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ABSTRACT

Edge detection in computer vision and image
processing is a process which detects one kind
of significant feature in an image which is a
resultant of large delta values in intensities. In
this paper, we set up a numerical method for edge
detection using a multi-resolution technique based
on Gaussian Filters with Spiral Architecture. The
detection algorithm reduces noise and unnecesary
detail of the image from a coarse level to a fine
level of resolution.

Keywords. Scale-space Theory, Image Process-
ing, Edge Detection, Spiral Architecture.

1 INTRODUCTION

Edge detection plays a key role in computer vision,
image processing and related areas. It is a process
which detects the significant features that appear
as large delta values in light intensities. As
an early stage of computation in a large scale
computer vision application, an edge map is deter-
mined from the original image. It contains major
image information and only needs a relatively
small amount of memory space for storage. If
needed, a replica image can be reconstructed from
its edge map.

In the past, various edge detection algorithms
were proposed (e.g. [1], [2], {3] and [4]). In this
paper, we present a numerical method for edge
detection based on Gaussian Multi-scale Theory
(5] and Spiral Architecture [6].

Spiral Architecture described by Sheridan [6] is
a new data structure for computer vision. The
image is represented by a collection of hexagons

of the same size (in contrast with the traditional
rectangular representation). The importance of
the hexagonal representation is that it possesses
special computational features that are pertinent
to the vision process.

Muiti-scale theory introduced by Lindeberg [5] is a
tool to remove image noise. The image brightness
function is parameterized. A large change in
image brightness over a short spatial distance
indicates the presence of an edge. The image is
blurred and noise is removed when the parameter
is positive. We start from the edge map at a coarse
resolution level (i.e., choose a positive parameter
value). The final edge map will be approached
from the coarse level to a fine level (i.e., as the
parameter gets smaller and smaller).

The context of this paper is arranged as follows.
The Spiral Architecture is introduced in Section
2 followed by the Multi-Scale Theory for edge
detection in Section 3. We construct an edge
detection algorithm in Section 4. A discussion
about some of the properties of the approach is
given in Section 5.

2 SPIRAL ARCHITECTURE

An image may be considered as the collection
of pixels (picture elements). These elements
correspond to the position of the photo receiving
cells of the image capturing device. In the case
of the human eye, these elements would represent
the relative position of the rods and cones on the
retina. The geometric arrangement of cones on
the primate’s retina can be described in terms of
a hexagonal grid. This leads to the consideration
of an image as the collection of hexagonal cells as
displayed in Fig. 1.

-159-



1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Figure 1: Collection of hexagonal cells.

Figure 2: A collection of seven hexagons.

Each of the individual hexagons is labelled with
a unique address as decribed in [6]. This is
achieved by describing a process that begins with
a collection of seven hexagons. Each of these seven
hexagons is labelled consecutively with addresses
0,1,2,3,4,5 and 6 as displayed in Fig. 2.
Dilate the structure so that six additional collec-
tions of seven hexagons can be placed about the
addressed hexagons, and multiply each address by
10 (see Fig. 3).

For each new collection of seven hexagons, label
each of the hexagons consecutively from the centre
address as was done for the first seven hexagons
(see Fig. 4).

The repetition of the above steps permits the col-
lection of hexagons to grow in powers of seven with
uniquely assigned addresses. It is this pattern of
growth that generates the Spiral. Furthermore,
the addresses are consecutive in base seven.

One really important feature of the Spiral arrange-
ment is its powerfully computational advantages
to computer vision [7].

As an example, our source image (Fig. 5) is coded
on 256 grey levels and represented by 288 x 384
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Figure 3: Dilated figure to fit more hexagons.

Figure 4: Collection of 72 = 49 hexagons with
labelled addresses. '

rectangular pixels. Fig. 6 is the corresponding
sample image represented by a collection of 7°
hexagonal pixels.

Here, we use a set of four rectangular pixels
to mimic a hexagonal pixel. Fig. 7 shows the
arrangement of seven hexagonal pixels with ad-
dresses 0, 1, 2, 3, 4, 5 and 6. It is obvious that
this approach preserves the important property
of hexagon distribution that each such pixel has
exactly six surrounding pixels.

3 MULTI-SCALE EDGE
DEFINITION

Computer vision is a cross-disciplinary field with
research methodologies from several scientific dis-
ciplines. Scale-space Theory was proposed by Lin-
deberg [5] to explain how certain aspects of image
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Figure 5: Source duck image in traditional space.

Figure 6: Sample image of the duck in spiral space.
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Figure 7o Distribution of 7 pixels constructed from
rectangular pixels.

information can be represented and analysed at
the earliest processing stages of a computer vision
system. This theory can be used for edge detection
as follows.

