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ABSTRACT

This paper shows an unsupervised parallel approach called
the Annealed Hopfield Neural Network (AHNN) with a
new cooling schedule for vector quantization in image
compression. The main purpose is to combine the
characteristics of neural networks and annealing strategy
so that on-line learning and hardware implementation for
vector quantization are feasible. The idea is to cast a
clustering problem as a minimization problem where the
criterion for the optimum vector quantization is chosen as
the minimization of the average distortion between training
vectors. Although the simulated annealing method can
yield the global minimum, it is very time-consuming with
asymptotical iterations. In addition, to resolve the optimal
problem using Hopfield or simulated annealing neural
networks, designer must determine the weighting factors to
combine the penalty terms. The quality of final result is
very sensitive to these weighting factors, and feasible
values for them are difficult to find. Using the AHNN to
vector quantization, the need of finding weighting factors
in the energy function formulated and based on a basic
concept of the "within-class scatter matrix" principle can
be eliminated and the rate of convergence is much faster
than that of simulated annealing. The experimental results
show that good and valid solution$ can be obtained using
the AHNN in image vector quantization. In addition, the
convergent rate with different cooling schedule will be
discussed.

Keyword: Simulated Annealing, Mean Field Annealing,
Annealed Hopfield Neural Network, Image Compression.

1. INTRODUCTION

In image compression, the process of codebook design
from training vectors is a very important step in vector
quantization of coding process. A number of vector
quantization algorithms in image compression have been
demonstrated in other articles [1]-[9]. In general, a vector
quantization is an approach for mapping analog signals or
discrete vectors into a sequence of digital signal for
communication or storage in a channel. The purpose of

vector quantization is a creation of a codebook for which
the average distortion generated by approximating a
training vector and by a codevector in codebook is
minimized. The minimization of average distortion
measure is widely used by a gradient descent based
iterative procedure that is called the generalized Lloyd
algorithm (GLA) [1]. According the cluster center in
previous iteration and nearest neighbor rule, the GLA
performs a positive improvement to update the codebook
iteratively.

During the past decade, the Hopfield [10]-[11] neural
network has been studied extensively with its features of
simple architecture and potential for parallel
implementation. The Hopfield neural network is a well-
known technique used for solving optimization problems
based on the Lyapunov energy function. The application of
competitive Hopfield neural network to medical image
segmentation was described by Cheng e al [12]
Polygonal approximation using a competitive Hopfield
neural network was demonstrated by Chung et al. [13]. In
[12] and [13], a 2-dimensional discrete Hopfield neural
network used the winner-take-all learning to eliminate the
need for finding weighting factors in the energy function.
Lin et al. [14]-[15] proposed the segmentation of single
and multispectral medical images using a fuzzy Hopfield
neural network (FHNN). :

Robust identification for image processing needs data
compression that preserves the features in original image.
Image compression is coding of transformed image using a
code of fixed or variable length. Vector quantization is a
significant methodology in image compression, in which
blocks of divided pixels are formed as training vectors
rather than individual scales. Such a method results in
massive reduction of the image information in image
transmission. The image is reconstructed by replacing each
image block by its nearest codevector. The dimensions, of
an image with N x N pixels, can be divided into » blocks

(vectors of pixels) and each block occupies A x A (A <N)
pixels. A vector quantization is a technique that maps
training vectors {X,,x=12,..,n} in Euclidean AxA -

dimensional space R4 x4 into a set {Y,,x=12,.,n}of
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points in R’le, called a codebook. The mapping is
usually defined to minimize expected distortion measure,
Eld(X,,Y,)], using the mean square error (MSE) given

by d(x,y)=x-y)T x-y).

