
Synchronizing and Smoothing the Video Streams
between Different Hierarchical Storage in VOD Servers

Yin-Fu Huang and Hung-Ming Ho

Institute of Electronic and Information Engineering
National Yunlin University of Science and Technology

123 University Road, Section 3, Touliu, Yunlin 640
huangyf@el.yuntech.edu.tw

Abstract

In this paper, we investigate how to
synchronize and guarantee smooth transitions
between different storages in a VOD server
while displaying a video stream. So far no paper
ever explored deeply the flow control of video
streams between different storages in the
hierarchical architecture. Here the policies and
mathematical models are proposed to manage all
levels of storages. A new technique called
Dynamic Replacement Policy (DRP) is
proposed to manage the disks efficiently, and it
guarantees that a granted request can be
definitely serviced within each cycle, even if no
sufficient spaces are reserved for the granted
request in advance. Finally simulation
experiments are conducted to evaluate and
compare different cases. The results show that 1)
DRP is a good policy for managing disks, and 2)
although minimizing the size of the tertiary stage
section can store more popular video files in the
hot video section for servicing more clients at
the same time, it will increase the waiting time
of the requests.

Keywords: VOD, hierarchical storage,
synchronization, replacement strategies

1 Introduction

Video-On-Demand (VOD) service is a
new entertainment. Viewers can watch videos on
demand from a remote video server through a
network [5]. Due to the advances in computer
and communication technologies, the service has
become true. Since a video server might have
thousands of videos, it is uneconomical to store
all video files on disk storage. In general, it
would cost 3GB disk spaces to store a 100-
minute video with the MPEG-2 format [4]. To
reduce the storage costs, one attractive
alternative is to combine the storage such as
memory, disk storage, and tertiary storage into a
hierarchical system [2, 9, 10, 14].

In the traditional hierarchical storage
architecture, all video files are stored in the
tertiary storage. When a video file is requested,

it will be transferred from the tertiary storage to
the disk, and then displayed on screens via the
memory. A drawback with this approach is that
the start-up latency associated with loading the
entire file is very long. Therefore, a pipelining
technique called PIRATE was proposed to
address the above problem by Ghandeharizadeh
and Shahabi [6]. Therein, a video file is split into
a sequence of fragments (X0, X1, … , Xn-1, Xn)
such that the display time of Xi-1 can overlap the
time required to materialize Xi (i.e. loading Xi
into disk). This strategy guarantees a continuous
display of a video stream while reducing the
latency time, because the system can initiate the
video display as long as a fraction of the video
(i.e. X0) is disk-resident. However, a drawback
of this scheme is that the disk spaces used to
cache the entire video file must be reserved in
advance before the pipelining mechanism is
triggered. Furthermore, allocating such large free
disk spaces may result in long latency time.
Although SEP (i.e. Space Efficient Pipelining)
significantly improved the long latency time
incurred in PIRATE, it made a nonsensical
assumption that the bandwidth of the tertiary
storage is lower than the display rate of a video
[7, 12, 13]. That is the recent development in the
tertiary storage has made it possible that the
bandwidth of the tertiary storage is higher than
the display rate of a video.

The concepts in the paper are based on the
pipelining technique and assume that the
bandwidth of the tertiary storage is higher than
the display rate of a video. The remainder of the
paper is organized as follows. Section 2
describes our system architecture, video
allocation, and the flow control of video streams.
Then the managements of all the components in
the hierarchical storage are presented in the
following sections, respectively, such as tertiary
storage in Section 3, memory in Section 4, and
disk storage in Section 5. Section 6 shows a
simulation model and experimental results.
Finally, we make conclusions in Section 7.

2 Preliminary

2.1 System Architecture

A hierarchical storage is a combination of
different types or “levels” of storage. Based on a
pipelining technique, the system architecture
constructed here consists of memory, disk and
tertiary storage, as shown in Fig. 1. The memory
can be partitioned into two parts; i.e. staging
buffer and caching buffer. The staging buffer
serves as an intermediate area between the
tertiary storage and disks, enabling both the
tertiary storage and disks to work
simultaneously. Similarly, the caching buffer
also serves as an intermediate area between
disks and display devices, enabling both disks
and display devices to work simultaneously. The
disk storage referred to as disk arrays uses RAID
technology [11], and since data is striped across
each disk, the transfer rate of disk arrays is
effectively increased by the number of drives
involved. The tertiary storage includes a library,
a robot arm and a small number of tertiary drives.
The library stores a large number of media (i.e.
optical platters), which contains one video file.
The robot arm fetches the media for the
requested video file from the library and puts it
on an available tertiary drive, and then the
tertiary drive transfers the video file to the
staging buffer.

2.2 Characteristics of Video Files

In our system, three attributes such as
display rate, size, and access frequency are used
to describe a video file. Each video file Vi is
associated with a display rate Bdispaly, and should
be transmitted at that rate over a high-bandwidth
network to a requesting client. Here we assume
that all video files have the same display rate.
The size of each video file could be different
from each other, and this implies that all video
files have different service time. Each video file
consists of a sequence of blocks with size D.
The access frequency of a video file represents
its popularity. We assume that the access
frequency of each video file Vi is known in
advance and is denoted by P i, where ∑ = 1iP .

The video files are indexed by a decreasing
order of access frequencies; i.e.

ji PPji ≤⇔≥ .

