
A Novel TLB Architecture to Reduce the Miss Rate in Context Switching

Chang-Jiu Chen,Wei-Min Cheng,Chi-Wen Chang, and Wen-Chiuan Liao
*

Department of Computer Science and Information Engineering

National Chiao Tung University, Taiwan,ROC

{cjchen,wmcheng,chiwen}@csie.nctu.edu.tw
*
CCL,ITRI, Taiwan,ROC

liao@itri.org.tw

Abstract-It is widely known that the Translation
Lookaside Buffer (TLB) plays an important role in

the address translation mechanism from virtual

addresses to physical addresses. If any misses occur,

the performance of the processor will seriously

degrade. In order to reduce such misses, some

methodologies are proposed. Some designs try to

improve the associativity or sizes to reduce the

conflict or capacity misses, while others try to use

superpages to cover more memory spaces.

Furthermore, some papers even propose methods to

dynamically merging several smaller pages into

superpages during the processor execution. These

methodologies, especially superpages, can

effectively reduce lots of misses for most applications.

However, to support the multiprogramming

characteristic in all modern OS, the context

switching mechanism is needed and the context

switching will cause the flush operations for all TLB

entries. It will impact on the performance very

seriously, especially on today’s high performance

processors. However, it’s hard to find an easy

implement solution to reduce the misses in context

switching. This paper shows what would happen if

the page sizes are increased from 4KB to 1MB to

explain why larger page size are selected. The paper

also presents a novel and easy implemented TLB

architecture to reduce the misses in context

switching. All simulations were done with modified

SimpleScalar 3.0d tool suite and SPEC95

benchmarks. The results show that our methodology

can be very useful for multiprogramming

environment under specific conditions.

Keywords: TLB, Multiprogramming, Context

Switch, SimpleScalar.

1. Introduction

To support large memory requirements for

modern applications, all new advanced general-

purpose processors will support the virtual memory.

In order to support virtual memory, the address

translation mechanism is needed. It is well known

that all the address translations are stored in main

memory and maintained by the operating system; to

reduce the cost of address translation, the translation

lookaside buffers (TLBs) [4] are implemented inside

the processor. If there’s any TLB miss occurring, at

least two or three memory accesses are needed to

fetch the translation from main memory by the

memory management unit (MMU). With the VLSI

technology improving rapidly, the new

microprocessors become much faster than ever

before and it causes the gap between memories and

the processor core is larger and larger. We can easily

find that the TLB is in the critical path of memory

accesses. It’s an important issue to reduce the miss

rate of TLB [8].

To reduce the miss rate, most processors try to

improve the sizes (total entries) of TLBs with fully

or set associativity, such as 512 entries 4K page TLB

on Intel Pentium !!! Processor [5]. In addition,

some processors even implement multi-level TLBs,

such as the highest-end Intel Itanium2 Processor

with 2-level ITLB and DTLB [6]. However, some

processors begin to provide superpage to increase

the TLB span. Assuming a processor with only 64-

entry TLB and 4 KB pages are used (such as MIPS

R3000[3]), only 256KB memory space can be

mapped (64×4KB) but total 4GB in 32-bit

addressing or even more main memory space for

future processors. For example, the new Intel

Processors from Pentium Pro begin to provide

larger page with sizes of 2MB and 4MB [7]. In order

to provide different page sizes, several TLBs are

needed. Some studies focus on dynamically

supporting pages with different sizes. Lee et al.

proposes a novel banked-promotion TLB structure to

support two page sizes dynamically. Four 4KB pages

can be promoted to a 16KB page dynamically and to

support such mechanism a interesting two-bank TLB

are proposed. The heuristic promotion algorithm can

promote four consecutive entries from small page

TLB bank to large TLB bank [9,2]. Swanson et al.

presents a novel memory controller which can

aggressively create superpages even from non-

contiguous and unaligned regions of physical

memory [12]. Channon et al. introduces re-

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1368

configurable partitioned TLBs to improve the TLB

performance [1].

Though lots of research is done, few consider the

context switching problem under multiprogramming

environment. However, all context switchings will

cause the flush operations for whole of the TLB

entries. It affects the performance very seriously. In

this paper, we propose a novel and easy implement

TLB structure to reduce the miss rate caused by the

context switching under multiprogramming

environment. The structure is so easy to implement

that it’s also suitable to be implemented inside the

processor core of SoC.