Codebook design can be considered as a clustering process
in which the training vectors are classified to the specific
classes based on the minimization of average distortion
between the training vector and codebook vectors (classes’
centroids). Then the clustering algorithms perform a
positive improvement to update the codebook iteratively.
In addition to the neural network-based technique, the
annealing technique with a new cooling schedule has also
been demonstrated to address codebook design problems in
this article. In AHNN, the problem of the vector
quantization is regarded as a process of the minimization
of a cost function. This cost function is defined as the
average distortion between the training vectors in a divided
image to the cluster centers represented by the codevectors
in the codebook. The structure of this network is
constructed as a two-dimensional fully interconnected
array with the columns representing the number of
codevectors (classes) and the rows representing the
training vectors in the divided image. However, a training
vector does not necessarily belong to one class. Instead, a
certain probability belonging to proper class is associated
with every vector sample. In AHNN, an original Hopfield
network is modified and the annealing strategy with a new
cooling schedule is added. The structure of AHNN is
identical the one of mean field annealing (MFA) network.
Consequently, the energy function may be quickly
converged into a near global minimum in order to produce
a satisfactory codebook. Compared with conventional
techniques, the major strength of the presented AHNN is
that it is computationally more efficient due to the inherent
parallel structures. In a simulated study, the AHNN is
demonstrated to have the capability for vector quantization
in image compression and shown the promising results.

2. ANNEALING TECHNIQUES

Simulated annealing is a stochastic relaxation algorithm
which has been used successfully to resolve the
optimization problems including computer network
topology problems [16], traveling salesman problems [17],
circuit routing problems [18], image processing problems
[19]-[20], and clustering problems [21]. Instead of the
other optimization methods such as steepest descent
approach used in the Hopfield neural network, the
simulated annealing technique, which allows the search to
move away from a local minimum, seeks the global or near
global minimum of an energy function without getting
trapped in local minimum. The simulated annealing
technique had non-zero probability to go from one state to
another, moves temporarily toward a worse state so as to
escape from local traps. The probability function depends
on the temperature and the energy difference between the
two states. With the probabilistic hill-climbing search

approach, the simulated annealing technique has a better
probability to go to a higher energy state at a higher
temperature.

Simulated annealing strategy was first proposed by
Metropolis et al [22] to simulate molecular processes in
1953. Kirkpatrick ef al [18] used the ideal as a method to
resolve minimizing functions of many variables, such as
NP-hard problems. Simulated annealing derives its name
from an analogy between its behavior and that of a
physical process of thermodynamics and metallurgy. In
which, a metal is first melted at a very high temperature
and then slowly cooled until it solidifies in a structure of
minimum energy. At the beginning, the temperature 7,
used to control the probability of accepting a worsening
perturbation over time, is set to a very high value; later it is
multiplied by a factor T, (0<T,4, <1), called the

annealing factor or cooling rate, after every iteration.

Although the simulated annealing method can yield the
global minimum, it is very time-consuming with
asymptotical iterations. The AHNN, presented to vector
quantization in image compression and discussed in the
following sections, which incorporate the characteristics of
the annealing strategy with a new cooling schedule and the
Hopfield neural network based on a modified objective
function, can converge much faster than the simulated
annealing. In addition, The AHNNmay also achieve the
level of optimization that is comparable to that achieved by
simulated annealing network.

3. VECTOR QUANTIZATION BY
THE AHNN

The AHNN, combined the characteristics of annealing
algorithm and the rapid convergence of Hopfield neural
network, is a well-known technique used for solving
optimization problems baséd on the Lyapunov energy
function. A two-dimensional image is divided into n blocks
(a block represents a training vector that captures A xA
pixels) and mapped to a two-dimensional Hopfield neural
network. Therefore, an image can consist of » training
vectors and c interesting classes (The class centroid is
represented a proper codevectors in codebook). If the
number of codevectors ¢ in codebook were defined in
advance, then the network array in this paper would consist
of n by c neurons. The AHNN can be conceived as a two-
dimensional neuron array. Each vector was trained with the
nearest neighbor condition and iteratively updating the
neurons’ weights. In this section, we will show that the
vector quantization in image compression problem can be
mapped onto the AHNN so that the cost function serves as
the energy function of the network. The idea is to form the
energy function of the network in terms of the intra-class
energy function. In the pattern recognition application, the
intraset (within-class) distance should be small. The
proposed technique first assigns training vectors to their
associated classes in such a manner that the average
distortion between arbitrary vectors to their class center or
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codevector, referred to as the within-class assignment, is
minimized in accordance with the nearest neighbor
condition. In linear discriminate analysis [26], the concept
of within-class scatter matrix is widely used for class
separability. The iteratively updated synaptic weight
between the neuronal interconnections will gradually force
the network to converge into a stable state where its energy
function is minimized.

