.E.D.

Now, the following theorem can be derived from Lemma 1
and Lemma 2.

Theorem 1 The algorithm PARALLELBISIMILARITY runs
in O(lgn) time using O(n2) processors on the CRCW
PRAM.

5. CONCLUSION

In this paper we presented a parallel implementation of
the Kanellakis-Smolka algorithm for bisimilarity checking.
Our algorithm works with O(n?) processors and O(n) time
in the CRCW PRAM, which is faster than Lee and Ra-
Jasekaran’s algorithm by a factor of O(lgn). But our al-
gorithm has a non-zero probability of error when it outputs
‘no.” At present, we have not yet found a precise bound on
the probability of the error and the research is going on to
prove that the upper bound of the error is small enough.
There are several research directions on bisimilarity
checking algorithms. .
¢ Lee and Rajasekaran [12] posed the open problem
of finding O(n®)-time algorithm for the bisimilarity
checking problem for any € > 1.

e Since the bisimilarity checking problem is P-
complete, it’s not likely that there exists a poly-
logarithmic algorithm for the problem. So, it’1l be bet-
ter to look for a randomized parallel algorithm for a
problem and to prove that it is in RNC.

6. REFERENCES

[1] S. Abramsky and L. Ong. Full abstraction in the
lazy lambda calculus. Information and Computation,
105:159-267, 1993,

P. Aczel. Non-Well-Founded Sets. Number 14 in CSLI
Lecture Notes. Stanford: Center for the Study of Lan-
guages and Information, 1988.

2

—

[3] J. L. Balcazar, J. Gabarro, and M. Santha. Deciding
bisimilarity is p-complete. Formal Aspects of Com-
puting, 4(6A):638-648, 1992.

[4] Jean-Claude Fernandez. An implementation of an effi-
cient algorithm for bisimulation equivalence. Science

-26_

(5]

(6]

(7]

(8]

9]

(10]

(11]

[12]

[13]

[14]

(15]

{16]

of Computer Programming, 13(2-3):219-236, May
1990.

C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, Hertfordshire, 1985.

P. C. Kanellakis and S. A. Smolka. CCS expressions,
finite state processes, and three problems of equiva-
lence. In Proceedings of the 2nd ACM Symposium on
Principles of Distributed Computing, pages 228-240,
1983.

R. M. Karp and V. Ramachandran. Parallel algorithms
for shared-memory machines. In J. van Leeuwen, edi-
tor, Algorithms and Complexity, volume A of Hand-
book of Theoretical Computer Science, pages 869—
932. MIT Press, Cambridge, MA, 1990.

R. Milner. A Calculus of Communicating Systems.
Number 92 in Lecture Notes in Computer Science.
Springer-Verlag, New York, NY, 1980.

R. Milner. Communication and Concurrency.
Prentice-Hall, Englewood Cliffs, NJ, 1989,

F. Moller and S. A. Smolka. On the complexity of
bisimulation. ACM Computing Surveys, 25(2):287-
289, June 1995.

R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing, 16(6):973—
989, December 1987.

S. Rajasekaran and I. Lee. Parallel algorithms for re-
lational coarsest partition problem. Technical Report
MS-CIS-93-71, Computer and Information Science
Department, Univeristy of Pennsylvania, Philadelphia,
PA, July 1993. appeared in CAV’94.

J. H. Reif, editor. Synthesis of Parallel Algorithms.
Morgan Kaufmann, San Mateo, CA, 1992.

S. A. Smolka, O. Sokolsky, and S. Zhang. On the
parallel complexity of bisimulation and model check-
ing. In A. Ponse, M. de Rijke, and Y. Venema, edi-
tors, Modal Logic and Process Algebra: A Bisimula-
tion Perspective, number 53 in CSLI Lecture Notes,
chapter 13, pages 257-287. CSLI Publications, 1995.

C. Stirling. Local model checking games. In Proceed-
ings of CONCUR'95, number 962 in Lecture Notes
in Computer Science, pages 1-11. Springer-Verlag,
1995. ‘

S. Zhang and S. A. Smolka. Towards efficient par-
allelization of equivalence checking algorithms. In
Proceedings of FORTE 92, pages 133-146, October
1992.

27

1998 Intemational Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

	
	22
	23
	24
	25
	26
	27

