
Comparative Review of  
Common Reconfigurable Architectures 

 
 

Woo Hyong Lee, Arindam Saha, Eun Ji Lee, and Sung Bae Park 
SoC R&D Research Center 

SYSTEM LSI Division, Samsung Electronics Corp. 
Kiheung, Korea 

E-mail: {woohyong.lee, s.arindam, eunji.lee, sung.park}@samsung.com 
 
 

Abstract - Some may claim that general-purpose 
computers are reconfigurable in the sense that functional 
units are reused for different computational tasks at 
different times, with multiplexers controlling the routing 
between these units. However, in this paper as well as in 
the research community at large, the term reconfigurable 
computing refers to systems where the hardware can be 
customized and changed periodically to execute different 
tasks on the same hardware.  

In this paper we survey the reconfigurable computing 
landscape and make some recommendations. The 
landscape can be partitioned into two parts – one that is 
spearheaded by University research and the other that is 
taking shape in the industry. We describe one example 
from each, and provide a comparison of some 
reconfigurable architectures. We conclude by making 
some recommendations about the architectures, software 
tools, and applications of reconfigurable computing. 
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1 Introduction 
 Current computing devices constitute two extremes. 
On one hand, we have conventional CPUs that rely heavily 
on one or more complex ALUs, which make frequent calls 
to large memory resources, but suffer from lack of 
performance because the architectures do not follow the 
structure of the task. These CPUs provide flexibility at the 
cost of performance. On the other end of the spectrum, we 
have ASICs that provide optimal performance and power 
for specific tasks but are very inflexible because they are 
useless for any other task. The quest for both ASIC-like 
performance and CPU-like flexibility leads to reconfigur-
able computing. 
 Reconfigurable computing, as a concept, dates back 
almost 40 years [1]. Some may claim that general-purpose 
computers are reconfigurable in the sense that functional 
units are reused for different computational tasks at 

different times, with multiplexers controlling the routing 
between these units. However, in this report as well as in 
the research community at large, the term reconfigurable 
computing refers to systems where the hardware can be 
customized and changed periodically to execute different 
tasks on the same hardware. SRAM-programmable Field 
Programmable Gate Arrays (FPGAs) are the first real 
implementations of the reconfigurable computing concept. 
But FPGAs haven’t been able to satisfy the needs for 
dynamically reconfigurable flexible processing for a 
variety of reasons. 
 In this paper as well as in the research community at 
large, the term reconfigurable computing refers to systems 
where the hardware can be customized and changed 
periodically to execute different tasks on the same 
hardware. 
 The rest of the paper is organized as follows. In 
Section 2, we describe one representative project being 
carried out in the academia and list a variety of University 
projects in reconfigurable computing that are not 
discussed in this paper. Section 3 deals with one 
representative reconfigurable computing machine that has 
been developed in the industry and, then list a group of 
commercial efforts not discussed in this paper. In Section 
4, we compare a number of reconfigurable examples using 
a variety of metrics, and we list the pros and cons of each. 
We conclude with some recommendations meant to 
provide a platform for further discussion. 

2 University Research 
 Universities around the globe have been engaged in 
reconfigurable computing research for more than a decade. 
In this paper, we focus on research being carried out at 
some of the US Universities. These projects are primarily 
funded by the US Department of Defense. In fact, in 
1990’s DARPA had funded several Universities research 
groups to the tune of close to $100M under the auspices of 
the Adaptive Computing Systems program. As a 
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representative example we discuss the PipeRench 
architecture from the Carnegie Mellon University. 

2.1 Carnegie Mellon PipeRench Project 
 The PipeRench project at the Carnegie Mellon 
University has created a programmable datapath for 
numerically intensive applications. 
Architecture 

 Figure 1 shows the PipeRench architecture [2]. The 
fabricated chip is organized as 16 stripes, each stripe 
containing 16 processing elements (PEs). As shown in 
Figure 1, the stripes are connected, using their register 
files, to create an interleaved ring topology [2]. 
 

 

Figure 1: The PipeRench Architecture. 
 
