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Abstract-It is widely known that the Translation 
Lookaside Buffer (TLB) plays an important role in 

the address translation mechanism from virtual 

addresses to physical addresses. If any misses occur, 

the performance of the processor will seriously 

degrade. In order to reduce such misses, some 

methodologies are proposed. Some designs try to 

improve the associativity or sizes to reduce the 

conflict or capacity misses, while others try to use 

superpages to cover more memory spaces. 

Furthermore, some papers even propose methods to 

dynamically merging several smaller pages into 

superpages during the processor execution. These 

methodologies, especially superpages, can 

effectively reduce lots of misses for most applications. 

However, to support the multiprogramming 

characteristic in all modern OS, the context 

switching mechanism is needed and the context 

switching will cause the flush operations for all TLB 

entries. It will impact on the performance very 

seriously, especially on today’s high performance 

processors. However, it’s hard to find an easy 

implement solution to reduce the misses in context 

switching. This paper shows what would happen if 

the page sizes are increased from 4KB to 1MB to 

explain why larger page size are selected. The paper 

also presents a novel and easy implemented TLB 

architecture to reduce the misses in context 

switching. All simulations were done with modified 

SimpleScalar 3.0d tool suite and SPEC95 

benchmarks. The results show that our methodology 

can be very useful for multiprogramming 

environment under specific conditions.  

 

Keywords: TLB, Multiprogramming, Context 

Switch, SimpleScalar. 

 

1. Introduction 
 

To support large memory requirements for 

modern applications, all new advanced general-

purpose processors will support the virtual memory. 

In order to support virtual memory, the address 

translation mechanism is needed. It is well known 

that all the address translations are stored in main 

memory and maintained by the operating system; to 

reduce the cost of address translation, the translation 

lookaside buffers (TLBs) [4] are implemented inside 

the processor. If there’s any TLB miss occurring, at 

least two or three memory accesses are needed to 

fetch the translation from main memory by the 

memory management unit (MMU). With the VLSI 

technology improving rapidly, the new 

microprocessors become much faster than ever 

before and it causes the gap between memories and 

the processor core is larger and larger. We can easily 

find that the TLB is in the critical path of memory 

accesses. It’s an important issue to reduce the miss 

rate of TLB [8]. 

 

To reduce the miss rate, most processors try to 

improve the sizes (total entries) of TLBs with fully 

or set associativity, such as 512 entries 4K page TLB 

on Intel Pentium !!! Processor [5]. In addition, 

some processors even implement multi-level TLBs, 

such as the highest-end Intel Itanium2 Processor 

with 2-level ITLB and DTLB [6]. However, some 

processors begin to provide superpage to increase 

the TLB span. Assuming a processor with only 64-

entry TLB and 4 KB pages are used (such as MIPS 

R3000[3]), only 256KB memory space can be 

mapped (64×4KB) but total 4GB in 32-bit 

addressing or even more main memory space for 

future processors. For example, the new Intel 

Processors from Pentium Pro begin to provide 

larger page with sizes of 2MB and 4MB [7]. In order 

to provide different page sizes, several TLBs are 

needed. Some studies focus on dynamically 

supporting pages with different sizes. Lee et al. 

proposes a novel banked-promotion TLB structure to 

support two page sizes dynamically. Four 4KB pages 

can be promoted to a 16KB page dynamically and to 

support such mechanism a interesting two-bank TLB 

are proposed. The heuristic promotion algorithm can 

promote four consecutive entries from small page 

TLB bank to large TLB bank [9,2]. Swanson et al. 

presents a novel memory controller which can 

aggressively create superpages even from non-

contiguous and unaligned regions of physical 

memory [12]. Channon et al. introduces re-
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configurable partitioned TLBs to improve the TLB 

performance [1]. 

 

Though lots of research is done, few consider the 

context switching problem under multiprogramming 

environment. However, all context switchings will 

cause the flush operations for whole of the TLB 

entries. It affects the performance very seriously. In 

this paper, we propose a novel and easy implement 

TLB structure to reduce the miss rate caused by the 

context switching under multiprogramming 

environment. The structure is so easy to implement 

that it’s also suitable to be implemented inside the 

processor core of SoC. 

