1998 Intemational Computer Symposium
Workshop onh Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Coverage Evaluation for Test Programs
of X86 Compatible Microprocessors

Kuochen Wang and Sanjin Liu

Department of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan 30050, ROC
Email: kwang@cis.nctu.edu.tw

Abstract

We propose a coverage tool for X86 compatible micro-
processors that can evaluate the coverage of test pro-
grams according to a coverage model we built. Some
existing coverage evaluation tools use the design code
tracing method. This method needs the behavior
model of a target design. We evaluate the coverage
of test programs by analyzing test programs directly
using the test program tracing method. Our approach
just needs to know the architecture of a microproces-
sor, such as its instruction set, function units, pipeline
stages, and data cache organization, etc. Experimen-
tal results show that using our coverage evaluation tool
can use a smaller number of test programs to achieve
higher coverage.

1 Introduction

The complex of VLSI designs is in close cooperation
with the rapid improvement in VLSI manufacturing
technologies. As a result, design verification becomes
a very important task in VLSI designs. The develop-
ment time of a design can be shortened by a good ver-
ification method. There are two types of verification
methods: formal verification [1} and code simulation.
In the formal verification, theorem proving and model
checking [2] are used to verify the logical correctness of
a design. However, theorem proving and model check-
ing are not feasible for a complex design. In the code
simulation method, a test suite needs to be developed.
A good test suite that is efficient is very desirable in
the design verification. By it, designers can find out
errors of their designs quickly. Thus, how to generate
a good test suite for a design is the main challenge.
There are two ways to generate a test suite: automatic
test program generation and manual generation. Man-
ual generation is to manually generate those cases that
are not easy to be generated by automatic test program
generation. In order to evaluate a test suite, we have
developed a coverage tool for X86 compatible micro-
processors. By this tool, we can know the coverage of
test programs according to a coverage model we built.

..60_

In (3], the automatic test program generator (ATPG)

* generates' test programs based on four levels of hier-

archical information (instruction, instruction type, se-
quence, and sequence type). But how can we know the
test programs that an ATPG generated cover which
portions of a design? Therefore, a coverage tool is re-
quired to analyze the coverage of the test programs gen-
erated by an ATPG.

There are several methods to evaluate the coverage
of test programs. One is to use an FSM (finite state
machine) to evaluate coverage [4]. In [4], it uses an
extracted control flow machine for estimation of func-
tional coverage. The extracted control flow machine is
an FSM and it is extracted from the control unit of a
design. This method can easily measure the coverage of
a test suite for the control unit. But this method may
not be convenient for a huge design, like a micropro-
cessor. This is because transferring a microprocessor
design to an FSM is not an easy thing. Another ap-
proach to estimate functional coverage is to define a
functional fault model [5] and to determine the cover-
age by computing the fraction of all possible such errors
detected by the tests. In our approach, we analyze a
test program directly for coverage measurement. We
first built our coverage model according to the instruc-
tion aspect. Then, we built a coverage tool based on
the coverage model.

This paper is organized in the following manner. Sec-
tion 2 presents the details of the coverage model and the
architecture of our coverage tool. The implementation
of our coverage tool is described in section 3. Section
4 shows some experimental results. Finally, we make a
few concluding remarks in section 5.

2 Design Approach
2.1 Coverage Model

Before we develop our coverage tool, we need to build
a coverage model. Our coverage model, as shown in
Table 1, focuses on six aspects. In the following, we
present each separately.

Table 1: Coverage model.
[Coverage type | Coverage item]
Single Covered ALU iostructions
instruction instructions | FPU instructions
MMX 1instructions
System instructions
Register addressing mode
Immediate addressing
mode
Memory addressing mode
8, 16, and 32 bits

dressing
modes

perand
size
Instruction 2
combinations instructions

From the same instruc-
tion group

From different instruc-
tion groups

n same instructions from each
instruction group (n = 3, 4, 5)

Data Data dependence degree

dependence

Dependent instructions coverage
n consecutive dependent instructions
coverage (n = 3, 4, 5)

Control Branches Unconditional branches,
transfer conditional branches,
loops, and nested loops
rocedure Nested calls, interrupts,
calls "} and exception handling
procedures -
Data cache Read miss, read hit, write miss, and
access write hit for each cache set
EFLAGS Related flags setting for each
setting instruction group)
2.1.1 Single Instruction

According to the instruction classification, we analyze
each instruction in a test program. We find out each in-
struction belonging to which instruction type and group
to determine the covered instructions. Two more cover-
age items are considered: addressing mode and operand
size. We consider these two coverage items only in each
instruction group.