 PipeRench uses a technique called pipeline 
reconfiguration to virtualize the hardware. Assuming that 
a stripe is a pipeline stage, one can map an n-stage virtual 
design on to a m-stage physical pipe, where n > m. This is 
achieved by storing the configuration bits of the entire 
virtual hardware on chip, and moving these bits to the 
physical fabric every cycle. This way, although the chip 
has 16 physical stripes, it can support up to 256 virtual 
stripes. For virtual hardware larger than real hardware, 
physical stripes will eventually be reconfigured with new 

virtual stripes. The state of over-written virtual stripes are 
saved in R0 into the R0 state store memory. 
 The PE block diagram is illustrated in Figure 2 [2]. 
A PE is 8-bit wide, but adjacent PEs can be connected to 
perform operations of wider widths. There are eight 
registers per PE, called pass register file. There is one 
dedicated register per register file that can be used for 
intra-stripe feedback and therefore must be stored and 
restored. Output of the ALU can be stored in any one of 
the eight registers. If the value is not written to a register, 
then the value from the corresponding register in the 
previous stripe. This reduces the amount of state because 
data that travels through the pipeline need not be saved. 
The functional unit consists of eight 3-input LUTs that are 
identically configured. 42 configuration bits are required 
to specify the functionality of a PE. 
 

 

Figure 2: Block Diagram of a PE in PipeRench. 
 
 
DIL Compiler 

 A hardware synthesis compiler, called the DIL 
compiler, has been developed at Carnegie Mellon that 
targets the PipeRench architecture [3]. The source 
language for the compiler is DIL that can be used as an 
intermediate language in a HLL compiler. But we do not 
have any information about such a compiler. So, for now, 
we assume that the programmer has to program in DIL to 
use PipeRench. DIL is more like a HLL than a HDL. It is 
a single assignment language and so any variable can be 
assigned to only once. The DIL compiler follows the 
following steps: First it reads the PipeRench architecture 
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description. In evaluation phase, the compiler inlines all 
modules, unrolls all loops, and generates straight-line, 
single assignment code. That code is then converted into a 
hierarchical dataflow graph. Then the compiler goes 
through a number of passes including a variety of 
optimizations. The key feature of the DIL compiler is the 
place and route step that uses a deterministic, linear-time, 
greedy algorithm [3]. Finally, the code generator produces 
PipeRench assembly language ready to be executed. 

2.2 Other University Projects 
 Other notable University projects in the 
reconfigurable computing area that are not covered in this 
paper are: MorphoSys from the University of California 
Irvine [4], BRASS/Garp from the University of California 
Berkeley [5], U.C. Berkeley Pleiades [6], Northwestern 
Chimaera [7], MIT MATRIX [8], and University of 
Washington RaPiD [9]. 

3 Commercial efforts 
 There is a tremendous amount of activity within the 
industry as far as reconfigurable computing is concerned. 
Almost every major company, including Intel, NEC, 
Toshiba, Sun, etc., have active programs in this area. A 
number of startups have been funded in the last few years 
to push the envelope of reconfigurable computing. As a 
representative example, we discuss the NEC DRP 
architecture. 

3.1 NEC DRP 
 NEC is one of the few established companies that 
announced a Dynamically Reconfigurable Processor 
(DRP) architecture [10]. 
Architecture 

 The NEC DRP is organized as tiles, each tile, as 
shown in Figure 3 [11], includes, among other things, 64 
byte-oriented Processing Elements (PEs) organized as an 
8x8 array, Configurable Horizontal Memory (HM) blocks 
that are 8bx8kW with 1 R/W port, Configurable Vertical 
Memory (VM) blocks that are 8bx256w with 1 R and 1 
R/W ports, A State Transition Controller (STC) which is a 
simple sequencer controls tile reconfiguration, and 
External ports to which one can attach complex operation 
units like multipliers, external memory controllers and 
peripheral bus controllers like PCI. 
 The DRP-1 prototype silicon announced [10] has 8 
tiles for a total of 512 PEs, 160kb and 2Mb of VM and 
HM respectively, 8 STCs, 8 32b multipliers, and 1 
memory controller and 1 PCI controller. 

 

Figure 3: One NEC DRP Tile. 
  
 

 
 

Figure 4: A Processing Element. 
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Figure 4, taken from [10], shows a block diagram of a PE. 
The ALU can handle 8-bit arithmetic and logic functions. 
The Data Management Unit (DMU) handles data 
manipulation functions like byte select, shift, mask, 
constant generation, etc. as well as bit manipulation 
functions. Each PE can store up to 16 instructions in the 
local instruction store. The specific ALU/DMU operation 
as well as inter-PE connections are dictated by an 
instruction. The PE allows the operands to come from 
either its own register file or from some other PEs (flow-
through case), but not directly from memory. Each PE has 
an instruction pointer (IP), provided by the STC, that 
identifies a datapath plane. Instantaneous dynamic 
reconfiguration occurs as one sequences through 
instructions and IP changes. The collection of PE 
instructions behaves like an extreme VLIW machine. 
 
Software Tools 

 

 
Figure 5: The DRP tool flow. 

