

A Pipelined Parallel Hardware Sorter

Wen-Lung Shu
CSIE Department, Chung-Hua University
No:30, Tung-Shiao Rd., Hsin-Chu, Taiwan

wlshu@chu.edu.tw

Abstract

A new hardware sorter which combines both
Batcher's parallel merge sort [1] and Stodd's
pipelined two way merge sort algorithm [2] is
proposed in the paper. This hardware contains one
k-sorter and ㏒(n/k) k-to-k mergers, and can sort n
records in Ο(n/k) assuming data is retrieved through
k parallel data paths. The internal processing
algorithm and control unit of this pipelined parallel
device have been completely designed. This sorter is
readily suitable for VLSI Implementation, and can be
used to process very large databases efficiently.

Key words: hardware sorter, parallel, pipeline.

1. Introduction

Many sorting approach was presented in the
past. Part of these sorting algorithms operate on a
single processor with the best performance of order
n*㏒ n cycles to sort n records. They are the
quicksort, heap sort, and merge sort [3]. Some
sorting algorithm may complete sort with time
proportional to n, but only in certain circumstances.
Address sorting [3] requires the spread of sort key
values to be known and fairly random. Digital sorting
[3, 6] is performed by using short keys. Several
multiple processor sorts are proposed also. Such as
Batcher's merge exchange sort [3,7], Thompson and
Kung's mesh sort [4], and Chen's parallel bubble sort
[5]. The odd-even transposition sort has been
extended to the multiprocessor case in [8]. Mesh sort
algorithm was processed among the multiple mesh
networks in [9, 10]. Multi-way merge algorithm was
applied on multiple mesh networks in [11, 12].

In pratical condition, n records usually are

distributed to k locations. A new hardware sorter is
designed in the paper by combining both Batcher's
parallel merge sort and Stodd's pipelined two-way
merge algorithm. This hardware contains one
k-sorter and ㏒(n/k) k-to-k-mergers, and can sort n
records in Ο(n/k) assuming data can be retrieved
through k parallel data paths. Basic parallel merge
unit of this sorter includes data flow control, state
sequencer, micro-code generator and internal

processing algorithm are designed. This sorter is
readily suitable for VLSI Implementation. Let data
transfer rate be matched with data processing rate.
Then this type sorter can reach to the highest degree
of efficiency, and can meet the emerging need of
processing very large databases.

The overview of Todd’s algorithm and overall

architecture of the proposed sorter are given in
Section 2. Data flow control, internal processing unit,
state sequence and micro-code generator are
developed in Section 3.

2. The Design Concept of the Proposed
Sorter

Todd’s two way merge sort algorithm and the

proposed sorter are discussed in Section 2.1 and
Section 2.2.

2.1 The overview of Todd's two way
merge sort algorithm

This algorithm is a variation of a straight
two-way merge sort. A serial two-way merge sort
operates in several passes, with each pass creating
sorted sequences of records. The first pass creates
strings of two records; the second pass merges each
pair into four-record strings. After i passes, the
strings have length 2i. After ㏒ n passes, all n records
are in one sorted string. The passes of this algorithm
are run overlappedly rather than serially. Each pass is
supported by a separate processor. The passes are run
overlappedly using multiple processors which merge
each pair of strings into a sorted sequence.

Assume n is the number of records, and n is
equal to 2r where r is integer. There are r+1
processors, 0 through r. The output from the ith
processor consists of sorted sequences of 2i records,
created by merging two output strings from the (i-l)th
processor. The example of sorting 4 elements is
shown in Table 1.

2.2 The overall architecture of the
proposed sorter

Table 1. An example of Todd's algorithm for sorting 4 elements.

Cycles Input P0 P1 P2 Output Comments

0 d b c a →
 →

 →
 →

 →
 →

 Input consists of length 1 strings

1 d b c → a
 →

 →
 →

 →
 →

 P0 switches input to alternate
queues.

2 d b → a
 → c

 →
 →

 →
 →

 Shift a to upper queue, b to lower
queue.

3 d → b
 → c

 → a
 →

 →
 →

 P1 begin to merge strings a and c.

4 → d
 → c

 → b a
 →

 →
 →

 String b a is finished.
P0 has passed the last record.