 

The simulation will be done by the modified 

SimpleScalar version 3.0d tool suite with SPEC 95 

benchmark. We modified the original SimpleScalar 

version 3.0d tool suite to accommodate our 

requirements.  

 

The rest of the paper is organized as follows. In 

Section 2 we discuss the relationship between the 

miss rates, page size and TLB sizes. The new novel 

TLB architecture to reduce miss rate in context 

switching is presented in Section 3. The expected 

performance is demonstrated in Section 4. Finally, in 

Section 5 we summarize the conclusion and describe 

the possible future work. 

 

2. Relationships between the Miss Rates, 

Page Sizes and TLB Sizes 
 

It is well-known that the most important two 

issues for cache system performance are to reduce 

the miss rate and the miss penalty. It is almost the 

same for the TLB performance. However, the most 

important issue is the miss rate. We focused on the 

miss rate in our research. In order to select the 

suitable page size, we did some study on the 

relationships between the miss rates, page sizes and 

TLB sizes.  

 

First, we consider the relationship between the 

miss rate and TLB sizes with traditional 4KB page 

sizes. Figure 1 below illustrates the relationship 

between TLB sizes and miss rate of running gcc of 

SPEC95. The two results show that the miss rates 

would be lower with the TLB sizes increasing. The 

performance of both ITLB and DTLB are the best 

with sizes over 256 entries.  

 

However, that’s not always true for most 

applications. Let’s observe the result of ijpeg of 

SPEC95 showing in figure 2. It’s very clear that only 

16 entries are enough. It’s useless to increase the 

number of TLB entries. The result would be roughly 

the same on some other SPEC95 benchmarks such as 

vortex and li. 
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Figure 1 ITLB/DTLB miss rate for gcc of SPEC95 
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Figure 2 ITLB/DTLB miss rate for ijpeg of SPEC95 

 

Another solution to improve the performance of 

TLB is to extend the page size into larger one. It’s 

easy to find that some modern processors begin to 

provide multiple page sizes such as 4KB, 2MB and 

4MB sizes on all new Intel advanced x86 

processors after the Pentium Pro processor[7]. The 

advantages of larger page sizes are not only 

obtaining better performance but saving the 

implementation cost with less tags (virtual page 

number, VPN) and translations (physical page 

number, PPN) needed to be stored. It is also a good 

method to reduce the cost on TLB implementation of 
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processors with larger addressing space, such as 

processors with 64-bit addressing space. Certainly, 

it’s suitable to implement on the processor core of 

SoC or embedded systems. 

 

What would happen if we extend the page size to 

1MB. Figure 3 shows the miss rate for gcc of 

SPEC95 of 4KB, 16KB, 64KB, 256KB and 1MB 

page sizes with different TLB sizes. Observing the 

result, we can find that the ITLB performance of 

1MB page with 8 entries can easily outperform that 

of 4KB page or even 256KB page with 256 entries. 

In addition, the DTLB performance of 1MB page 

with 8 entries can greatly outperform that of 4KB 

page with 256 entries. Furthermore, it is roughly the 

same with that of 256KB page with 256 entries. In 

addition, the results are almost the same on all the 

SPEC95 benchmarks. Thus, we selected the 1MB 

page size in our design.  
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Figure 3 ITLB/DTLB miss rate for gcc of SPEC95 

of 4KB, 16KB, 64KB, 256KB and 1MB page sizes 

with different TLB sizes 

 

3. Structure of the Novel TLB  
 

This section describes in detail the TLB structure 

we proposed for processors with larger page size 

support. The structure can be implemented not only 

in contemporary processors but future processors 

comprised with one billion of transistors. 

Furthermore, it is especially suitable to be 

implemented on processors with larger addressing 

space than current processors with just 32-bit 

addressing ability. 

3.1. Overview 
 

Figure 4 shows in detail our proposed novel TLB 

structure to reduce the miss rate in context switches. 

To reduce the miss rate, most designs just try to 

increase the TLB size to reduce the capacity misses; 

however, we have showed in previous section that it 

is more helpful if the page can be enlarged. 

