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Abstract- In implicit surfaces, most existing blends 
keep their primitives’ properties unchanged on non-
blending regions, like pure Boolean set operations 
Max/Min(f1,…,fk). Hence, when they are used as a 
new primitive in other blends, their primitives 
always have similar subsequent blending surfaces 
with the  other  primitives in their subsequent blends. 
To solve this problem, this paper proposes new 
blending operations that can provide parameters to 
individually adjust their primitives’ subsequent 
blending surfaces, without deforming their original 
blending surfaces. The newly proposed blending 
operations provide parameters m1,…,mk to enable 
their primitives f1,…,fk to behave like Max/Min 
(f1/m1,…,fk/mk) on non-blending regions and its 
original blending surface does not change whatever 
positive values m1,…,mk are set. As a result, the 
subsequent blending surfaces of their primitives 
f1,…,fk can be adjusted respectively by varying 
m1,…,mk. Furthermore, this paper proposes a 
generalized method that can transform some of 
existing blending operators into the proposed 
blending operations stated above.  
 
Keywords: Implicit surfaces, Boolean set operations, 
The displacement method, The scale method. 
 
1. Introduction 
 

Implicit surface modeling is attracting much 
attention because a complex implicitly defined object 
can be constructed freely from some simple 
primitives, such as planes, sphere, cone,…,etc., via a 
successive composition of blending operations, such 
as Boolean set operations. In implicit surfaces, 
blending operations play a very important role 
because they can connect intersecting objects with 
automatically generated transitions to smooth out the 
unwanted sharp edges, kinks, and creases. In the 
previous literature, R-functions [17] give Boolean 
set operations with Cn, n≥1, continuity. In addition, 
blends that can provide blending range parameters to 
adjust the size of the resulting blending surface and 

to limit the blending surface in specific regions 
without deforming the overall shapes of blended 
primitives can be found in [3, 4, 5, 8, 9, 10, 11, 12, 
13, 16, 18, 20, 21, 22, 23].  For low-degree 
computing complexity, soft objects modeling were 
also proposed. It defined primitives, called soft 
objects, using field functions, which were proposed 
in [1, 2, 6, 7, 12, 14, 15, 24, 25]. Due to the use of 
field functions, soft objects can be blended easily by 
performing addition operations only. Besides, some 
other blending operators that can offer blending 
range parameters for blending soft objects were also 
proposed in [19, 11]. 

The above review tells that for a better shape 
control of the blending surface, a blending operation 
should possess the following properties: 

 (1). Provide blending range parameters to adjust 
the size of the resulting blending surface without 
deforming the overall shapes of the blended 
primitives; 

(2). Offer C1 continuity everywhere to generate 
smooth sequential blending surfaces; 

 (3). Allow sequential blends with overlapping 
blending regions.  

To generate this kind of blends, the displacement 
method in [21] and the scale method in [11] were 
proposed. However, the blend, denoted as 
Dk(f1,…,fk), developed from the displacement and the 
scale methods always behaves like Max/Min(f1,…, fk) 
after blending on non-blending regions, this leads to 
the following problem: 

When Dk(f1,…,fk) is used as a new primitive 
in other blends such as D2(Dk(f1,…,fk), fk+1), 
primitives f1,…,fk always have similar 
subsequent blending surfaces with fk+1 because 
they always have the same blending range to 
blend with fk+1. That is, Dk(f1,…,fk) lacks 
individual blending range controls on their 
primitives’ subsequent blends. 

Therefore, to solve the above problem, this paper 
proposes new blends that have the ability to 
individually and controllably adjust the blending 
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ranges of their primitive’s subsequent blending 
surface, without deforming their original blending 
surfaces. Precisely, the newly proposed blends, 
denoted as BTk(f1,…,fk), provide parameters mi, 
i=1,...,k. Adjusting mi, i=1,...,k, enables that:  

(1). BTk(f1,…,fk) behaves like Max/Min(f1/m1,…,fk/mk) 
on non-blending regions after blending. 