 NEC has paid special attention to creating a good 
software development platform for the DRP. As shown in 
Figure 5, taken from [10], the key component of this 
toolchain is a C compiler. NEC has modified their in-
house ASIC high-level synthesis tool called Cyber to 
exploit some of the DRP architectural features. This 
compiler accepts C source and generates FSM code and 
associated datapath planes. One can optionally input 
Verilog RTL code directly as well as mix it with the 
compiler generated RTL. The mapper then maps this RTL 
for each datapath plane to individual PEs and memories. 
Finally, a place and route tool physically locates the PEs 
and memories and mutually connects them. The STC 
control code and the PE/memory array code are linked to 

form the DRP object code. The NEC toolchain has rich 
GUI providing both a high-level synthesis view 
(combining both a scheduled data flow graph for the array 
code and a scheduled state transition diagram for the FSM 
code) as well as a place and route view (that can be used 
for critical path delay analysis). 

3.2 IPFlex 
 IPFlex is a Japanese startup in the reconfigurable 
computing domain and is very focused on network 
processing as a target application. IP Flex announced in 
September 2002 that the working sample chips of their 
first generation, DAP/DNA-HP (Digital Application 
Processor based on Distributed Network Architecture) had 
been already fabricated by Fujitsu (Japan) and available 
since August 2002. 

3.2.1 Architecture 
 
 Figure 6. illustrates a block diagram of the 
DAP/DNA architecture [11]. It is comprised of their 
proprietary 32-bit RISC CPU core (DAP) and the matrix 
of 148 processing elements (DNA). They claim the CPU 
core (DAP) can be replaced with other popular CPU core, 
such as ARM or MIPS compliant core. Networking 
processors are supposed to be primary application. The 
interconnections between elements in DNA are 
dynamically reconfigured by software and realize pipeline 
or parallel structure. Each element itself can be 
reconfigurable among 8 types of arithmetic/logic unit. 
Those configurations can be changed in 1 clock cycle. 
DAP/DNA-HP works on 120MHz and power 
consumption is about 5W. 

 
 

Figure 6: DAP/DNA block diagram. 
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 There are 148 compute elements (denoted as elem in 
Figure 6) in the DNA array. The breakup of the 148 
elements is as follows: 
• 66 for arithmetic operations 
• 44 for control of data delay 
• 12 for arithmetic operations with multipliers 
• 8 for address calculation for data transfer between 

buffers within the matrix 
• 8 for address calculation for data transfer from 

external memory to buffers 
• 6 for data storage among the matrix (SRAM), and 
• 4 for data input. 
 
 Figure 7, taken from [12], shows a detailed diagram 
of such an element. There are eight different types of 
compute elements. In that sense we can classify the IPFlex 
DNA as a heterogenous architecture. Each arithmetic 
element has two inputs and one output. Most ALUs are 
simple arithmetic and logic functions without any 
multiplication capability.  

 

 

Figure 7. Block diagram of a DNA element. 

3.2.2 Software Tools 
 Development tool chains are created by their own, 
which includes a compiler, a assembler, a debugger, and a 
simulator. Figure 8 shows its overview flow. At first 

algorithm in C language is analyzed on “DNA analyzer” 
which includes ISS (Instruction Set Simulator) for DAP. 
Then some portions for DNA are manually extracted and 
modified as DNA configuration files for input of “DNA 
Compiler.” And “DNA Compiler” converts them to 
description based on C language. Finally both DAP 
portion and DNA portion are compiled into object files 
and uploaded into its hardware or the simulator. It can 
accept not only C language but also MATLAB input. 
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Figure  8: IPFlex software development tool flow. 
 
3.2.3 Applications 
 PFlex has positioned its DAP/DNA architecture as 
an alternative to conventional network processors. Like 
the NEC DRP, IPFlex is also targeting networking 
applications like packet processing, network security, etc. 
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 Granularity Topology  Functionality µcontr. Reconfig. Software Tools Applications  
Berkeley 
Garp 

Fine-grain, 
2bit wide 

2D mesh, 
24x32 

4-in LUT, carry 
chain, 
multiplexer 

MIPS-II 
plus 20 
instrs. 

64b per PE, 
cache, 
encoded 

C entry, garpcc 
configurator, 
simulator 

DES/MD5/SHA, 
image dithering, 
median filter 

CMU 
PipeRench 

Medium, 8bit 
wide 

Interleaved 
ring, 16x16 

Eight 3-in LUTs, 
Pass Reg 

None 42 config. bits 
per PE 

DIL language 
and compiler 

SAR ATR, FIR, 
IDEA encryption  

Irvine 
MorPhoSys 

Coarse, 16bit 
wide 

2d mesh, full 
conn. quadrant, 
8x8 

16bit ALU, 
16x12 mult, 
MAC, absdiff 

TinyRISC 
plus instrs. 