3.1 Scale-space representation

Let 7 : ®* - R be a brightness function of an
image which maps the coordinates of a pixel, (z,¥)
to a value in light intensities. The scale-space
representation L : R? x [0, +c0) — R is defined
such that the representation at ‘zero scale’ is equal
to the original signal, i.e.,

L(50) = (), e

and the representation at ‘coarser scales’ is the
convolution

L(58) =g(58) = f(),
where g : £2 x (0, +00) — R is the Gaussian kernel

1 122+y2)
) T TR
9(z,yit) = 5—e” T F

In fact, L is the solution of the isotropic diffusion
equation

BL=30L= (0 +0p)L  (2)

with the input image f taken as initial condition,
ie, Eq. 1.

Scale-space representation is used to suppress and
remove unnecessary and distorting details so that
later stage processing tasks can be simplified.
This can be explained in that the signal which
is I becomes gradually smoother as ¢ increases.
Eq. 2 gives a direct physical interpretation of
the smoothing transformation. The scale-space
representation can be understood as the result of
letting an initial heat distribution f evolve over
time ¢ in a homogeneous medium. Hence it can
be expected that fine-scale details will disappear,
and images become more diffuse when the scale
parameter ¢ increases.

3.2 Edge definition in continuous
case

A natural way to define edges from a continuous
grey-level image L : &2 x [0. + c0) — R is as
the set of points for which the gradient magnitude
assumes a maximum in the gradient direction [5].
To give a differential definition of this concept,
introduce a curvilinear coordinate system (u,v),
such that at every point the v-direction is parallel
to the gradient direction of L, and at every point
the u-direction is perpendicular to the v-direction.
Moreover, at any point P = (z,7) € R?, let &;
denote the directional derivative operator in the
gradient direction of L at P and &5 the directional
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Figure 8: Ordinary coordinates of a cluster of 7
hexagons.

derivative operator in the perpendicular direction.
Then at P the gradient magnitude is equal to 93 L,
denoted by Ly, at that point. Assuming that the
second and third order directional derivatives of L
in the v-direction are not simultaneously zero, the
condition for Py to be a gradient maximum in the
gradient direction may be stated as

Lm-, =0 and L—,‘”’jij <0. (3)
Note that

B8z = (sin §)8; — (cos B)dy,
85 = (cos8)0; + {(sin §)8,,

&

where (cos3,sin3) is the normalized gradient
direction of L at Fp. Hence, Eq. 3 is equivalent
to

-z’fu'/ = L%Lﬁﬁ
=L2L;; + 2L LyLoy + Lf,Lyy =0,
Liss = L%Lﬁﬁﬁ

= L3Lgzz + 312 L, Loz,
+3L; L3 Layy + L3 Lyyy < 0.

By reinterpreting L as the scale-space representa-
tion of a signal f, it follows that the edges in f at
any scale ¢ can be defined as the points on the zero-
crossing curves of Lys for which Lyzy is strictly
negative. Note that with the above formulation
there is no need for any explicit estimate of the
gradient direction.

3.3 Discrete approximation

Given discrete data, note that the six neigh-
bouring hexagons of the hexagon at (z,y) have
ordinary coordinates (z,y—1), (z—v/3/2,y—1/2),
(z—V3/2,y+1/2), (z,y+1), (z+V3/2,y+1/2)
and (z + v3/2,y - 1/2) (Fig. 8).

The derivatives operators can then be obtained in
finite difference form:

Lo(z,y;t) = —\}—E-[L(z +V3/2,y +1/2;1)
+L(z + V3/2,y — 1/2;1)]
- —\%[L(a: ~V3/2,y+1/2;1)
+L(z — v3/2,y - 1/2;1)]
and
Ly(z,y;t) = %[L(z +V3/2,y+1/2;1)

+L(z = V3/2,y + 1/2;t)
+L(z,y + 1;t)]

-~ %[L(z +V3/2,y - 1/2;1)

+L(z —V3/2,y — 1/2;1)
+L(z,y — 1;1)].

The second and third order derivatives can be
obtained respectively from the first and second
order derivatives in the same way.

4 EDGE DETECTION
ALGORITHM

An edge map is defined as a binary image repre-
sented by 0’s and 1’s with a resolution parameter
t, denoted by E(z,y;t). E(z,y;t) = 1 if the pixel
(z,y) is an edge point, otherwise E(z,y;t) = 0.
An edge detection algorithm can now be con-
structed in this section.

1. Edge map of sample image. Edge map
of the initial sample image (Fig. 6) plays an
important role in our research. One will find
that the edge map at each resolution level is
a subset of this initial edge map. This map
consists of edge points defined in the previous
section with the parameter ¢t = 0. Fig. 9is the
map.