(2). The blending surface BTk(f1,…,fk)=0 keeps 
unchanged whatever values mi, i=1,...,k , are set.  

As a result, when BTk(f1,…,fk) is used as a new 
primitive in other blend such as BT2(BTk(f1,…,fk), fk+1), 
the shape adjustment of the subsequent blending 
surfaces of f1,…,fk with fk+1 can be controlled by: 

(1). Not only the blending range, denoted as r, for 
BTk(f1,…,fk) in BT2(BTk(f1,…,fk), fk+1), 

(2). But also parameters mi, i=1,...,k, of BTk(f1,…,fk) 
because f1,…,fk  can become f1/m1,…,fk/mk after the 
blend BTk(f1,…,fk) in BT2(BTk(f1,…,fk), fk+1). 

That is, f1,…,fk  have different blending ranges 
r*m1 ,…, r*mk to blend with the other primitives of 
BTk(f1,…,fk)’s  subsequent blends. 

The remainder of this paper is organized as 
follows. Section 2 reviews the displacement method 
and then describes its problem. Section 3 presents 
the proposed blends. Section 4 demonstrates some 
examples. Conclusions are given in Section 5. 
 
2. Review 

In this section, some definitions are given first. 
Then, the displacement method in [21] is reviewed 
and its problem is described. 

2.1. Definitions 
An implicitly defined object can be defined using 

primitive defining functions fi(X) :R3→R, i=1,...,k, by  

S(fi, 0) ≡ {X∈ R3|fi(X)≤0}, 

whose boundary surface {X∈R3| fi(X)=0} is denoted 
by either fi=0 or fi

-1(0).  
Furthermore, a multiple blend on primitives S(fi, 

0), i=1,…, k, can be written as 
S(Bk。Fk, 0),  

where  (Bk。Fk) stands for Bk(f1,…,fk):R3→R  and is 
called a blending operation; Fk means (f1,…,fk): 
R3→Rk; Bk(x1,…,xk):Rk→R is called a blending 
operator or function to smoothly connect blended 
primitives S(fi, 0), i=1,…, k. 

2.2.  The displacement method 
In the displacement method [21], given an 

existing union blending operation Hk(f1,…,fk) on S(fi, 
0), i=1,...,k, with blending range parameters ri, 
i=1,...,k, then a displacement function Dk: Rn→R for 
sequential union blends can be given by  

Dk(f1,…,fk)=hp                                (1) 

where hp is the root h of the equation  

T(h)=Hk(f1-h,…,fk-h)=0. 

Because every level surface Dk(f1,…,fk)=h can be 
viewed as the union blending surface on S(fi-h, 0), 
i=1,…, k, via the blending function Hk(x1,…,xk), then 
Dk(f1,…, fk) can be used as a new primitive in 
sequential blends.  

However, because Dk(f1,…, fk) in Eq. (1) behaves 
like Min(f1,…,fk) after blending on non-blending 
regions, it faces the problem that 

 Dk(f1,…,fk) can not individually control its 
primitives’ subsequent blending surfaces, without 
deforming its original shape Dk(f1,…,fk)=0. That is, 
Dk(f1,…,fk) cannot individually control the blending 
ranges of their primitives’ subsequent blends. 

For example, as shown in Figure 1(b), primitives 
f1 and f2 of -D3(-f1,-f2,-f3) in the left object of Figure 
1(a) always have similar subsequent union blending 
surfaces with the super-ellipsoid. 

Similarly, the blends developed from the scale 
method in [11] have the same problem, too.  

3. Blending Operations with Blending 
Range Controls on Their Primitives’ 
Subsequent Blends 

Section 3.1 presents a generalized method to 
develop new blending operators that can solve the 
problem in Section 2.2. Based the proposed method, 
two different blending operators are proposed in 
Section 3.2. Section 3.3 presents two families of 
Boolean set operators using the proposed operators 
in Section 3.2. 