2.3 Allocation of Video Files

We have some premises to allocate video
files. First, all video files should be stored in the
tertiary storage. Second, to promote the system
performance, h most popular ones among M
video files are replicated onto disk arrays. Third,
to hide the start-up latency incurred by the
tertiary storage and then ensure smooth

transitions during playback, the beginning
segment of each video file is resided in disk
arrays, except h most popular video files. The
segment is referred to as Head and the collection
of the remaining segments is referred to as Tail.
As stated above, the space of disk arrays is
partitioned into three sections; that is 1) hot
video section that stores h most popular video
files, 2) head residence section that resides the
Head of each video file, and 3) tertiary stage
section that serves as an intermediate staging
area while video files are transmitted from the
tertiary storage to clients.

Due to the allocation of video files in the
hierarchical storage, two modes such as 3-stage
mode and caching mode, can be used in the
system. For the 3-stage mode, a requested video
file should be in the tertiary storage. Its Head is
first transmitted from the head residence section
of disks to a client via the caching buffer while
the tertiary drive is starting up, and then its Tail
is pipelined from the tertiary drive to a client via
the staging buffer, the tertiary stage section of
disks, and the caching buffer. For the caching
mode, a requested video file is resided in the hot
video section of disks where it is transmitted to a
client via the caching buffer.

2.4 PCR (Production Consumption Rate)

PCR is defined as the ratio between the
transfer rate of a tertiary drive (denoted by
Btertiary) and the display rate of a video file
(denoted by Bdispaly), and can be expressed as
follows:

display

tertiary

B
B

PCR = (2.1)

It is the most important foundation when video
streams are controlled in the hierarchical storage.
Due to the big progress in the transfer rate of a
tertiary drive in recent years, PCR>1 is
considered in our system.

2.5 Service Cycles

Here the time taken by a client to consume
a video block is referred to as a service cycle
denoted by Ts. It is assumed that multiple clients
are serviced in a fixed order that does not vary
from one service cycle to the next one. During a
service cycle, the server must prevent the
starvation for the continuous playbacks of all
requested clients [1]. The amount of video data
consumed by a client in a service cycle is called
a D-block. A service cycle can be computed with
D-block and Bdispaly as follows:

display
s B

DT = (2.2)

Obviously, the size of D-block is proportional to

the length of a service cycle, it should be well
chosen. Besides, the amount of video data
retrieved from a tertiary drive during one service
cycle can be computed when Ts was decided. It
is called T-fragment and expressed as follows:

tertiarys BTT ×= (2.3)
Similarly, we can also compute T-fragment
according to equation (2.1), (2.2), and (2.3) as
follows:

D
TPCR =

DPCRT ×=⇒ (2.4)
Since PCR>1 is considered in the system, T-
fragment consists of a number of D-blocks.

In order to meet the continuity
requirement of each admitted client served in the
3-stage mode and the caching mode, a constraint
is imposed on Ts as follows:

scachedstageact TtCtd ≤×+× (2.5)
dact denotes the number of active tertiary drives.
tstage denotes the time used to retrieve the amount
of T of a requested video file from the staging
buffer to disks. Cd denotes the number of clients
served in the 3-stage mode and the caching
mode. tcache denotes the time used to retrieve the
amount of D of a requested video file from disks
to the caching buffer. In general, the disk service
time can be partitioned into two types of time
slices: 1) read-in and 2) write-out for a service
cycle. According to equation (2.5), these two
time slices are the time stageact td × for read-in
and the time cached tC × for write-out,
respectively. The time slices for read-in and
write-out are not fixed and can be adjusted
according to the service situation of the system.
Specially when dact=0 (i.e. no tertiary drives are
transferring video files to the staging buffer), all
the time of read-in will be reserved for write-
out.

3 Ter tiary Storage

A library operation must be automated
through the robot arm in the tertiary storage [8].
The procedure that the robot arm fetches a new
media from the library and loads it into an
appropriate drive is referred to as robot load,
whereas the reverse one is referred to as robot
unload. Due to only one single robot arm in our
system, all the robot loads and unloads have to
be performed sequentially. A tertiary drive is
called active, if it is assigned to transmit a video
file to the staging buffer. Once finishing
transmitting the video file, the active tertiary
drive becomes idle. An active tertiary drive
serves only one video stream at a time, so
another client cannot use it until it becomes idle.
Tertiary storage is only operated in the 3-stage

mode. When a client requests a video stored in
the tertiary storage and the request is granted by
the system, the video stream will be transmitted
in the 3-stage mode. The latency called start-up
latency and denoted by Lt, is incurred when the
tertiary drive starts to service. There are three
cases for the start-up latency, and they can be
expressed as follows:














+
=

emptynotisdrivetheif
time,loadrobottimeunloadrobot

empty isdrivetheiftime,loadrobot
drivethe

inalready isfilevideorequestedtheif 0,

Lt

The events and time intervals during the data
transfer procedure of the 3-stage mode are
described as follows. The response time is the
interval between the grant of a client request and
the display of a video. The staging delay is the
time for the tertiary drive to transmit one T-
fragment (i.e. the amount of DPCR ×) of the
video file to the staging buffer; in general, the
staging delay is one service cycle according to
equation (2.3). To reduce the response time and
ensure the continuous display in the 3-stage
mode, the start-up latency can be hidden by
residing the Head of a video file in the head
residence section of disks, since the display time
of Head is overlapped with the time required to
wait for the tertiary drive to start-up. When a
client request is granted, the Head of the
requested video file is first transmitted from the
head residence section of disks to the client via
the caching buffer, while the tertiary drive is
during the start-up latency and staging delay.
Since the requested video file will be displayed
at the second service cycle, the response time is
reduced to one service cycle.