5 → d
 →

 → b a
 → c

 →
 →

 P1 begins to merge strings c and d.

6 →
 →

 → b
 → d c

 →
 →

 a P2 now starts on b a and d c.

7 →
 →

 →
 → d c

 →
 →

 b a P2 continues processing.

8 →
 →

 →
 → d

 →
 →

 c b a P2 passes d c to output.

9 →
 →

 →
 →

 d c b a P2 completes d c b a.

P
2

P
s

P
i

P 1

P
0

Input n/k segements

Sorter

Basic Merge Units

q
1

q
2

q 3

q i

q
i+1

q
s+1

q
s

n records

(k records per segment)

Figure 1. The overall architecture of the proposed sorter.

A hardware sorter that combines Batcher's
bitonic merger and two way merge algorithm is
shown in Figure 1. Assume that bitonic sorter and
mergers are consist of bit-slice comparators. The k
bit strings in a segment can enter the hardware
simultaneously. This sorter is developed by using one
k-bitonic sorter in P0, and s bitonic kxk mergers in
P1~Ps where s=㏒(n/k). A k-sorter needs (k/2)[㏒
k(1+㏒ k)/2] comparators and the kxk merger needs
k(1+㏒ k) comparators. P0 sorts k records in each
segment, then transfer results to any available space
in q1. P1~Ps process internal processing algorithm,
then data can be sorted in 0(n/k).

Processor Pi can merge 2i-1segments (k parallel
records in each segment) with another 2i-1 segments
in qi and transfer the resulting data into qi+1. Using
Stodd's two way merge algorithm, it only requires the
space of 2i-1+l segments in qi to process 2i-1 to
2i-1merge. Hence,

Total space requirement = 2s+ s -1 segments
= n/k+㏒(n/k)-l segments.

But, in order to make the developing work easy, a
simple model is adopted in the following section.
Three assumptions are made for this model:

1. Bitonic merger can completely merge data in a

cycle.

2. Queue qi is divided into two queues Ai and Bi

which contain 2i-1 segments.

3. Using the semaphore signals, the odd merge

units of P1,…,Ps are processed first, and even
merge units then processed in next turn, and so
on.

It is noted that the first assumption can be

improved by changing delay cycles for different
record size in merge related states. The architecture
of merge unit and internal processing algorithm can
be further improved, such that pipeline process in
Table 1 and smaller storage requirement can also be
achieved in our design.

3. Design the Basic Parallel Merge Unit of

Proposed Sorter

The proposed hardware sorter has been
designed in this section. Figure 2 shows the block
diagram of a basic parallel merging unit. Each
parallel merging unit includes data flow control,
hardware merger, state sequencer and micro-code
generator.

3.1 The design of data flow control

The design of data flow control is shown in
Figure 3. It includes four counters (countAi, countBi,
lastAi, and lastBi,), three flags (top, Ei, and
semaphore[i] and output signals (Z1i,…,Z7i). The
main functions of these 4 counters and three flags are
described below :

1. The countAi, and countBi are utilized to
indicate the number of data segments expected to be
processed in the current string, when 2i-1 data
segments are merged with 2i-1 data segments . The
binary value of 2i-1 is loaded into countAi and countBi
at initial. The number of countAi (or countBi) will
be decreased by 1 when Ai (or Bi) is shift right one
data segment. CountAi, (or countBi) is zero means
that the queue Ai (or queue Bi) already processes 2i-1
data segments in this string. Output line Z1i become 1
in this case. Count Ai have two input lines : C1i loads
2i-1 value, C2i is "DCR" will decrease counter by 1. It
is similar to countBi.

2. The lastAi (or lastBi) can tells the
number of data segments remaining in the queue Ai
(or Bi). Ai, or Bi may contains data belonging to
current and next strings. When last string is found,
lastAi or lastBi can be treated also as the final number
of segments waiting to be processed. Pi activates
when both lastAi, and lastBi are not zero, or when
flag Ei =1 (It tells that Pi-1is processing the last
string). The lastAi+1 or lastBi+1 must be incremented
by 1 when Pi transfers a data segment to Pi+1, and
lastAi, and lastBi must be decreased by 1 after right
shifting. Counter lastAi have three input lines: C5i
(CLR) clear lastAi, C6i (DCR) decrements lastAi by 1,
and C7i (INC) will increments lastAi, by 1. In lastAi,
Z3i is zero detecting signal. Similar to C8i (CLR), C9i
(DCR), C10i (INC) and Z4i in lastBi counter.