    (a)      

 
                                     (b)          
Figure 1. (a) Left: an intersection -D3(-f1,-f2, -f3)=0 
on 3 pairs of parallel planes; Right: a super-
ellipsoid. (b) The union of the two objects in 
Figure 1(a), where f1 and f2 always have similar 
subsequent blending surfaces with the super-
ellipsoid. 

f1

f2
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3.1. A generalized method 
To solve the problem of the displacement and the 

scale methods in Subsection 2.2, a union blending 
operator BTk(x1,…,xk) is required to satisfy the 
following requirements: 

(1). BTk(x1,…,xk)=0 provides blending range 
parameters ri, i=1,...,k, to limit the blending surface 
BTk(f1,…,fk)=0 in a specific blending region. 

(2). BTk(x1,…,xk) offers parameters mi, i=1,...,k, to 
behave like Min(x1/m1,…,xk/mk) everywhere on non-
blending regions after blending. Since fi becomes 
fi/mi on non-blending regions after the blend (BTk。

Fk)=0, then varying mi, i=1,...,k can adjust the 
blending surfaces of fi, i=1,..,k, with the other 
primitives of (BTk。Fk)’s subsequent blends. 

(3). The shape BTk(x1,…,xk)=0 always remains 
unchanged whatever positive values mi, i=1,...,k, are 
set. Thus, the shape (BTk 。 Fk)=0 can remain 
unchanged as mi, i=1,...,k, are varied to adjust the 
blending surfaces of fi, i=1,..,k, in (BTk 。 Fk)’s 
subsequent blends. 

To develop a union blending operator BTk(x1,…,xk) 
that can fulfill the above requirements, a generalized 
method is proposed and it includes the following two 
steps as follows: 

Step (1): Choose a k-dimensional union blending 
operator HTk(x1,…,xk)=0 with blending range 
parameters ri, i=1,...,k. Precisely, its shape must be 
like the shape Min(x1,…,xk)=0 on non-blending 
regions. For example, the shape of HT2(x1, x2)=0 
must be like the shape shown in Figure 2. 

Step (2): BTk(x1,…,xk) can be given by 

                               BTk(x1,…,xk)=hp                          (2) 

where hp is the root h of the equation 

T(h)=HTk(x1-m1h,…,xk-mk-h)=0.         (3) 

In fact, every level surface BTk(x1,…,xk)=h, h∈R, is 
similar to the surface HTk(x1,…,xk)=0 translated by  
M=[m1,…,mk]. For example, using the curve in Figure 
2 as HT2(x1, x2)=0, level curves BT2(x1,x2)=h, h∈R, in 
Eq. (3) can be shown as the dotted curves in Figure 3. 

Some properties of BTk(x1,…,xk) from Eq. (2) are 
presented as follows: 

(1). In non-blending regions, BTk(x1,…,xk) behaves 
like Min(x1/m1,…,xk/mk), and hence a primitive fi 
becomes fi/mi after the blend (BTk。Fk)=0. This is 
because HTk(x1,…,xk)=0 is Min(x1,…,xk)=0 on non-
blending regions. Then, solving the root h of the 
equation T(h)=Min(x1-m1h,…,xk-mkh)=0 yields the 
function Min (x1/m1,…,xk/mk). 

(2). Setting zero to h of the equation T(h)=HTk(x1-
m1h,…,xk-mkh)=0 in Eq. (3) yields that the shape 
BTk(x1,…,xk)=0 is always the same as HTk(x1,…,xk)=0, 
whatever [m1,…,mk] is set. 

(3). In blending regions, all surfaces BTk(x1,…,xk) 
=h, ,Rh ∈  always have the same arc-shaped surface 
with constant blending ranges r1,…, and rk, the same as 
those of HTk(x1,…,xk)=0. The reason is because )(1 hBTk

−  is 
similar to  HTk(x1,…,xk)=0 translated by [m1,…,mk]. 

All these above indicate that BTk(x1,…,xk) from Eq. 
(2) can solve the problem of the displacement and 
the scale methods stated in Subsection 2.2. 