We can compute the size of the Head of a
video file, based on the following equation, The
disk service time of the Head for write-out =
start-up latency+staging delay. The worst case
of the start-up latency occurs when no tertiary
drive is empty; that is Lt = robot unload time +
robot load time. Then we can re-write the
equation above in terms of Ts units as follows:
The disk service time of the Head for write-out

= 1+








s

t

T
L

(3.1)

where the staging delay takes one Ts. Since the
disks retrieve a D-block in one service cycle
during write-out, the size of the head of each
video file can be computed as follows:

DD
T
L)Head(Size

s

t +×







= (3.2)

Then the size of the Taili of each video file can
be derived as follows:

)Head(Size)V(Size)Tail(Size ii −= (3.3)
Let LCtstart denote the logical cycle that a tertiary
drive begins to transmit the Tail of a video file,
LCtend the logical cycle that the tertiary drive
finishes transmitting, and LCttrans the tertiary
transfer time. They can be expressed as follows:

LCtstart = 1+








s

t

T
L

(3.4)

LCttrans= 





× DPCR
)Tail(Size i (3.5)

LCtend= 1−+ ttranststart LCLC (3.6)
Furthermore, let LCcstart be the logical cycle that
a client starts displaying the video, LCcend the
logical cycle that the client finishes displaying
the video, and LCcdisplay the total display time.
They can be expressed as follows:

LCcstart=2 (3.7)

LCcdisplay= 





D
)V(Size i (3.8)

LCcend= 1−+ cdisplaycstart LCLC (3.9)

4 Memory

4.1 Disk Scheduling and Circular Buffering

Since the staging buffer serves as an
intermediate area, not as a cache, the buffer
spaces allocated by the disks should be reused
immediately after its contents have been read
into the disks. To minimize the buffer spaces
needed, disk scheduling is investigated. As
mentioned in Section 2.5, the disk service time
can be partitioned into two types of time slices:
1) read-in and 2) write-out for a service cycle.
According to equation (2.5), these two time
slices are the time stageact td × for read-in and

the time cached tC × for write-out, respectively.
The symbols, tstage and tcache, defined in Section
2.5 could be expressed as follows:

disk
stage B

Tt = (4.1)

disk
cache B

Dt = (4.2)

where the symbol Bdisk is the transfer rate of
disks. Here we assume that read-in has higher
priority than write-out in the disk scheduling; i.e.
dact video streams are read from the staging
buffer first and then Cd video streams are written
to the caching buffer during a service cycle. This
service strategy can minimize the spaces of the
staging buffer needed, since the video data
written in the staging buffer by tertiary drives in
the previous cycle can be read as soon as
possible, and then the staging buffer can be
reused.

The concepts of circular buffering are used
to manage the staging buffer. Each video stream
is staged in a single circular buffer. Since dact
tertiary drives are transmitting video data to the
staging buffer, there are dact circular buffers and
the size of each circular buffer is different from
each other. A circular buffer can be divided into
two portions; i.e. 1) the used area where disks
read video data, and 2) the free area where a
tertiary drive transmits video data. These two
areas are controlled with two pointers; i.e.
reading pointer and writing pointer.

The inter-phase of the read and write
operations on a circular buffer can be explained
as follows:
Phase 1: This phase is at time 0. The space of a

circular buffer is referred to as a free
area. The reading pointer and writing
pointer show the same direction.

Phase 2: This phase is during the time 0~Ts. A
tertiary drive transmits the amount of
T to the free area of a circular buffer,
and the status of the area is
transformed into ‘used’ when it was
written. By the way, the writing
pointer advances according to the size
of transmitted data. When this phase
ends, the size of the used area is T.

Phase 3: This phase is during the time
stagess tjT~T ×+ . For the read-in

time slice in a service cycle, the jth
video stream is being read from the jth
circular buffer to disks during the time

stagesstages tjT~t)j(T ×+×−+ 1
where j = 1, 2, … , dact. Then the status
of the area is transformed into ‘free’
when it was read. By the way, the
reading pointer advances according to
the size of transmitted data. At the
same time, a tertiary drive is
transmitting the amount of

tertiarystage Btj ×× to the free area of
the circular buffer during the time

stagess tjT~T ×+ . Due to the
pipelining mechanism, the read and
write operations are parallel on the
circular buffer during the time

stagesstages tjT~t)j(T ×+×−+ 1 .
When this phase ends, the size of the
used area is tertiarystage Btj ×× and the
size of the free area is T.

Phase 4: This phase is during the time
sstages T~tjT ××+ 2 . The j we have

stated in the phase 3. Due to the disks
have read the video data in the phase 3,
the reading pointer is in the primitive
direction of phase 3. The tertiary drive

continues to transmit the amount of
tertiarystage Btj)DPCR(××−× to the

free area of circular buffer during the
time sstages T~tjT ××+ 2 and the
free area is transformed to the used
area when it was written. The writing
pointer was accompanied by the shift
of used area. The size of used area is

DPCR × and the size of free area is

tertiarystage Btj ×× when this phase
ends.