3. The one bit flag "top" is used to indicate

which queue is outputting. The top is initialized to 1,
and is set to zero if lastAi is zero. If top=l then Pi
outputs to Ai+1, else to Bi+1. Input line C11i sets flag
"top" to 1, C16i complements this flag, and output line
Z5i is the complement of flag "top".

4. Ei is a flag associated with every data

segment. Ei = 0 represents this data segment is not
the last one, otherwise Ei=1. Output Z6 i must be set
to 1.

5. The semaphore SM[i] can be updated by

Pi-1 and Pi. It is used to lock data in the pipelining
system. This flag will effects the output Z7i.

State Sequencer

Microcode Generatorstart

Data Merger
Ai

B
i

Ai+1

B
i+1

Data Flow Control

countA
i

countB
i

lastB
i

lastA
i

top SM[i] E
i

Z
1i
, ..., Z

7i

T0, ..., T 21

C
1i
, ..., C

24i

Figure 2. The Merge Unit Pi of the proposed Sorter.

countAi

countBilastAi

countBi

LD

DCR

CLR

LD

DCR

CLR

DCRDCR

Value of 2i -1

Z
1i

Z
2i

Z
3i

Z
4i

Z
6 i

Z
5i

Value of 2i -1

top

Ei

C
16i

CLK

C
11i

D

~Q

CLK CLK

CLK
CLK

C
1i

C
2i

C
3i

C
4i

C
5i

C
6i

C
7i

C
8i

C
9i

C
10i

INC INC

set

Figure 3. Control Registers in Data Merger.

C23 i C
23(i+1)

C
23 (i-1)

C24 i

C24(i+1)C24 (i-1)

Z
7i

SETSET

CLR CLR

SM[i] SM[i+1]

A
i+1

MUX1

C18 i
C17 i

0

1

2

3

A

B

L

H

C13(i+1) fromPi

C
15(i+1)

 From
P

i

SHR

LD

LD

SHR
B

i+1

low

high

parallel
merger

MA

MB
1

0

1

0

A
i

B
i

SHR LD

SHR LD

C
12 i

C
14 i

C
13i

from
Pi-1

C
15 i

from
Pi-1

C19 i

High edge
data of B

i

High edge data of Ai

Comparator

<=

a
i

b
i

set clr
C20 i

C21 i

Si

D-FF

C22 i

enable

Figure 4. The Hardware Design for Merger P
i
.

X

3.2 The design of data merger

The hardware of data meger is given in Figure 4.
Ai and Bi, are shift registers used as two queues of
processor Pi. When Pi processes the first data
segment in the queue, the processing data segments
are retrieved from queues by shifting registers to the
right. The "SHR" control line C12i or C14 i is used to
shift right for Ai or Bi. When a data segment is
transferred from Pi-1 to Pi the data is moved to the
location pointed by lastAi (or lastBi). lastAi (or
lastBi,) will be incremented by one thereafter.

The internal parallel merger can be designed by using
odd-even merger, bitonic merger. The enable line
(C22i) will enable the parallel merger. After input

segments are merged, low output segment will be
transferred to Pi+1 and high output segment will be
returned back for next merge.

The register Si has two control lines : clear
(C21i) and set (C22i), Si is cleared at initial, such
that data segments from Ai and Bi will be merged first.
Input data are passed through multiplexer MA and
MB. Later Si is set to 1. Signal "x" is the result of
comparing two edge records (denoted as ai and bi)
of two input segments from Ai, and Bi,. If x = 0 (ai >
bi) then data segment from Bi is chosen to merge
with feedback segment through MA and MB,
otherwise data segment of Ai is chosen. Control line
C19i is used to initialize edge record comparator.