3.2. Real cases of the blending operators with 
blending range controls on their 
primitives’ subsequent blends 

Section 3.1 only gives a generalized method to 
generate blending operators with blending range 
controls on their primitives’ subsequent blends. 
Based on that method, this section presents some real 
operators. 

3.2.1. Two-dimensional blending operators. When 
HT2(x1, x2) in Step (1) is given by 

⎩
⎨
⎧

=
=

otherwise0),(
IIregion   0),(

21

21

xxMin
xxH H  

where  
HH(x1,x2)= 2122

2
11

2
21

2
1

2
2

2
2

2
1

2
1

2
2 222 xpxxrrxrrrrxrxr +−−++ ,  

-∞<p< 21rr , and region II is {(x1, x2) 2R∈ | m2x1-
m1(x2-r2) 0>  and m2(x1-r1)-m1x2<0},  
then in Eq. (2), a 2D BT2(x1, x2) can be given by 
solving the quadratic formula of HH(x1-m1h,x2-
m2h)=0 and written as 

x1

x2

r1

r2

hm1

hm2

BT2 =h, h>0

BT2 =0

Min (x1/m1,x2/m2)=h

M

BT2 =h, h<0
 

Figure 3.  Level curves BT2(x1, x2)=h, h∈R, 
where the curve in Figure 2 is used as HT2(x1, 
x2)=0. 

x1

x2

r1

r2 HT2 (x1, x2)=0

 
Figure 2. The shape of  HT2(x1, x2)=0. 
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2211

5.02

mxmxMin
abc
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 (4) 

where a=r1
2m1

2+r2
2m2

2+2pm1m2;  
b=2((r2-x2)r1

2m2+(r1-x1)r2
2m1-(x1m2+x2m1)p);  

c=(r1x2+r2x1-r1r2)2+2(p-r1r2) x1x2. 

3.2.3. High-dimensional blending operators.  When 
HTk(x1,…,xk) in Step (1) is given by 

HTk(x1,…,xk)= 01]/)[(1 =−− +=∑ ip
i

k
i ii rxr , 

where  [*]+ ≡ Max(0,*) and both ri>0 and pi>1 hold 
for i=1,…,k,  

then in Eq. (2), a hyper-ellipsoidal union operator 
BTk:Rk→R with blending range parameters r1,…,rk and 
curvature parameters  p1,…,pk  for simultaneous 
multiple blends can be given by 

                  BTk(x1, …, xk)= hp,  hp∈T -1(0)                (5) 

where   
T(h)=HTk(x1-m1h,…,xk-mkh) 

= 1]/)[(1 −+− +=∑ ip
i

k
i iii rhmxr ,   

and  mi>0 for i=1,…,k. 
To solve the root hp of the equation T(h)=0 in Eq. 

(5), one can apply the Regula Falsi method and use 
h∈( k

iMin 1= ((xi-ri)/mi), k
iMin 1= (xi/mi)] as the initial guesses. 

k
iMin 1= (*i) means  Min(*1,…,*k) for short. 

3.3. Dual forms 
Eqs. (4) and (5) in Section 3.2 offer union 

blending operators only. To develop a full family of 
Boolean set operators, one can adopt the dual forms 
of Eqs. (4) and (5), which is written by: 

(1). Union operation: BTk(f1, …, fk). 
(2). Intersection operation: -BTk(-f1, …, -fk). 
(3). Difference of S(f1, 0) from S(f2, , 0),…, S(fk, 0): -

BTk(-f1, f2,…, fk). 
 

4. Demonstration 
Some examples about the blending range control 

on primitives’ subsequent blends of the dual forms 
of Eqs. (4) and (5) are presented in this section. 

Example 1: Varying [m1,…,mk] of BTk  in Eqs. (4) 
and (5) can individually adjust the blending ranges 
of the primitives f1, …, fk  of the intersection 
operation -(BTk。-(Fk))=0 in a union blend. This can 
be seen in Figure 4, where m2 for f2 of BTk is 
decreased from 1.2, 0.9, 0.6, to 0.3 to change the 
subsequent union blending surface of f2 =0  with the 
super-ellipsoid for the objects from top left to bottom 
right. 