The divided image can be represented by » training vectors.
Using the within-class scatter matrix criteria, the
optimization problem can be mapped into a two-
dimensional fully interconnected Hopfield neural network
with the annealing strategy for vector qauntization in
image compression. Instead of using the competitive
learning strategy, the AHNN uses the Boltzmann
probability distribution to eliminate the need for finding
weighting factors in the energy function. Henceforward,
each neuron would be identified with a double index, x,i
(where the index /=1, 2, ... ¢ relates to the group, whereas
the index x= 1, 2, ..., n refers to the neurons in each group),

its state with V;, the weight vector for neurons x,7 and y,i

with W, ;.,;, and the external bias vector for neuron x,i

with I
can be modified as

szxz Zx waz,y, i

x-l i=l y=1

Each column of this modified Hopfield network represents
a codevector (class) and each row represents a training
vector in a proper class. The network reaches a stable state
when the modified Lyapunov energy function is minimized.

xj - According to this convention, the cost function
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In order to generate an adequate codebook with the
constraints, we define the objective function as follows:
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where £ is the total intra-class scatter energy that is
accounted for the scattered energies distributed by all
training vectors in the same class, and both z . and z,, are

the trained vectors at rows x and y, respectively, and the
V's are continuous variables in the region [0,1] such that

V.;~1 indicates that training vector z, belongs to

codevector i (otherwise, V. ; = 0). The first term in Eq. (2)

is the within-class scatter energy that is the average
distortion between training vectors to the cluster center
over ¢ clusters (codevectors in codebook). The second
term attempts to insure that any training vector z, does
not show up on the final solution in two classes / and j.

While the third term guarantees those n vectors in Z can
only be distributed among these ¢ classes. More
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specifically, the last two term, which is the penalty term,
imposes constraints on the objective function and the first
term minimizes the within-class Euclidean distance from a
training vector to the cluster center in any given cluster.
These terms are combined into a weight sum using three
coefficients determined by the designer. As mentioned in
references [13] and [23], the quality of classification result
is very sensitive to the weighting factors, and good values
for them are difficult to find when even a moderate number
of training samples are considered. Searching for optimal
values for these weighting factors is expected to be time-
consuming and laborious. In [23]-[25], Van Den Bout
indicated good values for penalty terms can easily
determine using a trial and zero approach or analytical
techniques in a TSP problem on the order of 10 cities.
Unfortunately, these terms do not scale even as the
problem grows modestly to 30 cities. - Therefore, the
problem of finding a feasible codevectors from » training
vectors has been replaced with the problem of finding the
best value of 4, B, and C. In this paper, a new objective
function is developed which does not require any
weighting factor. Each state V,; is looked upon as the

probability of finding training vector z, currently residing

to class 7 undergo random thermal perturbations. The
probability of the training vector z, occupied by class i at

a given temperature I conforms to a Boltzmann
distribution

-AEy ;i IT
Vx,i x e ad .

&)
As each training vector can only be occupied by one class,
that is, every raw can have at most 1. In other words, the
summation of states in the same row equals 1. It also
ensures that only n vectors will be classified into these ¢
codevectors. That is the network must match the following
constraints

y
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Therefore, the objective function of the AHNN can be
further simplified as
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Then the mean field £, ; can be calculated from Eq. (4) to
be
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occupied by class i
can then be normalized as follows:
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The normalization operation in (6) guarantees that
each training vector will be absorbed on several classes
with certain probability degrees so there will be n vectors
assigned among ¢ codevectors. By using Eq. (4), which is
modified from Eq. (2), the minimization of energy E is
greatly simplified since it contains only one term and
hence the requirement of having to determine the
weighting factors 4, B and C, vanishes. Comparing Eq. (4)
with the modified cost function Eq. (1), the synaptic
interconnection weights and the bias input can be obtained

as

(6

1
Wxi'yi ='_n_’—zy’ (7)
) Z V X
h=1" hJ
- and
I,;=0. ®

As the temperature is reduced, the training vectors will
begin to approach in feasible class that will minimize the
total cost. In summary, the AHNN algorithm for image
vector qunatization consists of the following steps:

1. Input a set of training vectors Z ={z;,z,,..,2,}, the
number of classes ¢ (number of codevectors), and
randomly initialize the probabilities of neuron states for
all neurons.