There is a Multiplexer MUX1 uses control

lines (C17i, and C18 i) to select the output data

segment from A, B, L or H. When input data are
merged , data segment L will be transferred to Pi+1.
After merger is no longer needed, segment H,
segment A or segment B can be passed to Pi+1 in
the next cycle. The function of this multiplexer is
described on detail in the internal processing
algorithm

3.3 The design of internal processing

algorithm and state sequencer

In order to design the state sequencer, the
internal processing algorithm are developed by using
output signals of data flow control (Z1i, …,Z7i) and
micro-codes (C1i, …,C24i). Micro-codes will be set or
reset according to the current conditions indicated by
Z1i, …,Z7i. This modified internal processing
algorithm is given below :

Registers:

Ai[2i-1:1], Bi[2i-1:1], top[0], Si[0], countAi[2i-1:1],
countBi[2i-1:1], lastAi[2i-1:1], lastBi[2i-1:1],
SM=array[l...㏒㏒㏒㏒(n)] of semaphore initialized to
up, Pi the ith processing unit.

Begin

while (~ start) do NOP;
set C5i, C8i, C11i, C23 i; /* initialize values */
repeat

while (Z3i or Z4i) and(~ Z6 i) do NOP;
/* wait until both queues have data or
last string is indicated '"/
if ~Z3i and ~Z4i then

begin /* begin merging */
set C1i, C3i, C19i, C21i;

/* initialize values for new string
*/

repeat
call MERGE

 /* merge data and send data P,^ */
until Z1i or Z2i or Z3i or Z4i;

/* If a queue is empty in the string then
feedback data and the remaining data must
be moved */

if ~Z2i, and ~Z4i then
begin

MOVEH(A);
while ~Z1i, and ~Z3i

call MOVE(A);
end;

if ~Z2i and ~Z4i then
begin

MOVEH(B);
while ~Z2i and ~Z4i

call MOVE(B);
end;

set C16i;
/* After complete a string , data will be moved to
another queue */

end
else /* processing for last string */

DELAY_A_CYCLE;
repeat

call MOVE(A);
until Z3i;

until Z3i and Z4i;
end;

subroutine MERGE
Wait (Z7i, Z7(i+1));
enable merger;
if Z5i then

set ~C17i, C18i, C22i, C24i, C13(i+1), C7(i+1)
else

set ~C17i, C18i, C22i, C24i, C15(i+1), C10(i+1)
if (ai ≦≦≦≦ bi) then

set C7(i+1), C13(i+1), C2 i, C6 i, C12 i
else

set C10(i+1), C15(i+1), C4i, C9 i, C14i
set C20i;
set C23i;

subroutine MOVEH
parameter X
Wait (Z7i, Z7(i+1));
if ~Z5i then

set C17i, C18i, C24i, C13(i+1), C7(i+1)
else

set C17i, C18i, C24i, C15(i+1), C10(i+1);
if X = A

set C2i, C6i, C12 i
else

set C4i, C9i, C14 i;
set C23i;

subroutine MOVE
parameter X
Wait (Z7i, , Z7(i+1));
If X =
A
 begin

if ~Z5i then
set C17i, C18i, C24i, C13(i+1), C7(i+1)

else
set C17i, C18i, C24i, C15(i+1), C10(i+1);

set C2i, C6i, C12i;
end;

else
begin

if ~Z5i then

T
0

T
3

T
2

T
1

T
18

T
12

T
8

T
6

T
10

T
11

T
14

T
21

T
15

T
13

T
20

T
17

T
19

T
9

T
5

T
7

T
4

T
16

~start

start

(Z3i+Z4i)(~Z6i)

(Z3i+Z4i)Z6i

(~Z3i)(~Z4i)(~Z6i)

~Z7i

Z7i

(~Z1i)(~Z2i)(~Z3i)(~Z4i)

(~Z1i)(~Z3i)(~Z5i)(~Z2i)(~Z4i)Z5i

(~Z1i)(~Z3i)Z5i

Z1i+Z2i+Z3i+Z4i

Z1i+Z3i

Z2i+Z4i

(~Z3i)+(~Z4i)

Z3i+Z4i

(~Z2i)(~Z4i)

~Z7i

Z7i

Z5i(~X)
(~Z5i)X

(~Z5i)(~X)

Z5iX

(~Z2i)(~Z4i)(~Z5i)

Figure 5. The State Diagram for State Sequencer.

set C17i, C18i, C24i, C13(i+1), C7(i+1)
else

set C17i, C18i, C24i, C15(i+1), C10(i+1);
set C4i, C9i, C14i;

end;

From the previous internal processing
algorithm, a state diagram in Figure 5 can be
derived. The state sequencer can be designed
thereafter. Within several wait states, system will
wait until the wanted conditions was found.
However in the states T6 ~T9, T14, T15 and T21,
system has to give enough delay time for
merging input records with different data size.