Example 2: Varying [m1,…,mk] of BTk  in Eqs. (4) 
and (5) can individually adjust the blending ranges 

of the primitives f1, …, fk  of the intersection 
operation - (BTk。-(Fk))=0 in a difference blend. This 
can be seen in Figure 5, where m2 for f2 of BTk is 
decreased from 1.2, 0.9, 0.6, to 0.3 to change the 
subsequent difference blending surface of the super-
ellipsoid  from f2 =0 for the objects from top left to 
bottom right. 

      (a)      

         

    (b)      
Figure 4. (a) Left: An intersection -(BT3。-(F3))=0 
on 3 pairs of parallel planes; Right: A super-
ellipsoid. (b) The shape changes of the union of the 
two objects in Figure 4(a), where only the 
subsequent blending surface of f2 with the super-
ellipsoid, in the marked regions, are shrunk 
gradually, but the shape -(BT3。-(F3))=0 remains 
unchanged as m2 for f2 is decreased from 1.2, 0.9, 
0.6, to 0.3 for the objects from top left to bottom 
right. 

        

         
Figure 5. The shape changes of the difference of 
the super-ellipsoid from the -(BT3 。 -(F3))=0 in 
Figure 4(a), where only the edges, cut by f2=0, in 
the marked regions, become sharper gradually, as 
m2 for f2 is decreased from 1.2, 0.9, 0.6, to 0.3 for 
the objects from top left to bottom right. 

f2 f2 

f2 f2 

f 2

f 2

f 2 

f 2 
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Example 3: Varying [m1,…,mk] of BTk  in Eqs. (4) 
and (5) can individually adjust the blending ranges 
of the primitives f1, …, fk  of the intersection 
operation - (BTk。-(Fk))=0 in an intersection blend. 
This can be seen in Figure 6, where m1 for f1 of BTk is 
decreased from 1.2, 0.8, 0.45 to 0.15 to change the 
subsequent intersection blending surface of f1=0 with 
the ball for the objects from left to right. 

5. Conclusions 
In implicit surface modeling, most of the existing 

blends remain their primitives’ properties unchanged 
on non-blending regions after blending. This causes 
that when they are used as a new primitive in other 
blends, the shape controls on their primitives’ 
subsequent blending surfaces rely solely on the 
subsequent blending operators, and hence some 
difficulties in the blending range controls on their 
primitives’ sequential blends develop, as stated in 
Subsection 2.2. To solve this problem, this paper has 
proposed some new blends that can provide 
parameters to adjust their primitives’ subsequent 
blending surfaces, respectively, without deforming 
their original shapes, when they are reused as a new 
primitive in other blends. On the contrary, other 
existing blends do not have this kind of ability. 

Furthermore, to develop this blend stated above, a 
generalized method has been proposed in this paper. 
The proposed method can transform some existing 
union blending operators into a new blending 
operator that has the following abilities: 

(1). Provide blending range parameters to adjust 
the size of the resulting blending surface, without 

deforming the overall shapes of the blended 
primitives; 

(2). Offer C1 continuity over the entire domain to 
generate smooth blending surfaces; 

(3). Allow sequential blends with overlapping 
blending regions.  

(4). Provide parameters to adjust their primitives’ 
subsequent blending surfaces respectively, without 
deforming its original blending surface.  

Based on the proposed method, one two-
dimensional operator (conics) and one high-
dimensional blending operator (super-ellipsoids) 
have been developed in this paper. These two kinds 
of operators give more parameters to adjust the 
resulting blending surface than the other existing 
operators do.  Especially, the proposed operators 
also provide curvature parameters to adjust the 
shapes of the transitions of the blending surfaces. 

In fact, in Section 3.1, the generalized method 
does not always generate a differentiable function. It 
depends on the chosen union operator in Step (1). 
Therefore, future works should focus on finding a 
rule for choosing a union operator such that the 
resulting blending operator (function) in Step (2) can 
be assured to be differentiable everywhere. 
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