Afterward, Phase 3 and Phase 4 will alternate
with each other till the video stream is finished.
Since a circular buffer is managed dynamically,
the required spaces of the staging buffer can be
minimized.

4.2 The Required Spaces of the Staging Buffer

To decide the required spaces of the
staging buffer, the worst case should be
considered, which is described as follows:
1. dact=d; i.e. all tertiary drives are active. Thus

the staging buffer supports d circular buffers
in total.

2. For each service cycle, all active tertiary
drives transmit the amount of Td × to the
staging buffer and the disks take the time

stagetd × to read the video data written at
the last cycle, from the staging buffer.

Then according to Phase 3, the required space of
each circular buffer can be computed as follows:













=××+

=××+

=×+

=

dj ,BtdT
.......

2j ,Bt2T

1j , BtT

buffercircular each of spacerequired

tertiarystage

tertiarystage

tertiarystage

Thus the required spaces of the staging buffer is
as follows:

∑
=

××+×=
d

j
tertiarystagestage BtjTdM

1

(4.3)

5 Disk Arrays

5.1 The Variance of Accumulation in the
Tertiary Stage Section

For a video stream in the 3-stage mode,
since the tertiary stage section of disks serves as
an intermediate area, not as a cache, the spaces
reserved for the video stream in the tertiary stage
section should be as small as possible in order to
service more clients. As mentioned in Section
4.1, video data is read into the disks for read-in
and written out from the disks for write-out in

one service cycle, and read-in has higher priority
than write-out. During each cycle from cycle 1
to cycle LCtstart, a D-block of the head residence
section is written to the caching buffer for write-
out. Then during each cycle from cycle
(LCtstart+1) to cycle (LCtend+1), a T-fragment is
read from the staging buffer to the tertiary stage
section for read-in, and then a D-block of the
tertiary stage section is written to the caching
buffer for write-out. During cycle (LCtstart+1),
the first D-block of the T-fragment can be
produced and immediately consumed, since
read-in always has higher priority than write-out.
Finally during each cycle from cycle (LCtend+2)
to cycle (LCcend-1), a D-block of the tertiary
stage section is written to the caching buffer for
write-out. The flow of a video stream with
Size(Vi)=10D, Size(Head)=4D, and PCR=2 is
illustrated in Fig. 2.

To reduce the reserved spaces for a video
stream in the tertiary stage section, the space of
consumed video data should be released as soon
as possible. Due to PCR>1, the video data will
be accumulated in the tertiary stage section
during from cycle (LCtstart+1) to cycle (LCtend+1)
where the accumulated size is directly
proportional to PCR. Thereafter the video data
will only be consumed from cycle (LCtend+2) to
cycle (LCcend-1). Here we refer to the most space
accumulated by a video stream as K_SPACE.
The variance of accumulation in the tertiary
stage section is illustrated in Fig. 3. Since the
spaces of consumed video data can be released,
Size(K_SPACE) is always smaller than Size(Tail).
Here two terms are defined as follows:
1) The last T-fragment produced during cycle

(LCtend+1) is denoted by LTF. Sometimes
Size(Tail) of a video file is not the integral
multiple of DPCR × ; thus Size(LTF) can be
expressed as follows:

DPCR)LC()Tail(Size
)LTF(Size

ttrans ××−−= 1
(5.1)

2) The last D-block consumed during cycle
(LCcend-1) is denoted by LDB. Similarly the
size of a video file may not be the integral
multiple of D; thus Size(LDB) can be
expressed as follows:

D)LC()V(Size
)LDB(Size

cdisplayi ×−−= 1
(5.2)

Here two cases for Size(K_SPACE) can be
computed as follows:
Case 1: If DSize(LTF)≥ , then

]D)LTF(Size[
)]LC(D)PCR[(]DPCR[

)SPACE_K(Size

ttrans

−+
−××−+×= 21

D)LC()Tail(Size ttrans ×−−= 1 (5.3)
Case 2: If DSize(LTF)< , then the space of

produced video data is smaller than that of
consumed video data during cycle (LCtend+1),
thereby not increasing the accumulated spaces.
Thus the most space accumulated by a video
stream occurs during the preceding cycle, i.e.
LCtend, and is expressed as follows:

)]LC(D)PCR[(
]DPCR[

)SPACE_K(Size

ttrans 21 −××−+
×= (5.4)

5.2 Basic Replacement Policy

A basic replacement policy (BRP) is used
to manage the tertiary stage section. Each
request has its own free pool. When a request is
granted to be serviced, K_SPACE will be
allocated from a common free pool to its own
free pool, where Size(K_SPACE) is determined
according to equation (5.3) and (5.4). A request
has two states for its life cycle, such as:
1) Allocated state: the request is during from

cycle 1 to cycle k.
2) Free state: the request is during from cycle

(k+1) to cycle LCcend.
From cycle (LCtstart+1) to cycle k of a request in
the allocated state, the spaces of video data will
be allocated from (or released to) its own free
pool when video data are produced (or
consumed). Once the request enters the free state,
the spaces of the free pool will be released to the
common free pool cycle-by-cycle. The design of
dual free pools and the reservation of K_SPACE
for k cycles in the BRP are to guarantee the
completion of a request as long as the request is
granted. The request is never worried about
space-shortage during the playback of its video
stream. The algorithm with the BRP is run at the
beginning of each cycle and shown as follows:

Algorithm BRP /* Basic Replacement Policy for
the tertiary stage section */
Step 1 /* TC is the current logical cycle for a

request */
For all the requests with

2+≥ tstartLCTC , free the consumed
spaces at the preceding cycle to the
appropriate free pool.