16 context 
planes 

Allows C, tcc 
compiler, 
mLoad, 
simulator, 
mView 

MPEG video, ATR, 
IDEA encryption 

PACT  
XPP 

Coarse, 32bit 
wide 

Array, 64 per 
cluster, up to 4 
clusters 

Four 32bit 
integer ops, 
BREG/FREG 

MIPS 5Kc  Ring mem., 
differential 
reconfig. 

C, XPP-VC, 
NML, mapper, 
XSIM, GUI 

Wireless base 
station, WLAN 
OFDM, imaging 

Elixent  
RAP 

Fine, 4bit 
wide 

Alternating 
logic/switch 
array, 64x64 

Simple ALU, 
4bit instr., 4-in 
LUT 

None Dynamic 
instructions 

Allows Matlab & 
Handel-C, RTL 
tools, 
AccelFPGA 

Consumer 
electronics, 
imaging, comm. 

NEC  
DRP 

Medium, 8bit 
wide 

8x8 array per 
tile, 8 tiles 

ALU + DMU, 
VLIW 

Own 
simple STC 

Instr. pointer, 
dynamic 

C entry, 
compiler, 
mapper, P&R, 
GUI 

IPsec, IPv4, Packet 
processing 

QuickSilver 
ACM 

Coarse, 
variable width 

Fractal with 4-
node clusters, 
MIN 

ALU, Bit 
manipulation, 
FSM, Scalar 

KARC, 
MARC 

Data & config 
info mixed 

SilverC, 
compiler, 
Silverware, 
mapper 

Wireless comm., 
WLAN, Vocoder 

Chameleon 
RCP 

Coarse, 32bit 
wide 

(7+2)per tile, 3 
tiles per slice, 4 
slices 

32bit DPU plus 
16x24 
multipliers 

125 MHz 
ARC 

Two config 
planes, config 
stack 

C, compiler, 
eBIOS, fabric 
function 
optimize 

Wireless base 
station, cdma2000 

MorphICS 
WSP 

Coarse, 
variable width 

Hierarchical, 
array, slice, bit-
slice 

RFU with LUT, 
FFU 

External  
GP CPU 

Hierarchicalco
nfigurable 
interconnect 

C++, compiler, 
extensible data 
types, VMI 

Multi-channel 
2.5G/3G base 
station  

IPFlex 
DAP/DNA 

Coarse, 32bit 
wide 

Array, 148 PEs 8 types of ALU Own DAP Not known C, DNA 
compiler, 
analyzer, DAP 
ISS 

Network processing 

picoChip Coarse, 16bit 
wide 

Array, 430 AEs control, memory, 
MAC, standard 

Control AE None in 
particular 

Assembler, P&R 
tool, debugger, 
no godd C 
compiler 

Wireless comm., 
now multimedia 

Table 1: Comparison of different reconfigurable architectures. 
 

 
3.3 Other Commercial Work 
 Other reconfigurable computing efforts in the 
industry that we have not discussed here are PACT [13], 
Elixent [14], and QuickSilver [15]. 

4 Comparative Analysis 
 Table 1 is a self-explanatory comparison of a number 
of reconfigurable architectures including the two discussed 
in this paper, analyzed with seven metrics. 

5 Conclusions 
 The purpose of this paper has been to present the 
state-of-the-art out there vis-à-vis reconfigurable 
computing. As one can surmise reading the paper, this 
field, though not commercially successful yet, is rather 
mature and varied. After analyzing the reconfigurable 

computing landscape, we make the some recommenda-
tions.  
Architecture: One has to consider the following factors 
before making choices for the reconfigurable architecture: 

•  Power consumption – most existing 
reconfigurable systems ignore the important 
power dissipation issue. Depending on the target 
application, one has to make architectural choices 
to reduce power consumption at the outset. 

• Reconfiguration overhead – one should avoid the 
problems associated with FPGAs. In order to be 
truly dynamically reconfigurable, one should pay 
special attention to reducing the configuration 
overhead. This should be a key area of research. 
Techniques like wave configuration and 
differential configuration are good starters. 
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• Topology – The commonly used two-dimensional 
mesh interconnection is rather constrained for 
most applications. On the other hand, the fully 
connected crossbar is prohibitively expensive. 
One must find a middle ground. Topologies like a 
mesh of trees or MOTs where one can combine 
the advantages of meshes and complete binary 
trees should be explored. The topology choice 
should consider features like large bisection 
width, low critical path, good VLSI layout and 
most importantly good mapability (we define 
mapability as the ease of mapping a wide variety 
of computational task graphs onto the 
reconfigurable accelerator topology). 