Furthermore, with larger page size, the size of tags 

and translations needed to be stored can be much 

smaller. Thus, we used 1MB page in our design. 

 

The proposed structure consists of the following 

parts—the TLB banks with group tags, and a 

multiplexer to select a specific TLB bank. Each TLB 

bank contains eight entries, and the tag can be 

implemented with CAM (content addressable 

memory) which is the same as that being 

implemented on conventional TLB. Furthermore, 

each TLB bank is implemented with fully associative 

with LRU replacement policy. There are total 32 or 

more TLB banks. Though there are 32 banks, 

compared with 256-entry conventional TLB the total 

cost is not increased very much. In fact, there are 

also total 256 (32*8) entries in our proposed 

structure. In addition, because of larger page size, 

the cost of each entry is decreased. Thus the 

increased cost can be ignored. Except the 32 TLB 

banks, there are also 32 extra registers to store the 

bank tag as shown in Figure 4. The register contains 

task tag to identify each task, the current bit to 

identify the current task, the valid bit to validate a 

bank, and the LRU bits1 to replace the victim bank. 

We have to point out that the task tag can be PID 

(process ID) or the PPN (physical page number) of 

the executing instruction when the context switch 

occurs. The PID is selected as task tag on systems 

that the PID will be sent into the processor; 

otherwise, the PPN of the executing instruction when 

the context switch occurs from the PPN field (or last 

translation) is selected. Considering the general cases, 

the PPN is selected in the latter discussions; however, 

the PID can be more easily selected and 

implemented under the previous situation. The 

discussion will be ignored in this paper. However, 

we still have to point out that we treat ITLB and 

DTLB as a couple, and they share the same bank 

tags. That means they stores translations for the same 

task in the same related bank. 

 

3.2. Implementation of the novel TLB 
 

In order to realize the new proposed mechanism, 

the OS is needed to do a little modification. Except 

larger page size2, the OS needs to send ‘the clear 

TLB signal’ to the processor only when swapping 

pages with disks occurs or page frames release. 

1 Pseudo-LRU can be implemented. 
2 We are currently working on developing new structure to 

support 4KB page size and superpages with TLB prefetching 

mechanism based on the proposed novel TLB structure. 
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Fortunately, it’s very easy to realize. Most modern 

processors provide some ways to flush TLB entries, 

such as using STA instruction with alternative 

addresses on Sparc processors [11]. 

 

 
Figure 4 A Novel Low Context Switching Miss Rate 

TLB Architecture  

 

3.2.1. Mechanisms of the novel TLB  

 

The proposed TLB structure is divided into 32 

banks. Once the virtual address is generated from the 

CPU, the virtual page number (VPN, from the most 

significant bit to the previous bit of the offset, for 

example [31:20] in 32-bit addressing space 

environment or [35:20] in 36-bit addressing space 

environment) is sent to the 32 banks in parallel. Each 

bank works the same as conventional TLB. The 

PPNs of the hit entries of each bank are sent to a 

multiplexer. In addition, the select signals are 

obtained from the current bit of all group tags in 

order to select the right bank. If it’s a hit, the current 

TLB bank works as conventional TLB and the 

physical address can simply be generated by adding 

the output PPN and the offset from virtual address. 

However, except the simplest situation, all other 

situations should be carefully handled by the MMU 

(memory management unit). The following describes 

these in details. 

 

1) No current bit set in all bank tag: The situation 

could be happened only when the first instruction 

fetching after a context switching for ITLB, the 

system initialization, or the swapping pages with 

disks occurring. Under this situation, no valid 

physical address can be provided via TLB translation. 

The address should be generated in general way by 

the MMU and OS. After the physical address (or 

PID if it is available) is generated, it is compared 

with the task tag field of bank tags. If any of it is hit 

in a valid bank tag, the current bit of that bank tag is 

set. Otherwise, the MMU should try to select a 

victim bank with invalid bit and LRU bits from the 

bank tag and flush all its eight entries (both related 

ITLB and DTLB). Then the current bit of this bank 

should be set and the LRU bits of all bank tags 

should be updated. Finally, the correct translation is 

stored into the current ITLB bank entry and the task 

tag of current bank tag should be set. Moreover, it is 

the generated PPN (or PID under the situation which 

PID is available) that is stored into the task tag field 

of current bank tag.  