1.1 If kTC ≤ , then free the amount of D
to its own free pool.

1.2 If cendLCTCk << , then free the
amount of D to the common free pool.

1.3 If cendLCTC = , then free the amount
of LDB to the common free pool.

Step 2 If a new request is granted to be serviced
and operated in the 3-stage mode, then
K_SPACE is allocated from the common
free pool to its free pool.

Step 3 For all the requests with

1+≥ tstartLCTC , allocate the spaces
from its free pool.

3.1 If kTC < , then allocate the amount
of)DPCR(× .

3.2 If kTC = , then allocate the amount
of LTF.

5.3 Dynamic Replacement Policy

Though the BRP works well, K_SPACE is
reserved for staging the video stream from cycle
1 to cycle k, thereby degrading the space
utilization. Here a technique called dynamic
replacement policy (DRP) is proposed to
dynamically utilize the disk spaces in the tertiary
stage section and then services more clients. The
goal of the DRP is to ensure that a granted
request is absolutely satisfied with the space
allocation for each service cycle, even if not
sufficient K_SPACE is reserved for the granted
request in advance. The concurrent requests in
the 3-stage mode can be divided into d sets. The
jth set (j=1~d) of requests corresponds to the jth

tertiary drive, and is denoted by SETj. Each set
has its own free pool. Let

}R,.....,R,R{SET kiiij ++= 1 be a set of requests
that are ordered by their arrival time such that
the first request Ri arrived before the second
request Ri+1 and so on. When a request is granted
and the jth idle tertiary drive is assigned to
service it, the request will join to SETj and be
scheduled to be the last one in SETj. On the other
hand, a request is deleted from SETj when the
display of its requested video stream is finished.
Since all video files have different sizes, the
first-in request may not be the first-out one in
SETj.

Like the BRP, the request in SETj has two
states for its life cycle, such as allocated state
and free state. Due to PCR>1, there may be more
than one free-state request in SETj. If all the
requests in a set are in the free state, the set is
referred to as the idle set, and indicates that all
the requested video streams in SETj have been
completely transmitted from tertiary drive j, and
tertiary drive j is idle again. On the other hand, a
set is referred to as the active set if the last
request in the set is still in the allocated state,
and indicates that its tertiary drive is active
currently. Since an active tertiary drive can
serves only one video stream at a time, there is
only one allocated-state request in a set, and the
request must be the last one in the set. As for the
management of free pools, the required spaces of
the allocated-state request in an active set will be
allocated from (or released to) its own free pool
when video data are produced (or consumed).
Once the request enters the free state (or the set
becomes idle), the spaces of the free pool will be

released to the common free pool cycle-by-
cycle.

The DRP executes the following tasks
when it starts to service a new request:
1) Select an idle set with the least members,

insert the new request into the last position
of the set, and the set becomes active.

2) Allocate the required spaces from the
common free pool to the free pool of the set.
The required spaces can be expressed as follows:

CE)Size(F_SPA-CE)Size(K_SPA
)spacesrequiredthe(Size

=
(5.5)

where K_SPACE is the most space used by the
new request at cycle k, and F_SPACE is the total
released spaces of all the free-state requests in
the active set in the next (k-1) cycles. Although
F_SPACE is not a free space at present, it will be
released and reused by the new request in the
following (k-1) cycles. If F_SPACE is smaller
than K_SPACE, the insufficient spaces (i.e. the
required spaces) will be allocated from the
common free pool. According to the definition
above, F_SPACE can be expressed as follows:

∑
=

=
l

i
i)R(fCE)Size(F_SPA

1

(5.6)

where l is the total number of the free-state
requests in the active set, and f(Ri) is the released
spaces of the ith request in the next (k-1) cycles.
Since the remaining display cycles of Ri may not
be greater than (k-1) cycles, f(Ri) can be
computed as follows:













−≤+−

+×−

−>+−
×−

=

)k()TC(LCif

),LDB(SizeD)TCLC(

)k()TCLC(if
,D)k(

)R(f

cdisplay

cdisplay

cdisplay
i

11

11
1

(5.7)
where (LCcdisplay-TC+1) is the remaining display
cycles of iR . As stated above, when a request is
granted, only the amount of the required spaces,
not K_SPACE, needs to be reserved for the
request. The algorithm with the DRP is run at
the beginning of each cycle and shown as
follows:

Algorithm DRP /* Dynamic Replacement
Policy for the tertiary stage section */
Step 1 /* TC is the current logical cycle for a

request */
For all the requests with

2+≥ tstartLCTC , free the consumed
spaces at the preceding cycle to the free
pool of its set.

1.1 If cendLCTC < , then free the amount
of D.

1.2 If cendLCTC = , then free the amount
of LDB and delete the request from its

set
Step 2 For all the idle sets, collect total spaces of

its free pool to the common free pool.
Step 3 If a new request is granted to be serviced

and operated in the 3-stage mode, then
the required spaces are allocated from the
common free pool to the free pool of its
join set as follows:

3.1 join_set ← select an idle set with the
least members.

3.2 Insert the new request into the last
position of join_set, and set join_set
active.

3.3 required_spaces ← Size(K_SPACE of
the new request) - Size(F_SPACE of
join_set).