The simulation will be done by the modified

SimpleScalar version 3.0d tool suite with SPEC 95

benchmark. We modified the original SimpleScalar

version 3.0d tool suite to accommodate our

requirements.

The rest of the paper is organized as follows. In

Section 2 we discuss the relationship between the

miss rates, page size and TLB sizes. The new novel

TLB architecture to reduce miss rate in context

switching is presented in Section 3. The expected

performance is demonstrated in Section 4. Finally, in

Section 5 we summarize the conclusion and describe

the possible future work.

2. Relationships between the Miss Rates,

Page Sizes and TLB Sizes

It is well-known that the most important two

issues for cache system performance are to reduce

the miss rate and the miss penalty. It is almost the

same for the TLB performance. However, the most

important issue is the miss rate. We focused on the

miss rate in our research. In order to select the

suitable page size, we did some study on the

relationships between the miss rates, page sizes and

TLB sizes.

First, we consider the relationship between the

miss rate and TLB sizes with traditional 4KB page

sizes. Figure 1 below illustrates the relationship

between TLB sizes and miss rate of running gcc of

SPEC95. The two results show that the miss rates

would be lower with the TLB sizes increasing. The

performance of both ITLB and DTLB are the best

with sizes over 256 entries.

However, that’s not always true for most

applications. Let’s observe the result of ijpeg of

SPEC95 showing in figure 2. It’s very clear that only

16 entries are enough. It’s useless to increase the

number of TLB entries. The result would be roughly

the same on some other SPEC95 benchmarks such as

vortex and li.

iTLB Miss Rate

0.4764%

0.1266%
0.0717%

0.0196% 0.0006%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

16 32 64 128 256

TLB Size

M
is

s
R

at
e

dTLB Miss Rate

1.4652%

0.2253%
0.0445% 0.0047% 0.0003%

0.00%

0.50%

1.00%

1.50%

2.00%

16 32 64 128 256

TLB Size

M
is

s
R

at
e

Figure 1 ITLB/DTLB miss rate for gcc of SPEC95

iTLB Miss Rate

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

0.07%

0.08%

16 32 64 128 256

TLB Size

M
is

s
R

at
e

dTLB Miss Rate

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

16 32 64 128 256

TLB Size

M
is

s
R

at
e

Figure 2 ITLB/DTLB miss rate for ijpeg of SPEC95

Another solution to improve the performance of

TLB is to extend the page size into larger one. It’s

easy to find that some modern processors begin to

provide multiple page sizes such as 4KB, 2MB and

4MB sizes on all new Intel advanced x86

processors after the Pentium Pro processor[7]. The

advantages of larger page sizes are not only

obtaining better performance but saving the

implementation cost with less tags (virtual page

number, VPN) and translations (physical page

number, PPN) needed to be stored. It is also a good

method to reduce the cost on TLB implementation of

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1369

processors with larger addressing space, such as

processors with 64-bit addressing space. Certainly,

it’s suitable to implement on the processor core of

SoC or embedded systems.

What would happen if we extend the page size to

1MB. Figure 3 shows the miss rate for gcc of

SPEC95 of 4KB, 16KB, 64KB, 256KB and 1MB

page sizes with different TLB sizes. Observing the

result, we can find that the ITLB performance of

1MB page with 8 entries can easily outperform that

of 4KB page or even 256KB page with 256 entries.

In addition, the DTLB performance of 1MB page

with 8 entries can greatly outperform that of 4KB

page with 256 entries. Furthermore, it is roughly the

same with that of 256KB page with 256 entries. In

addition, the results are almost the same on all the

SPEC95 benchmarks. Thus, we selected the 1MB

page size in our design.