2. Start with an initial temperature T,

3. Select a training vector z, randomly and calculate the

mean field for training vectorz . at each class i using
Eq. (5). .

4. (Calculate the normalized probability that training
vector z, assigned class i/ using Eq.(6) for each
possible class.

5. Repeat the iteration with another randomly selected
neuron until all neurons are trained.

6. Decrease T with the annealing factor 7, shown in Eq.
(12) iteratively.

7. Repeat steps 3, 4, 5, and 6 until cost function is
convergent.

4. COOLING SCHEDULE

In order to converge to a near global minimum in
annealing process, a feasible cooling schedule is required.
The reaching thermal equilibrium at low temperature might
take a very long time. The search for adequate cooling
schedules has been the subject of an active research field
for several years [27]. Geman et al. [28] demonstrated that
if the temperature is lowered at the rate:
_ T

log(k +1)

where T7; is a constant and k is the number of iterations,

®

Trate =

the algorithm will converge to the set of states of least
energy. Jalali et al. [20] presented that the value of the

constant T, for which Geman e al. were able to guarantee
convergence is in general very high, so that the
convergence time becomes impractically slow. Jalali ez al.
used a schedule very similar to that of Geman et al., given
in Eq. (9), but with a steeper descent at higher iterations as
follows:

Ty
log(k +1)°
Jalali et al. showed that the value of T in Eq. (10) has to
be kept as small as possible, so that the number of
iterations can be held within a reasonable limit.
Unfortunately, the cooling schedules specified by Eq. (9)
and Eq. (10) with high value of 7;, are too slow to be of
practical use [29]. Kirkpatrick er. al. [18] proposed a
cooling schedule specified a finite sequence of values of
the temperature and a finite number of transitions
attempted at each value of the temperature. The decrement
function of cooling schedule is defined by

k
Trate =(a) TO’ k=1,2,... (11)
where o (0.8<a<0.99) is a constant smaller but close
to unit.

(10

Trote =

In this ’paper, a new decrement function of cooling
schedule is proposed as follows:

T, = zlﬁ[ﬂﬂanh(a)" Ton k=12, 12)
where ¢ is a constant same as the one in Eq. (11). And g
is another constant. § =4 been selected in this paper, Eq.
(12) can result in a faster decrement speed than those
resulted from Eq. (11). Figure 1 shows the reduction
process using different decrement functions described from
Eq. (9) to Eq. (12) with «=0.98, initial temperature
T, =4000, and 100 iterations. From Figure 1, we can find
Eq. (12) results in the fastest decrement speed.

14000

12000

10000

%]

0 R )
0 20 40 60 80 100
Nurrber of iterations  ~Eq.(9), xEq(10), +Eq(11), o:Eq(12)

Figure 1. The reduction process using different decrement
functions described from Eq. (9) to Eq. (12) with 7 =4000

and 100 iterations.
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S. EXPERIMENTAL RESULTS

In this paper, the performance of images reconstructed
from the designed codebooks was discussed using the
AHNN with different cooling schedules. The training
vectors were extracted from 256x256 real images, which
were divided into 4x4 and 8x8 blocks to generate 4096 and
1024 nonoverlapping 16- and 64-dimmensional vectors
respectively. Three codebooks of size 64, 128, and 256
were built using this training data. Column 1 in Figure 2
shows the training images. These images are 256x256
pixels with 8-bit gray levels. In this experiment the
compression rates were 8/16 = 0.5 and 8/64=0.125 bits per
pixel respectively. The peak signal to noise ratio (PSNR),
that is defined for NxV image as follows, was evaluated in