3.4 If required_spaces>0, then allocate the
amount of required_spaces from the
common free pool to the free pool of
join_set.

Step 4 For all the requests with
1+≥ tstartLCTC , allocate the spaces

from the free pool of its set.
4.1 If kTC < , then allocate the amount

of)DPCR(× .
4.2 If kTC = , then allocate the amount

of LTF and set its set idle.

5.4 The Required Spaces of Each Section

The sizes of three sections such as 1) hot
video section, 2) head residence section, and 3)
tertiary stage section are investigated here. The
size of the tertiary stage section should be
minimized as small as possible, so that the hot
video section can store more popular video files
to service more clients at the same time.

For the tertiary storage with d drives, there
are at most d allocated-stated requests at any
given time. Since only one robot arm is provided,
the difference of the initial service time between
any two neighboring allocated-stated requests is
at least (LCtstart-1) cycles. After the state of one
request becomes free (i.e. the tertiary drive
finishes serving the request) at cycle k+1, the
drive can serve the next new request
immediately at the same cycle. It means that the
difference of the initial service time between any
two neighboring requests served by the same
drive is at least k cycles. Here the worst case is
considered where all clients in the 3-stage mode
request the videos with the same maximal size
and all the requests arrive sequentially with
inter-arrival time (LCtstart-1). Then through a
period, the disk spaces in the tertiary stage
section will be allocated most when d allocated-
state requests and as many free-state requests as
possible are being processed in the system. At
the given time, the current cycle TC of each

concurrent request can be shown as follows:

Drive d, … … … … , Drive 3, Drive 2, Drive 1
,k ,1)-LC(k ,1)-LC(2-k ,1),-LC()d(k tstarttstarttstart −××−− 1
,k ,1)-LC(k2 ,1)-LC(2-2k......,1),-LC()d(k tstarttstarttstart 212 −××−−

: : : :
kl ,1)-LC(kl ,1)-LC(2-lk ,1),-LC()d(lk tstarttstarttstart −××−− 1

Here the current cycle TC of each
concurrent request can be expressed using a
general equation as follows:

1)-(d~0j l,~1i ,1)-LC(jik tstart ==×−
(5.8)

To obtain the size of the tertiary stage section,
the maximum cycle TC defined as

1)-LC(mlk tstart×− (i.e. the current cycle of the
earliest request) should be found. In other words,
the l value and m value should be derived. Since
the current cycle TC of each request is less than
or equal to LCcend, the l value and m value can be
derived as follows:

cendtstart LC1)-LC(mlk ≤×−
















<≤×−−







×−−+<≤







=⇒

ikLC1)-LC(1)d(kiif

 ,
k

LC

1)-LC()1(d1)ki(LCikif

 ,
k

LC

l

cendtstart

cend

tstartcend

cend

(5.9)









−

−
=⇒

)1LC(
LClk

m
tstart

cend (5.10)

Then the size of the tertiary stage section can be
expressed as follows:














≠−

=

=

∑∑∑

∑∑
−

=
−×−

=

−

=
−×−

=

−

=
−×−

0mif,D)D(

0mif ,D

 section)ary stageSize(terti

m

j
)LC(jlk

l

i

d

j
)LC(jik

l

i

d

j
)LC(jik

tstarttstart

tstart

1

0
1

1

1

0
1

1

1

0
1

(5.11)
where Dn denotes the disk size allocated to the
request at cycle n and can be expressed for
different cycles as follows:
















≤<
−×=

=
<<+

−−××−+×=
×=+

cend

n

k

tstart

tstartn

1LCtstart

LCnkif
),k(nD-K_SPACE)(SizeD

K_SPACE)(SizeD
kn1LCif

),1LC(nD1)PCR(DPCRD
DPCRD

Next the size of the head residence section
can be computed as follows:

)Head(Size)hM(
 section)residenceSize(head

×−=
(5.12)

where M is the total number of available video

files, and h is the total number of most popular
video files stored in the hot video section. To
service more clients at the same time, the total
number of most popular video files stored in the
hot video section should be maximized under the
constraint expressed as follows:

∑
=

≥
h

i
i)V(Size section)videoSize(hot

1

where the video files are indexed by a
decreasing order of access frequencies. The
maximized h can be found by following the
derivation as follows:

)Head(SizeM- section)ary stageSize(terti-

 space)diskSize(Total)Tail(Size

)Tail(Size

)Head(SizeM section)ary stageSize(terti

)V(Size

)Head(Size)hM(section)ary stageSize(terti
 section)videoSize(hot section)residenceSize(head

 section)ary stageSize(terti space)diskSize(Total

h

1i
i

h

1i
i

h

i
i

×

≤⇒

+

×+≥

+

×−+≥
++

=

∑

∑

∑

=

=

=1

(5.13)
Finally the size of the hot video section can be
computed as follows:

 section)residenceSize(head- section)ary stageSize(terti-
 space)diskSize(Total section)videoSize(hot =

(5.14)

6 Performance Evaluation

6.1 Simulation Model

The simulation model is depicted in Fig. 4.
The request generator generates a request for a
video file and submits it to the waiting queue in
an FCFS manner. The dispatcher examines the
request at the head of the waiting queue for each
service cycle and decides its served mode. Then
the admission controller checks the required
resources for the request according to its served
mode. If the required resources are available, the
serving unit will accept the request and allocate
a video stream for it. Otherwise, the request will
be rejected and return to the tail of the waiting
queue. The serving unit simulates the playback

mechanism.
In the simulation, the arrival of requests is

assumed to be a Poisson distribution. The access
frequencies to each video are dependent on the
popularity of the video. We use a Zipf
distribution to determine the probability of
choosing the ith most popular video from the
video library [3]. The formula can be expressed
as follows:

∑ =
×

= M

j j
zi

zi
P

1
1

1

where 10 ≤≤ z is the z-factor. A larger z value
means a more skew condition (i.e. some videos
are accessed considerably more frequently than
others). When z=0, the distribution is uniform
(i.e. all the videos have the same access
frequency). Unless the values of the simulation
parameters are mentioned, their default values
are given in Table I.