iTLB Miss Rate

0.0005651357%

0.0000286700%
0.0000091627%

0.0001607915%

0.0000026602% 0.0000026602% 0.0000008898% 0.0000008898%

0.0000%

0.0001%

0.0002%

0.0003%

0.0004%

0.0005%

0.0006%

4KB-256 16KB-256 64KB-256 256KB-8 256KB-16 256KB-256 1MB-8 1MB-256

Page Size with TLB Size

M
is

s
R

at
e

dTLB Miss Rate

0.0007657954%

0.0001143733%

0.0000591932%

0.0002086810%

0.0000501637% 0.0000421375% 0.0000422626% 0.0000301876%

0.0000%

0.0001%

0.0002%

0.0003%

0.0004%

0.0005%

0.0006%

0.0007%

0.0008%

0.0009%

4KB-256 16KB-256 64KB-256 256KB-8 256KB-16 256KB-256 1MB-8 1MB-256

Page Size with TLB Size

M
is

s
R

at
e

Figure 3 ITLB/DTLB miss rate for gcc of SPEC95

of 4KB, 16KB, 64KB, 256KB and 1MB page sizes

with different TLB sizes

3. Structure of the Novel TLB

This section describes in detail the TLB structure

we proposed for processors with larger page size

support. The structure can be implemented not only

in contemporary processors but future processors

comprised with one billion of transistors.

Furthermore, it is especially suitable to be

implemented on processors with larger addressing

space than current processors with just 32-bit

addressing ability.

3.1. Overview

Figure 4 shows in detail our proposed novel TLB

structure to reduce the miss rate in context switches.

To reduce the miss rate, most designs just try to

increase the TLB size to reduce the capacity misses;

however, we have showed in previous section that it

is more helpful if the page can be enlarged.

Furthermore, with larger page size, the size of tags

and translations needed to be stored can be much

smaller. Thus, we used 1MB page in our design.

The proposed structure consists of the following

parts—the TLB banks with group tags, and a

multiplexer to select a specific TLB bank. Each TLB

bank contains eight entries, and the tag can be

implemented with CAM (content addressable

memory) which is the same as that being

implemented on conventional TLB. Furthermore,

each TLB bank is implemented with fully associative

with LRU replacement policy. There are total 32 or

more TLB banks. Though there are 32 banks,

compared with 256-entry conventional TLB the total

cost is not increased very much. In fact, there are

also total 256 (32*8) entries in our proposed

structure. In addition, because of larger page size,

the cost of each entry is decreased. Thus the

increased cost can be ignored. Except the 32 TLB

banks, there are also 32 extra registers to store the

bank tag as shown in Figure 4. The register contains

task tag to identify each task, the current bit to

identify the current task, the valid bit to validate a

bank, and the LRU bits1 to replace the victim bank.

We have to point out that the task tag can be PID

(process ID) or the PPN (physical page number) of

the executing instruction when the context switch

occurs. The PID is selected as task tag on systems

that the PID will be sent into the processor;

otherwise, the PPN of the executing instruction when

the context switch occurs from the PPN field (or last

translation) is selected. Considering the general cases,

the PPN is selected in the latter discussions; however,

the PID can be more easily selected and

implemented under the previous situation. The

discussion will be ignored in this paper. However,

we still have to point out that we treat ITLB and

DTLB as a couple, and they share the same bank

tags. That means they stores translations for the same

task in the same related bank.

3.2. Implementation of the novel TLB

In order to realize the new proposed mechanism,

the OS is needed to do a little modification. Except

larger page size2, the OS needs to send ‘the clear

TLB signal’ to the processor only when swapping

pages with disks occurs or page frames release.

1 Pseudo-LRU can be implemented.
2 We are currently working on developing new structure to

support 4KB page size and superpages with TLB prefetching

mechanism based on the proposed novel TLB structure.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1370

Fortunately, it’s very easy to realize. Most modern

processors provide some ways to flush TLB entries,

such as using STA instruction with alternative

addresses on Sparc processors [11].

Figure 4 A Novel Low Context Switching Miss Rate

TLB Architecture

3.2.1. Mechanisms of the novel TLB

The proposed TLB structure is divided into 32

banks. Once the virtual address is generated from the

CPU, the virtual page number (VPN, from the most

significant bit to the previous bit of the offset, for

example [31:20] in 32-bit addressing space

environment or [35:20] in 36-bit addressing space

environment) is sent to the 32 banks in parallel. Each

bank works the same as conventional TLB. The

PPNs of the hit entries of each bank are sent to a

multiplexer. In addition, the select signals are

obtained from the current bit of all group tags in

order to select the right bank. If it’s a hit, the current

TLB bank works as conventional TLB and the

physical address can simply be generated by adding

the output PPN and the offset from virtual address.

However, except the simplest situation, all other

situations should be carefully handled by the MMU

(memory management unit). The following describes

these in details.

1) No current bit set in all bank tag: The situation

could be happened only when the first instruction

fetching after a context switching for ITLB, the

system initialization, or the swapping pages with

disks occurring. Under this situation, no valid

physical address can be provided via TLB translation.