the reconstructed images.
255%x 255

jfo:lZﬁ:l(fw_}xy)z

where f,, and f’xy are the pixel gray levels from the

PSNR =10 10g10 (13)

original and reconstructed images, 255 is the peak gray
level, respectively. Columns 2 and 3 in Figure 2 show the
images reconstructed from the codebooks of size ¢ = 64
and 256 design by the proposed AHINN based on the
decrement function demonstrated in Eq. (12). In the boy-
girl image, the PSNR completed by the AHNN algorithm
with 0.500 bpp and codebook of size ¢ = 256 was 33.03 dB.
Table 1 shows the PSNR of the images reconstructed from
the various codebooks design using the AHNN with
cooling schedule shown in Eq. (12). From the experimental
results, the proposed cooling schedule can results in a
fastest convergence and get a feasible PSNR in the test
images with different codebook size after several iterations.
Figure 3 shows the PSNRs of reconstructing from Lenna
image with codebook size ¢ = 256 and boy-girl image with
codebook size ¢ = 128 by 4x4 blocks using various
cooling schedule described from Eq. (9) to Eq. (12) during
60 iterations. In summary, from the experiment results, the
proposed algorithm and cooling schedule could
satisfactorily produce the codebook design while the
network convergence with finite number of iterations is
guaranteed.

Chung [13] indicated that the quality of the final solution is
very sensitive to the values of weighting factors A, B and
C, and searching for the optimal values would be time-
consuming and laborious. The problem of determining the
optimal values of the weighting factors is avoided in the
AHNN, 1t is implied that this approach is more efficient
and versatile than the simulated annealing neural network
for vector quantization. It is also noted that the resulting
images are processed without human intervention. Thus,
the experimental results can be regarded as near optimal.
Generally, the AHNN approach for vector quantization
needs much more computation time than conventional
methods. However, due to the AHNN's highly
interconnected and parallel abilities, computation time can
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be largely reduced by way of parallel processing with
hardware implementation.

6. DISCUSSION & CONCLUSIONS

A two-dimensional AHNN neural network based on the
within-class scatter matrix with a new cooling schedule for
vector quantization has been presented in this paper. The
energy function used for the AHNN is called the scatter
energy function that is formulated and based on a widely
used concept in pattern classification. The AHNN method
greatly simplifies the scatter energy function so that there
is no need to search for the weighting factors imposed on
the original energy function. In addition, the proposed
cooling schedule could satisfactorily produce the feasible
codebook design while the network convergence with
finite number of iterations is guaranteed. As a result, the
proposed algorithm appears to converge rapidly to the near
optimal solution using the proposed annealing schedule.
Moreover, the designed AHNN neural-network-based
approach is a self-organized structure that is highly
interconnected and can be implemented in a parallel
manner. It can also easily be designed for hardware
devices to achieve very high-speed implementation.
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Figure 2. Test images and reconstructed images with 4x4
blocks using AHNN: (column 1) Orignal images; (column
2) reconstructed images with codevectors ¢=64; and
(column 3) reconstructed images with codevectors c=256.
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Table I. PSNR of the images reconstructed from codebooks of various sizes and different
compression ratios designed by the AHNN.

Codebook Size 64 128 256
Image Lenna | F-16 | Girl | Boy- | Lenna | F-16 | Girl | Boy- | Lenna | F-16 | Girl | Boy-
girl girl girl
0.500bpp 27.56 [25.73129.53130.23] 28.14 [26.76]30.45]|31.21] 29.56 | 28.32 {31.55}33.03
0.125bpp 2487 123.23(26.89]28.74| 2632 {2442)27.69)29.52| 27.86 | 26.65 | 28.87]30.66

Convergent curve for codevector size=256

[o] 10 20 30 40 50 60
Number of iterations ":Eq.(9) xEq.(10) +Eq.(11) 0:Eq.(12)

(2)

Convergent curve for codevectorsize=128
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(b)
Figure 3. Convergent curve of the test images in 60 iterations with 4x4 blocks using different cooling
schedule. (a) lenna, and (b) boy-girl images.
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