Extensive experiments were conducted to
validate the superiority of our approaches (i.e.
BRP and DRP) in the following subsections. For
most clients, the waiting time of a request (i.e.
the interval between the arrival time of a request
and the display time of the requested video) is
most concerned factor. Thus, the average
waiting time of 1000 requests was measured and
used as an evaluated parameter.

Table I Simulation parameters

D-block size 128KB
Disk space 20GB
Disk bandwidth 100MB/sec
Number of tertiary
drives

4

Start-up latency of
tertiary

10 sec

Transfer rate of a tertiary
drive

4.6MB/sec

Display rate 4Mb/sec
Main memory size 256MB
Zipf factor 0.7
Arrival rate of requests 1 (request/sec)
Number of videos 200
Minimum video size 390MB
Maximum video size 780MB
Number of requests 1000

6.2 Evaluation of BRP and DRP

In Section 5, we have analyzed that DRP
has better disk space utilization than BRP. Here
we further present the performance of BRP and
DRP under different workloads. According to
the parameter values as shown in Table I, the
relative data can be computed using the
equations defined in the previous sections as

follows: Ts 0.25 second, PCR 9.2, T-fragment
1.15MB, Head 5.125MB, tstage 0.0115 second,
tcache 0.00125 second, and Mstage 5.129MB.

Experiment 1: Effect of Space Ratio

Space ratio is defined as the ratio between
the tertiary stage section and the disk size. In
this experiment, we investigate the effect of the
ratio on the performance of the BRP and the
DRP. As shown in Fig. 5, although the number
of hot videos is maximal for the space ratio 12%,
both the BRP and the DRP do not have better
performance. The implicit data shows that most
disk bandwidth is used by hot-video requests,
and this causes cold video requests being
blocked for a long time. It overthrows the
deduction that the size of the tertiary stage
section should be minimized as small as possible,
so that the hot video section can store more
popular video files to service more clients at the
same time, as mentioned in Section 5.4. In fact,
we found that the best performance occurs for
the space ratio 40%. Besides Fig. 5 also shows
that DRP has better average waiting time than
BRP as we expect.

Experiment 2: Effect of Arrival Rate

In this experiment, we investigate the
effect of the arrival rate on the performance of
the BRP and the DRP. As shown in Fig. 6, DRP
has better average waiting time than BRP, but
their differences are about between 4% and 6%.
In general, the faster the arrival rate, the more
the average waiting time. However, we found
that when the arrival rate is 2 requests/sec, its
average waiting time is less than that for the
arrival rate 1 requests/sec. The implicit data
shows that when a few requests are coming for
the arrival rate 2 requests/sec, considerable
videos are finishing playback and the allocated
resources are being released so that they do not
suffer waiting for a long time. To further clarify
the reason, we investigate the effect of the video
size on the average waiting time only using the
DRP, as shown in Fig. 7. For the video size
100MB and 300MB, the average waiting time
for the arrival rate 2 requests/sec is more than
that for the arrival rate 1 requests/sec. On the
contrary, its average waiting time is less than
that for the arrival rate 1 requests/sec when the
video sizes are 500MB and 700MB. This
validates that the video size has decisive
influences on the average waiting time.

Experiment 3: Effect of Access Skew

In this experiment, we investigate the
effect of the access skew on the performance of

the BRP and the DRP. As shown in Fig. 8, the
performance of both BRP and DRP improve as
the Zipf factor is increased. The reason is that
the improvement in temporal locality of
reference causes higher hit ratio of the hot video
section, and then reduces the average waiting
time. As the preceding experiments, DRP has
better average waiting time than BRP; however
the savings range is gradually decreased when
the Zipf factor is increased. A larger Zipf factor
means that more clients request the hot videos
stored in the hot video section, and thus the size
of the tertiary stage section will become
insignificant.

7 Conclusions

In the paper, we proposed an approach to
synchronize and smooth the video streams in the
hierarchical storage, and maximize the
utilization of disk arrays and buffers. In order to
hide the start-up latency and then ensure smooth
transitions during playback, the Head of each
cold video is resided in the head residence
section. To promote the system performance, h
most popular video files are resided in the hot
video section. To provide more caching buffer to
service more clients at the same time, we
minimize the spaces of the staging buffer as far
as possible. To maximize the utilization of the
tertiary stage section, we proposed the technique
called Dynamic Replacement Policy (DRP). It
guarantees that a granted request can be
definitely serviced within each cycle, even if no
sufficient spaces are reserved for the granted
request in advance. Finally simulation
experiments are conducted to evaluate and
compare different cases. The results show that 1)
DRP is a good policy for managing disks, and 2)
although minimizing the size of the tertiary stage
section can store more popular video files in the
hot video section for servicing more clients at
the same time, it will increase the waiting time
of the requests.