2.1.2 Instruction Combinations

Two coverage items of instruction combinations are
considered: combinations of two instructions and three
up to five same instructions from each instruction
group. We just consider the instruction combinations
for the same instruction type. This is because instruc-
tions with different instructioh types are executed in
different functional units and they are independent.
Then we divide the combinations of two instructions
into two parts: the instructions picked up from the
same instruction group and from different instruction
groups. For the coverage of instruction combinations,
we find out all possible combinations according to the
coverage model we defined. In the other coverage items,
we consider three up to five same instructions from each
instruction group.

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0O.C.

ROB

DIs

RET1

RET2

Store Addres Complex TEU
Unit E: jon Unit E:

Figure 1: Possible pipeline hazards in Pentium Pro.

2.1.3 Data Dependence

In [8], it proposes an approach to generate a test pro-
gram for pipeline interlock validation. We use the ap-
proach in our coverage tool. Consider the following two.
instructions: ’
mov eazx, ebx
add ecz, eazx

The first instruction move the data to register eax
which is used as a source operand by the second instruc-
tion. This is known as a read-after-write (RAW) data
dependence [9]. Each RAW pipeline hazard has three
components: a producing instruction, a consuming in-
struction and a register that is a dependent operand.
We know that all possible pipeline hazards must be
exercised for verification. Figure 1 shows the possible
pipeline hazards in Pentium Pro [8]. When a pipeline
hazard occurs, the consuming instruction (dependent
instruction) must be in the RAT (register alias table
and allocator) stage, waiting for a dependent register
value. The producing instruction can be in one of the
other stages. The dashed arrows shown in Figure 1
means that there can be a pipeline hazard between the
instructions in any two stages. Any two functional units
in the microprocessor can have pipeline hazards. For
example, if a producing instruction is in the DIS (dis-
patch) stage of the store address execution unit and a
consuming instruction is in the RAT stage of the store
data execution unit, there will be a pipeline hazard.
According to these observations, we measure the data
dependence by analyzing the pipeline hazards of a test
program. We define three coverage items for data de-
pendence. They are data dependence degree, depen-
dent instructions coverage and consecutive dependent
instructions coverage. The data dependence degree is
the percentage of dependent instructions in a test pro-
gram. In the second coverage item, we want to evaluate
the coverage of all instructions that can be dependent
instructions. In other words, we find out all instructions
that may be dependent instructions, and check which
instruction is a dependent instruction in a test program.
In the third coverage item, we check if a test program
has three up to five consecutive dependent instructions

61

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

3. 4KB 4KB

RN Way 0 Way 1

3 4 Set 0

/_/

Set 127
32bytes 32bytes

1 mov bx, Ok o
2 mov [bx], 3k ----wr!le miss
3 mov [bx+S_CW], 4h ~-—-wrile miss
4 mov [bx+S_CW*2], 5h —eeeawrite miss
5 mov [bx+S_CW], 4h «-—-write hit

Figure 2: An example of data cache access.

for each instruction group. This item can check the
coverage of the out of order execution mechanism.

2.1.4 Control Transfer

There are two types of control transfer: branches and
procedure calls. As to branches, there are two subtypes:
unconditional branches and conditional branches. Con-
trol dependence ‘originates from the conditional branch
instruction. It may cause pipeline stalls and severely
affect microprocessor performance. Incorporating a
branch prediction mechanism to a microprocessor de-
sign can improve the performance of the microproces-
sor. There are the other two coverage items of branches:
loops and nested loops. In the coverage evaluation of
branches, we check if all jump instructions are covered
in a test program, and these jump instructions are taken
or not taken. When a call instruction is taken, some
stack operations should be performed to record the con-
tents of some registers, such as the EFLAGS register.
Also the return address should be stored in the EIP
(instruction pointer) register. For a nested call, it may
cause stack overflow. This is because the stack size as-
signed by a program may be too small to store all the
contents of registers for a deep nested call. The other
subtypes of procedure calls are interrupts and excep-
tions. An interrupt is an asynchronous event that is
typically triggered by an I/O device [6]. An exception
is a synchronous event that is generated when the mi-
croprocessor detects one or more predefined conditions
while executing an instruction [6].