• Number of processor elements and data width – 
this will be dictated by the die size and power 
consumption constraints. But keeping the 
advanced process technology and future 
competition in mind, the number of processors 
may have to be in thousands rather than hundreds. 
Also, our analysis indicates that medium 
granularity is a prudent choice. 

• Functionality – one of the key decisions to be 
made in terms of the architecture is what kind of 
functionality to provide within a compute element. 
Besides basic ALU and bit manipulation 
capabilities, we think that multiplication (MAC) 
and LUT capabilities are also necessary for most 
applications. 

• Heterogeneity – we think that instead of having 
all compute elements the same, it will be a better 
idea to provide a heterogeneous architecture with 
the capability of extending via extension 
processors. 

• Microcontroller – this may not be a big issue. 
Nevertheless, one should carefully analyze the 
pros and cons of using decentralized 
microcontrollers tightly coupled with the 
reconfigurable fabric, before deciding whether to 
use an ARM microprocessor as a central 
controller or not. 

• Staging data in and out – this may turn out to be a 
bottleneck in most data-bound applications 
running on the reconfigurable platform. Keeping 
the massively parallel reconfigurable engine busy 
with quick data movement will be essential. 

• System on a chip (SoC) – we should keep in 
mind that the reconfigurable accelerator is part of 
a bigger SoC and not a standalone device. 
Accordingly, one needs to carefully design the 
entire system architecture including SoC 

integration bus (like the AXI or SONICS bus), 
interface with the microcontroller, caches and 
local memories, embedded DRAM, DMA, 
memory controller, and other peripherals. 

• Differentiation – Since there are a plethora of 
reconfigurable architecture companies, the 
success will depend on clear differentiation. 
Making an architecture domain-specific rather 
than general purpose is a good differentiation. 
Moreover, reducing cost and power consumption 
will be crucial. 

Software Tools: Software tools can make or break a 
reconfigurable computing machine. In other words, the 
success of such a system will largely be dictated by the 
quality of the application development environment. This 
has always been true, even for conventional computers. 
But this assumes far greater importance in the case of 
reconfigurable systems. We feel that the software tools 
should have the following features: 

• First and foremost, one should allow the design 
entry in a high-level language like C, C++, Java, 
etc. This necessitates a high quality compiler. 
Such a compiler faces challenges similar to those 
faced by compilers of conventional architectures. 
Additionally, one has to go beyond the traditional 
compiler optimization techniques, and use state-
of-the-art high-level synthesis know-how to 
create a high quality compiler for reconfigurable 
accelerators. 

• A good mapping software that maps the task to 
the reconfigurable fabric is essential. This 
mapper can be integrated with the compiler. 

• In addition to HLL design entry, one has to make 
extra effort to reach the many signal processing 
researchers to make the reconfigurable 
accelerator an effective target. To accomplish 
that, one has to allow design entry in languages 
like Matlab and Simulink from MathWorks. 

• An authentic, fast, cycle-accurate simulator of the 
reconfigurable accelerator will be crucial for 
applications development. SystemC may be the 
language of choice to build such a simulator. 

• Similarly, a visualizing debugger is essential for 
any flexible accelerator. 

• Recognizing the fact that eventually we are 
dealing with a complex SoC that combines a 
reconfigurable accelerator with a microprocessor 
core leads us to the path of effective co-
simulation and co-design. Integrating with 
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existing tools like AXYS MaxSim, Cadence VCC, 
CoWare N2C, Mentor Graphics Seamless, and 
other similar commercial products will be 
necessary. 

Applications: The reconfigurable computing concept is 
domain-specific, not for general-purpose applications. 
Therefore, right at the outset, one should know the target 
application(s). There is a wide range of current and future 
applications that can benefit from the acceleration 
provided by reconfigurable computing. These applications 
share the requirement for lots of numeric computations as 
well as the presence of inherent massive parallelism. In 
our estimation, the following applications are some that 
seem promising: 

• Software Radios for Mobile Terminals, wireless 
infrastructure, as well as in future automobiles. 

• Multi-format multimedia processing 
• Image post processing and enhancement in DTV 

and STBs 
• Mobile applications for 2.5G/3G wireless in 

smartphones and PDAs 
• Human Computer Interface including image 

processing, speech recognition, and gesture 
recognition. 
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