3.4 Designing micro-code generator

Micro-code generator itself is a combination
circuits, T0,…,T20 are inputs and C1i,…,C24 i are
outputs of this circuits. The boolean expressions
for this combination circuits can be derived from
the above state diagram. They are:

C1i = T3
C2i = T6 + T8 +T14+ T15
C3i = T3
C5i = T1
C6I =T6+T8+T14+T15
C7(i+1) = T6+T7+T14+T16
C8I =T1
C9i = T7+T9+T16+T17
C10(i+1) =T8+T9+T15+T17
C11i = T1
C12i = T6+T8+T14+T15
C13(i+1) = T6+T7+T14+T16
C14i = T7+T9+T16+T17
C15(i+1) =T8+T9+T15+T17
C16i = T20
C17i =(~T5)+T11+ (~T18)+T19+(~T21)
C18i = T5+T11+ (~T18)+(~T19)+(~T21)
C19i = T3
C20i = T10
C21i = T3
C22i =T6+T7+T8+T9
C23i =-T1+T10
C24i = T5+T13

4 Conclusion

A pipelined parallel hardware sorter has

been developed in the paper. The parallel and
pipelining sort algorithm can be performed on
the hardware when each basic merge unit
implements internal processing algorithm. In this
system, data transfer rate can be matched with
data processing rate. Hence a large amount of
data can be sorted efficiently.

5. Reference

[1] Michael J. Quinn, " Designing Efficient
Algorithms for Parallel Computers ", pp. 84 – 100,
McGraw Hill.

[2] S.todd, "Algorithm and Hardware for a
Merge Sort Using Multiple Processors", IBM J.
Res. Develop. Vol. 22, NO. 5, September 1978.

[3] D.E. Knuth," Sorting and Searching", The
Art of Computer Programming. Vol.3 , Addison
Wesley Publishing Company, Reading, MA,
1973.

[4] C. D. Thompson and H. T. Kung, "Sorting on
a Mesh-Connected Parallel Computer", Commun.
ACM 20, 263 (1977).

[5] T. C. Chen, K. P. Eswaran, V. Y. Lum, and C.
Tung, "Apparatus for Transposition Sorting of
Equal-Length Records in Overlap Relation with
Records Loading and Extraction ", U.S. Patent
Application Serial Number 685,859,1977.

[6] S. Even, "Parallelism in Tape Sifting ",
Commun, ACM 17,202(1974).

[7] K.. E. Batcher, " Sorting networks and their
applications, " Proc. AFIPS Spring Joint
Computer Conf. pp. 307-314, 1968.

[8] G. Baudet and D. Stevenson, "Optimal
sorting algorithms for parallel computers, " IEEE
Trans. Comput., Vol. 27, No. 1, pp. 657-661.
July 1978,

[9] M. De, D. Das, M. Ghosh and B. P.
Sinha,”An efficient sorting algorithm on the
multi-mesh network” IEEE Trans. Comput., pp.
1132 – 1137. Oct. 1997.

[10] D. Das, M. De, and B. P. Sinha, “A new
network topology with multiple meshes “, IEEE
Trans. Comput., pp. 536 – 551, May 1999, Vol:
48. No: 5.

[11] P .F. Corbett and I. D. Scherson, “Sorting in
mesh connected multiprocessors” , IEEE Trans.
on Parallel Distrib. Systems. pp. 626 – 632, Sept.
1992, Vol: 3, No: 5.

[12] Bhabani P. Sinha, Amar Mukherjee,
“Parallel Sorting Algorithm Using Multiway
Merge and Its Implementation on a Multi-Mesh
Network”, Journal of Parallel and Distributed
Computing, Vol:60, No:7, July 1, 2000.