2.1.5 Data Cache Access

There are three types of data caches: direct mapped
cache, m-way set-associative cache, and fully set-
associative cache [9]. The test of a data cache can be
done by issuing load/store instructions for data in dif-
ferent addresses. As to the coverage evaluation of a data
cache, we compute the data cache’s hit rate and miss
rate of a test program. The data cache size of Pentium
Pro is 8 KB and the cache is a 2-way set-associative
cache [7]. Figure 2 shows an example of data cache ac-
cess. We use the assembly code in Figure 2 to illustrate

Instruction
Information Nie

+
e

Coverage - Covernge
evaluntor B repori

e -]
bullder : lable

Test program ~———

Data dependence
checker

Archliecture _
isformstion

|: o { Controf transfer -
checker H
L EFLAGS seiting
checker T

See‘ldp-z

Figure 3: The architecture of our coverage tool.

how to evaluate the coverage of data cache access.

S_CW is the size of one cache way, and it is 4 KB in
Pentium Pro. The instructions 2, 3, and 4 will cause
cache write misses. And the cache write miss of in-
struction 4 will cause a cache replacement. The last
instruction will cause a cache write hit. In this way,
we can compute the coverage of cache misses, hits, and
replacements for test programs.

2.1.6 EFLAGS Setting

The EFLAGS register of X86 compatible microproces-
sors contains eleven flags. Each instruction has it’s own
influence on respective flags. It will test, modify, reset
or set related flags before or after an instruction is fin-
ished. Note that the flags record the status of a micro-
processor. When running a program, certain instruc-
tions will test or modify some flags. If it is a branch
instruction, the microprocessor will decide if the branch
instruction is taken or not according to some flag, such
as ZF (zero flag). That is, the EFLAGS will affect
the instruction flow and most of the control unit’s ac-
tions are affected by the EFLAGS. So, a full coverage
of EFLAGS setting for each instruction implies a full
test of most of the control unit.

2.2 The Architeecture of Our Coverage
Tool
Figure 3 shows the architecture of our coverage tool.
There are two passes in our tool. The first pass
has three main modules: instruction checker, data
dependence checker, and symbol table builder. In
the instruction checker, we compare each instruction
with the instruction table created by the instruction
table builder based on the instruction information file.
This table records all the instruction information and

62

has some flags to record the coverage for each instruc-
tion. In the data dependence checker, while scanning
an input program, we record the destination operand
in the pipeline table if an instruction has a destination
operand. We check the source operand of an instruction
to see if it is in the pipeline table. If it is in the table,
it means a pipeline hazard has occurred. A symbol ta-
ble is built for the second pass. It records the data,
labels, and procedure calls declaration in a test pro-
gram. The second pass contains three main modules:
data cache access checker, control transfer checker,
and EFLAGS setting checker. In the data cache ac-
cess checker, we create a data cache table to simulate
the cache’s contents during the execution of a test pro-
gram. The next module is the control transfer checker.
This module is divided into two parts, branch checker
and procedure call checker. The last module, EFLAGS
setting checker, is used for the checking of flags setting.
Finally, after completing the test program evaluation,
the coverage tool records all the coverage results and
generates a coverage report for evaluation. The cov-
erage report is useful to guide an ATPG to generate
specific test programs. In this way, the ATPG can gen-
erate fewer test programs with higher coverage.

3 Implementation

Our coverage tool is implemented in Microsoft Windows
using Borland C++Builder. The inputs of our coverage
tool are listed as follows:

1. The architecture information of Pentium Pro.
2. Instruction information file.
3. A test program.
The overall coverage items are shown as follows:
.1. The coverage of single instructions.
The coverage of instruction combinations.
The coverage of data dependence.
. The coverage of control transfer instructions.

The coverage of data cache access.

o ;R W N

. The coverage of EFLAGS setting.
7. The overall coverage.

The definition of each coverage item has been described
in section 2. The coverage tool will generate a detailed
coverage report for users. We now show how we imple-
ment the coverage tool in Figure 3. The main tasks of
first pass are described as follows:

1. Compare each instruction with the instruction ta-
ble and set the instruction status, such as covered
or uncovered, etc.