2. Edge map at coarse level. Using the
Gaussain filter introduced in the previous
section, the initial sample image is blurred
with a pre-determined parameter value. The
blurred image has lower resolution level than
the initial image. This process makes the
object structures blurred, the edge shape
changed, and the noise smoothed. The edge
map of this blurred image is then formed in
the way stated in the previous step. Fig. 10
is the blurred image of Fig. 6 when t = 5 and
Fig. 11 is the corresponding edge image.

-162-



1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Figure 9: Edge image of Fig. 6. Figure 12: Edge map from Fig. 9 and Fig. 11.

affected by the Gaussian operator. This step
compares the two edge maps to obtain a
new edge map. The new map consists of
those initial edge points of which at least
one neighbouring hexagonal pixel is an edge
point of the blurred image. Fig. 12 shows the
new edge map obtained from the initial map
(Fig. 9) and the blurred map (Fig. 11).

4. Repeating and halting. Compare the new
edge map with the old edge map (which is the
edge map of the initial image at this stage).
If they are not much different, then halt.
Otherwise, construct a new sample image
from the initial sample image by copying only
those pixels of which each is a neighbouring
pixel of an edge point of the new edge map.
Then, create a coarse level edge map of this
new sample image as shown in Step 2. Note
that the parameter ¢ is chosen to be slightly
smaller than previous one. Repeat Step 3, a
newer edge map is obtained. Fig. 13 is the
new sample image after first recurrence. We
set t =4, t = 3 and ¢t = 2 for the 2nd, 3rd
and 4th recurrences respectively. TABLE 1
shows the numbers of rectangular pixels on
the edge maps of our sample image after first
four recurrences. Fig. 14, Fig. 15 and Fig. 16
are the edge maps of the sample image after
2nd, 3rd and 4th recurrences respectively.

Figure 10: Blurred image of Fig. 6 when ¢ = 5.

Figure 11: Edge image of Fig. 10. 5. Final edge map. The final edge map is

constructed by including the points on the

3. New edge map of the initial image. An latest edge map and those edge points of

edge map obtained by a blurring scale has blurred image after 1st recurrence, of which

less noise than the edge map of the initial each is a neighbourhood of one of the latest

image. However, the initial edge map has edge points. Fig. 17 is the final edge map of
more precise edge locations because it is not the sample image.
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Figure 13: Sample image after 1st recurrence

Table 1: No. of rectangular pixels on the edge
after each recurrence and difference between old
and new edge map.

No. of pixels Difference
on the edge
Original
image 14342
After 1st
recurrence 12486 1856
After 2nd
recurrence 11808 678
After 3rd
recurrence 11611 197
After 4th
recurrence 11455 166
5 DISCUSSION
1. In the edge detection algorithm presented

in the previous section, we use the blurring
method to identify essential structures in an
image. Blurring itself is not disirable, but it
is used as a mean to filter away noise and
unnecessary detail.

. In Step 4 of the algorithm in the previ-

ous section, Gaussian operator only acts on
the edge points obtained at the previous
recurrence and their neighbouring hexagonal
pixels. This greatly increases the detection
speed.

The positions of edge points on the final
edge map will be at most one hexagonal
pixel away from the original edge map. This

Figure 15: Edge map after 3rd recurrence

Figure 16: Edge map after 4th recurrence

guarantees the accurancy of the edge map
being detected. "
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Figure 17: Final edge map of Fig. 6

4. The number of pixels decreases as the number
of recurrences increases. This is because after
each recurrence, some noise is removed.

5. The edge map detected can be improved when
a better ¢ value is chosen.

References

[1] F. Bergholm, “Edge facusing”, IEEE Transac-
tions on Pattern Analysis and Machine Intel-
ligence, Vol. PAMI-9, No.6, pp.726-741, 1987.

J. F. Canny, “A computational approach to
edge detection”, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol.
PAMI-8, pp.679-698, 1986.

(2l

X. Zhang and H. Deng, “Distributed image
edge detection methods and performance”,
Proc. 6th IEEE Symposium on Parallel and
Distributed Processing, IEEE CS Press, Octo-
ber 1994.

X. He and T. Hintz, “Application of Spi-
ral Architecture to edge detection for object
recognition”, Proc. Pan-Sydney Workshop on
Visual Information Processing, University of
Sydney, Australia, pp.90-95, November 1996.

T. Lindeberg, Scape-Space Theory in Com-
puter Vision, Kluwer Academic Publishers,
London, 1994.

P. Sheridan, Sprial Architecture for Machine
Vision, Ph.D Thesis, University of Technology,
Sydney, Australia, 1996.

[6]

1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

(7] P. Sheridan, T. Hintz and D. Alexander,

-165-

“Geometric invariance on a hexagonal grid”,
submitted to Jounal of Image and Vision
Computing.



	
	159
	160
	161
	162
	163
	164
	165