The address should be generated in general way by

the MMU and OS. After the physical address (or

PID if it is available) is generated, it is compared

with the task tag field of bank tags. If any of it is hit

in a valid bank tag, the current bit of that bank tag is

set. Otherwise, the MMU should try to select a

victim bank with invalid bit and LRU bits from the

bank tag and flush all its eight entries (both related

ITLB and DTLB). Then the current bit of this bank

should be set and the LRU bits of all bank tags

should be updated. Finally, the correct translation is

stored into the current ITLB bank entry and the task

tag of current bank tag should be set. Moreover, it is

the generated PPN (or PID under the situation which

PID is available) that is stored into the task tag field

of current bank tag.

2) One current bit found but no valid translation: If

one current bit is found but no valid translation can

be generated, it means that the TLB (DTLB or ITLB)

reference of the current task is available before but

the missed page has not referenced yet. The action of

the current TLB bank just simply acts as a

conventional TLB, and no bank tag modification is

needed.

3) Context switching: Once the context switching

happens, the MMU just needs to clear the current bit

of the bank tag and no more other actions.

4) Page swapping with disk occurring or page

frame releasing: If the page swapping with disk

occurs or page frames release, the modified OS

sends the ‘clear TLB signal’ to the MMU. Hence,

the MMU can clear the valid bit of all bank tags.

4. Simulation Results

All of our simulations were done with

SimpleScalar 3.0d tool suite. We simulated all the

SPEC95 benchmark to demonstrate the expected

performance. We assumed that the context switching

would happen after executing one million

instructions. We compared the miss rates of

conventional 256-entry TLB with flushing all entries

after context switching and our novel TLB structure

with 8-entries each bank after correctly keeping

entries. Figure 5 shows the simulation results of all

SPEC95 benchmarks.

As can be seen in Figure 5, we can find that our

design can deliver at least the same performance or

better performance than the conventional structure.

However, these results show two major differences

among all of them. Some results show that the new

novel design can greatly outperform conventional

structure if the keeping entries are correct, such as

gcc, compress, li, and go. That’s because these

applications need more computation time to finish

and more context switching occurs during their

execution. Others show the same result between

conventional design and ours, such as Vortex, ijpeg,

and perl. These applications need only shorter

computation time, and the computation can be

finished before the first context switching. Thus,

both of the two structures can give the same

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1371

performance. However, both of the two structures

have the same total entries. That means that with the

same total TLB size our new structure can perform

better than conventional TLB structure. Our design

has better TLB-entry utilization.

gcc Benchmark

0.0002396612%

0.0000008898%

0.0008663831%

0.0000422626%

0.0000%

0.0002%

0.0004%

0.0006%

0.0008%

0.0010%

ITLB-256 Novel

ITLB

DTLB-256 Novel

DTLB

ITLB/DTLB Configuration

M
is

s
R

at
e

compress Benchmark

0.0000480137% 0.0000022864%

0.0007484464%

0.0000359830%

0.0000%

0.0002%

0.0004%

0.0006%

0.0008%

ITLB-256 Novel

ITLB

DTLB-256 Novel

DTLB

ITLB/DTLB Configuration

M
is

s
R

at
e

Vortex Benchmark

0.0099671085% 0.0099671085%

0.0443458980% 0.0443458980%

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

ITLB-256 Novel

ITLB

DTLB-256 Novel

DTLB

ITLB/DTLB Configuration

M
is

s
R

a
te

li Benchmark

0.0000493408%
0.0000004146%

0.0003331931%

0.0000036615%

0.0000%

0.0001%

0.0002%

0.0003%

0.0004%

ITLB-256 Novel

ITLB

DTLB-256 Novel

DTLB

ITLB/DTLB Configuration

M
is

s
R

a
te

perl Benchmark

0.0002045379% 0.0002045379%

0.0013522376% 0.0013522376%

0.0000%

0.0005%

0.0010%

0.0015%

ITLB-256 Novel

ITLB

DTLB-256 Novel

DTLB

ITLB/DTLB Configuration

M
is

s
R

a
te

go Benchmark

0.0000784839%
0.0000005063%

0.0007424364%

0.0000070933%

0.0000%

0.0002%

0.0004%

0.0006%

0.0008%

ITLB-256 Novel

ITLB

DTLB-256 Novel

DTLB

ITLB/DTLB Configuration

M
is

s
R

at
e

ijpeg Benchmark

0.0042020338% 0.0042020338%

0.0554836323% 0.0554836323%

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

ITLB-256 Novel ITLB DTLB-256 Novel

DTLB

ITLB/DTLB Configuration

M
is

s
R

a
te

Figure 5 Miss rates of all SPEC95 benchmarks

5. Conclusions and Future Work

The TLB misses have great impact on the overall

performance of modern processors. However, there

is only a little research on it for the past decade.