 

2) One current bit found but no valid translation: If 

one current bit is found but no valid translation can 

be generated, it means that the TLB (DTLB or ITLB) 

reference of the current task is available before but 

the missed page has not referenced yet. The action of 

the current TLB bank just simply acts as a 

conventional TLB, and no bank tag modification is 

needed. 

 

3) Context switching: Once the context switching 

happens, the MMU just needs to clear the current bit 

of the bank tag and no more other actions. 

 

4) Page swapping with disk occurring or page 

frame releasing: If the page swapping with disk 

occurs or page frames release, the modified OS 

sends the ‘clear TLB signal’ to the MMU. Hence, 

the MMU can clear the valid bit of all bank tags. 

 

4. Simulation Results 
 

All of our simulations were done with 

SimpleScalar 3.0d tool suite. We simulated all the 

SPEC95 benchmark to demonstrate the expected 

performance. We assumed that the context switching 

would happen after executing one million 

instructions. We compared the miss rates of 

conventional 256-entry TLB with flushing all entries 

after context switching and our novel TLB structure 

with 8-entries each bank after correctly keeping 

entries. Figure 5 shows the simulation results of all 

SPEC95 benchmarks. 

 

As can be seen in Figure 5, we can find that our 

design can deliver at least the same performance or 

better performance than the conventional structure. 

However, these results show two major differences 

among all of them. Some results show that the new 

novel design can greatly outperform conventional 

structure if the keeping entries are correct, such as 

gcc, compress, li, and go. That’s because these 

applications need more computation time to finish 

and more context switching occurs during their 

execution. Others show the same result between 

conventional design and ours, such as Vortex, ijpeg, 

and perl. These applications need only shorter 

computation time, and the computation can be 

finished before the first context switching. Thus, 

both of the two structures can give the same 
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performance. However, both of the two structures 

have the same total entries. That means that with the 

same total TLB size our new structure can perform 

better than conventional TLB structure. Our design 

has better TLB-entry utilization. 
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Figure 5 Miss rates of all SPEC95 benchmarks 

 

5. Conclusions and Future Work 
 

The TLB misses have great impact on the overall 

performance of modern processors. However, there 

is only a little research on it for the past decade. 

Furthermore, few studies focus on the context 

switching issue which is considered the most 

important issue of all. In this paper, we presented a 

new novel TLB mechanism to reduce the miss rate in 

context switching.  

 

We showed that with 1MB page size only eight 

entries TLB can easily cover near the whole working 

set of general applications. With 1MB page size, it’s 

useless to increase the TLB size from 8 entries to 

256 or even more entries. According to the result, we 

tried to divide the 256 entries into 32 banks in order 

to store translations of different tasks. We proposed 

a mechanism to implement the new TLB structure 

and how to modify OS to support it. With this 

methodology, the utilization of the TLB entries is 

improved. Furthermore, we also showed that the 

miss rate in context switches can be decreased if the 

TLB entries are correctly kept.  

 

However, though lots of modern processors have 

already provided multiple page sizes especially large 

page sizes, most modern OS only support 4KB page 

for their paging mechanism. Fortunately, some 

research begins to focus on supporting larger page 

size, or multiple page sizes. For example, Naohiko 

Shimizu and Ken Takatori proposed a Linux 

superpage kernel for Alpha, Sparc64 and IA32 [10]. 

 

Though we proposed a new novel TLB structure 

in this paper, it is only for 1MB or larger page size. 
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However, it’s also important to provide such solution 

for conventional 4KB page environment. We have 

already begun to find a solution to integrate the 

proposed structure and TLB entry prefetching 

mechanism for 4KB page environment. Furthermore, 

we also begin trying to find solutions to support 

multiple page sizes with lowest cost and even 

provide hardware superpage mechanism with 4KB 

page based. We believe that still lots of works should 

be done in this field.  
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