References

[1] D. Anderson, Y. Osawa, and R. Govindan,
“A file system for continuous media,”
ACM Transaction on Computer Systems,
Vol. 10, No. 2, 1992, pp. 311-337.

[2] A. L. Chervenak, D. A. Patterson, and R.
H. Katz, “Storage systems for movies-on-
demand video servers,” Proc. 14th IEEE
Symposium on Mass Storage Systems,
1995, pp. 246 –256.

[3] A. Dan, D. Sitaram, and P. Shahabuddin,
“Scheduling policies for an on-demand
video server with batching,” Proc. ACM
Multimedia, 1994, pp. 15-23.

[4] D. L. Gall, “MPEG: a video compression
standard for multimedia applications,”
Communications of the ACM, Vol. 34, No.
4, 1991, pp. 46-58.

[5] D. J. Gemmell et al, “Multimedia storage
servers: a tutorial,” IEEE Computer, Vol.
28, No. 5, 1995, pp. 40-49.

[6] S. Ghandeharizadeh and C. Shahabi, “On
multimedia repositories, personal
computers, and hierarchical storage,” Proc.
ACM Multimedia, 1994, pp. 407-416.

[7] K. A. Hua, J. Z. Wang, and S. Sheu.,
“BiHOP: a bidirectional highly optimized
pipelining technique for large-scale
multimedia servers,” Proc. IEEE
INFOCOM’97, 1997, pp.1357-1364.

[8] M. G. Kienzle, A. Dan, D. Sitaram, and W.
Tetzlaff, “Using tertiary storage in video-
on-demand servers,” Proc. IEEE
COMPCOM’95, 1995, pp. 225-233.

[9] A. Merchant, Q. Ren, and B. Sengupta,
“Hierarchical storage servers for video on
demand: feasibility, design and sizing,”
Global Telecommunications Conference,
1996, pp. 272 –278.

[10] B. Ö zden et al, “A low-cost storage server
for movie on demand databases,” Proc.
20th VLDB Conference, 1994, pp. 594-
605.

[11] F. A. Tobagi, J. Pang, R. Baird, and M.
Gang, “Streaming RAID: a disk storage
system for video and audio files,” Proc.
ACM Multimedia, 1993, pp. 393-400.

[12] J. Z. Wang, K. A. Hua, and H. C. Young,
“SEP: a space efficient pipelining
technique for managing disk buffers in
multimedia servers,” Proc. IEEE
International Conference on Multimedia
Computing and Systems, 1996, pp. 598-
607.

[13] J. Z. Wang and K. A. Hua, “A bandwidth
management technique for hierarchical
storage in large-scale multimedia servers,”
Proc. IEEE International Conference on
Multimedia Computing and Systems, 1997,
pp. 261-268.

[14] Y. Won and J. Srivastava, “Minimizing
blocking probability in a hierarchical
storage based VOD server,” Proc. IEEE
International Workshop on Multimedia
Database Management Systems, 1996, pp.
12-19.

Tertiary storage Disk arrays Display devices

Main memory

Staging buffer Caching buffer

library robot arm tertiary drives

Fig. 1 Hierarchical storage architecture

Staging buffer Caching
buffer

6,54 =T
8,75 =T
10,96 =T

6,55 =T
8,76 =T
10,97 =T

11 =T
22 =T
33 =T
44 =T
55 =T

66 =T
77 =T

12 =T
23 =T
34 =T
45 =T
56 =T

67 =T
78 =T

88 =T
99 =T
1010 =T

89 =T
910 =T
1011 =T

Fig. 2 The flow of a video stream in the 3-stage mode

1T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T logical cycle

5

6

6

7

8

7

8

9

10

8

9

10

9

10

10

space

tstartLC tendLCcstartLC cendLC

3=ttransLC
10=cdisplayLC

DSPACEKSize 4)_(=

7=k cycle logical the

DLTFSize 2)(=

: D-block is consumed and then released in the next cycle

k

Fig. 3 The variance of accumulation in the tertiary stage section for a video stream

Dispatcher Admission
Controller

Serving Unit

Accepted

Request Generator

Waiting Queue

Rejected

Finished

Fig. 4 Simulation model

0

5000

10000

15000

20000

25000

12% 20% 30% 40% 50% 60%

space ratio

av
er

ag
e

w
ai

tin
g

tim
e

(s
)

0

5

10

15

20

25

30

nu
m

be
r o

f h
ot

 v
id

eo
sBRP

DRP

Number of Hot Videos

Fig. 5 Average waiting time of BRP and DRP for different space ratios

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.125 0.25 0.5 1 2 4

arrival rate

av
er

ag
e

w
ai

tin
g

tim
e

(s
) DRP

BRP

Fig. 6 Average waiting time of BRP and DRP for different arrival rates

0

2000

4000

6000

8000

10000

12000

14000

0.25 0.5 1 2 4

arrival rate

av
er

ag
e

w
ai

tin
g

tim
e

(s
)

100MB 300MB
500MB 700MB

Fig. 7 Average waiting time for different arrival rates and video sizes

0

2000

4000

6000

8000

10000

12000

14000

16000

0.1 0.3 0.5 0.7 0.9

Zipf factor

av
er

ag
e

w
ai

tin
g

tim
e

(s
)

DRP
BRP

Fig. 8 Average waiting time of BRP and DRP for different Zipf factors

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12