63

1998 Intemational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

g 20 test programs
S (4919 instructions)

=y 10 out of 20 test programs
(2131 lmtru:ﬁon':) b

10 test prograins
(12042 instructions)
test program
D (199 instructions)
* expecied result

Coverage types

[20] 80 100
Coverage (%)

Figure 4: A coverage report using our coverage tool.

2. Check data dependence using five pipeline tables.

3. Create a symbol table for the tasks of the second
. pass.

The main tasks of the second pass are described as fol-
lows:

1. Simulate the execution of the test program.

2. Evaluate the coverages of branch instructions, pro-
cedure calls and EFLAGS setting.

3. Generate a coverage report.

4 Experimental Results

To evaluate our coverage tool, we use test programs
generated by an ATPG in [10] as our input test pro-
grams. Now, we illustrate a coverage report, as shown
in Figure 4, using our coverage tool. The abscisca is the
coverage for each coverage item (ordinate). There are
four situations shown in Figure 4: (1) 1 test program,
(2) 10 test programs, (3) 10 test programs picked up
from 20 test programs, and {4) 20 test programs. We
can see the coverage of 10 test programs picked up from
20 coverage evaluated test programs is higher than that
of 10 test programs without coverage evaluation first.
We also compare the coverage of 20 test programs with
that of 10 test programs picked up from 20 coverage
evaluated test programs. We can see the coverage of
the later is just slightly lower than that of the former.
Although evaluating 20 test programs first will require
more time, the third situation can have higher coverage
with fewer instructions than the second situation.

1998 Intemational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

5 Conclusions

We have developed a new and efficient approach to eval-
uate the coverage of test programs for X86 compati-
ble microprocessors. Although our approach can not
promise a full coverage as the FSM method, the lat-
ter is not feasible for complex microprocessor designs.
Our approach does not need the RTL code or the be-
havior model of a design. Our coverage tool can be
integrated with an ATPG to help the ATPG generate
a small number of test programs with high coverage.

6 Acknowledgement

This research was supported in part by the National
Science Council, ROC under Grant NSC86-2622-E-009-
009.

References
[1] E. M. Clarke and R. P. Kurshan, “Computer-
Aided Verification,” IEEE Spectrum, Vol. 33, Iss.
6, pp. 61-67, Jun. 1996.

(2] A.K. Chandra, V. S. Iyengar, R. V. Jawalekar, M.
P. Mullen, L. Nair, and B.K. Rosen, “Architectural
Verification of Processors Using Symbolic Instruc-
tion Graphs,” Proceedings of IEEE International
Conference on Computer Design: VLSI in Com-
pulers and Processors, pp. 454-459, Oct. 1994.

(3] Jiro Miyake, Gary Brown, Masahiko Ueda, and Ta-
motsu Nishiyama, “Automatic Test Generation for
Functional Verification of Microprocessors,” Pro-
ceedings of the Third Asian Test Symposium, pp.
292-297, Nov. 1994.

64

[4] Yatin V. Hoskote, Dinos Moundanos, and Jacob A.
Abraham, “Automatic Extraction of the Control
Flow Machine and Application to Evaluate Cov-

" erage of Verification Vectors,” Proceedings of In-
ternational Conference on Computer Design, pp.
532-537, Oct. 1995.

[5] M. Abadir, J. Ferguson, and T. Kirkland, “Logic
Design Verification via Test Generation,” IEEE
Transactions on CAD, Vol. 7 No. 1, pp. 138-148,
Jan. 1988.

(6] Intel Corporation, “Pentium Pro Family Devel-
oper’s Manual,” Vol. 2: Programmer’s Reference
Manual, 1996.

(7] Tom Shanley, “Pentium Pro Processor System Ar-
chitecture,” MindShare, Inc., 1996.

{8] Trung A. Diep and John Paul Shen, “System-
atic Validation of Pipeline Interlock for Super-
scalar Microarchitectures,” Twenty-Fifth Interna-
tional Symposium on Fault-Tolerant Computing,
pp. 100-109, Jun. 1995.

(9] J. N. Hennessy and D. A. Patterson, “Computer
Architecture: A Quantitative Approach,” Morgan
Kaufman Publishers, 1996.

(10] Kuochen Wang and Leih-Ming Wu, “Automatic
Test Program Generator for X86 Compatible Mi-
croprocessor Verification,” Proceedings of 1998
International Conference on Computer Systems
Technology for Industrial Applications - Chip
Technology, pp. 100-105, Apr. 1998.

	
	60
	61
	62
	63
	64