Furthermore, few studies focus on the context

switching issue which is considered the most

important issue of all. In this paper, we presented a

new novel TLB mechanism to reduce the miss rate in

context switching.

We showed that with 1MB page size only eight

entries TLB can easily cover near the whole working

set of general applications. With 1MB page size, it’s

useless to increase the TLB size from 8 entries to

256 or even more entries. According to the result, we

tried to divide the 256 entries into 32 banks in order

to store translations of different tasks. We proposed

a mechanism to implement the new TLB structure

and how to modify OS to support it. With this

methodology, the utilization of the TLB entries is

improved. Furthermore, we also showed that the

miss rate in context switches can be decreased if the

TLB entries are correctly kept.

However, though lots of modern processors have

already provided multiple page sizes especially large

page sizes, most modern OS only support 4KB page

for their paging mechanism. Fortunately, some

research begins to focus on supporting larger page

size, or multiple page sizes. For example, Naohiko

Shimizu and Ken Takatori proposed a Linux

superpage kernel for Alpha, Sparc64 and IA32 [10].

Though we proposed a new novel TLB structure

in this paper, it is only for 1MB or larger page size.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1372

However, it’s also important to provide such solution

for conventional 4KB page environment. We have

already begun to find a solution to integrate the

proposed structure and TLB entry prefetching

mechanism for 4KB page environment. Furthermore,

we also begin trying to find solutions to support

multiple page sizes with lowest cost and even

provide hardware superpage mechanism with 4KB

page based. We believe that still lots of works should

be done in this field.

References
[1] David Channon and David Koch, “Performance

Analysis of Re-configurable Partitioned TLBs,” in

Proceedings of the 30th Hawaii Int’l Conf. on System

Sciences, Vol. 5, pp168-177,1995

[2] Zhen Fang, Lixin Zhang, John B. Carter, Wilson

C. Hsieh, and Sally A. McKee “Reevaluating Online

Superpage Promotion with Hardware Support,” in

Proceedings of the 7th Int’l Symp. On High-

Performance Computer Architecture, pp63-72, 2001

[3] Erin Farquhar and Philip Bunce, The MIPS

Programmer's Handbook, Morgan Kaufmann, San

Francisco, CA, 1994

[4] Michael J. Flynn, Computer Architecture-

Pipelined and Parallel Processor Design, Jones and

Bartlett Publishers, Boston, 1995

 [5] Intel Corp., IA-32 Intel Architecture-Software

Developer’s Manual Vol. 3-System Programming

Guide, 2004

[6] Intel Corp., Intel Itanium 2 Processor

Reference Manual-For Software Development and

Optimization, May 2004

[7] Intel Corp., PentiumPro Family Developer’s

Manual Vol. 3-Operating System Writer’s Guide,

Dec. 1995

[8] B.L. Jacob, et al., “Virtual Memory: Issues of

Implementation,” IEEE Computer, Vol. 31, No6,

pp33-43, June 1998

[9] Jung-Hoon Lee, Jang-Soo Lee, She-Woong

Jeong, and Shin-Dug Kim, “A Banked-Promotion

TLB For High Performance and Low Power,” in

Proceedings of the 2001 Int’l Conf. on Computer

Design, pp118-123, 2001

[10] Naohiko Shimizu, and Ken Takatori, “A

Transparent Linux Super Page Kernel for Alpha,

Sparc64 and IA32 – Reducing TLB Misses of

Applications,” ACM SIGARCH Computer

Architecture News, Vol. 31 Issue 1, March 2003

[11] SPARC International Inc. The SPARC

Architecture Manual Version 8, 1992

[12] Mark Swanson, Leigh Stoller, and John Carter,

“Increasing TLB Reach Using Superpages Backed

by Shadow Memory,” in Proceedings of the 25th

Annual Int’l Symp. on Computer Architecture,

pp204-213, 1998.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1373

