1998 Intemational Computer Symposium -
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Towards Global Computing for Image Processing using Java

Chungnan Lee, Shibang Yai, MinFong Horng and Chuanwen Chiang

Institute of Computer and Information Engineering
National Sun Yat-Sen University

’ Kaohsiung, Taiwan, ROC
Email:cnlee @mail.nsysu.edu.tw, cwen @j

Abstract

We discuss the issues of global computing and design a
prototype system for group collaboration and distributed
image processing in this paper. The proposed system
provides an infrastructure to allow users to use the system
resources, to upload image processing Java classes to our
system, and to do volunteer computation. In order to
support various input, output formats of image processing,
the general I/O format is designed and is wrapped into
objects. To reuse the existing parallel computing software,
we also incorporate the Java applet-based computing with
Java enabled PVM software to provide efficient reliable
computing resources.

Keyword: Global computing, Java, Distributed image
processing, PVM

1. Introduction

In addition to provide a vast of information, the Web can
potentially provide a gigantic distributed computing power
to meet the requirements of many scientific applications.
The topics of distributed computing and group
collaboration in Java [1] also become increasingly popular
in the last few years, due to its cross platform
characteristic. Examples of such systems are distributed
applet-based massively parallel processor (DAMPP) (2],
Javelin [3], IceT [4], Bayanihan [5], Tango [6], PageSpace
[7], etc. The DAMPP system collects massive computing
power by shipping a work applet to the client that hits the
WWW server. The potential power for such system is
unlimited. But it only asks service from the connected
clients, purely relies on others machine power, and lacks
ability to provide computing service. The Javelin system is
also a Java-based distributed computing environment. It is
similar to DAMPP in collecting computing power, but
uses a broker to allow clients to request computing
resources by submitting an applet or to provide computing
power when it is idle. The IceT system, based on the
traditional distributed computing paradigms, provides
PVM-like distributed computing environment with the
Java language. It incorporates a chatting tool into the
system to allow the collaborative ability. Bayanihan
discusses the idea of Web-based volunteer computing,
which allows users to cooperate in solving a large parallel
problem using standard Web browsers to volunteer their

ala.cie.nsysu.edu.tw

computers’ processing power. In this way, the more
powerful machine is, the more jobs it can finish. Also, if
any work is left undone by a slow machine, or the machine
fails, it eventually reassigns to other machine. The Tango
system combines a Java-based collaborative environment
with an executive providing general message filters and an
event driven simulator together. Its applications include
health care, education, and scientific visualization.
PageSpace is targeted at supporting networked
applications that require interaction among distributed
software components and active processing. It introduces a
notion of active Web pages that are capable of executing
code.

Though the development of network computing in Java is
tremendously increasing, there are still many questions to
be overcome when using Java for science computation.
For example, most systems are developed for some simple
applications; what is the performance of Java? Can Java
incorporate with the existing parallel computing software
for the sake.of reducing development cost? In the advent
of Web and Java, in order to make “write once and run
everywhere” and “the ideal of global virtual computing
machine” come true, we discuss the issues of global
computing and the design of a prototype system for global
collaborative-based distributed image processing on the
Web. The proposed system provides an infrastructure to
allow users-to upload image processing Java classes, to do
volunteer computation, to use system resources, to interact
and share information with each other through the
collaboration tool. In contrast to Javelin, which needs both
the upload applet and the Web page embedded in the
applet to guide the clients to the uploading Web pages, our
system allows the client only to upload Java classes and
the server can dynamically distribute the Java classes to
the clients. To reuse the existing parallel computing
software we also integrate the Java applet-based
computing with Java enabled PVM ([8] program to
enhance the performance of the system.

The remainder of this paper is organized as follows. In
Section 2 we present the system design concept. Section 3
gives the system overview. Section 4 presents an example
of hybrid computing. Conclusion is given in Section 5.

2. System Design Concepts

In this section we describe the basic design concepts, such
as image computing services, general image format,

-178-

volunteer computation, faults tolerance and security. We
also discuss how to populate image processing Java
classes, how to distribute components and tasks, and how
to wrap objects.

2.1. Image Computing Services

One of the main goals of the infrastructure is to provide
computing services for clients. In the proposed system,
clients can connect to the Web server and request service
by uploading image data and the related information to the
server, then the server distributes the task and the related
work classes to clients in the computing pool. Figure 1
shows the process of computing service. The infrastructure
accepts the service request from clients and put the
requests into the task distributor. For each client the server
spawns a thread to handle its request. The task distributor
distributes tasks of different clients to available work hosts
and informs the data manager to collect the results. Once
the computing is done and results are completely collected,
the data manager sends the results back the clients through
the socket connection. The parallel Java computing
represents for the resources that are composed of PCs and
workstations and connected by Java socket programs.

In addition to the computing service, the system can also
provide the image processing applet to allow the clients to
run the image processing on the local machine. This
function is feasible using the new technology of Java
JDKI1.1.6 version and HotJava browser, which allows
users to release their privilege of file access. Then the
applet can read the data from users’ local file system.

2.2. Volunteer Computation

When users are browsing our web page, they can become
volunteer computing resources. Once other users make
requests, our system will distribute these computing
Classes of Java not only to our local computing resources,
but also to those volunteer users’ computing resources. In
this system, we also use dynamic load balancing strategy
to speed up the performarice. By this method, we can
augment the system’s computing resources and capacities,
and let the network users share their resources with each
other. Figure 2 illustrates the concepts.

2.3. General Image Format

In order to support as many types of image processing
functions as possible. We define a general data format for
image processing I/O as illustrated in Figure 3. The
template is allowed for the neighborhood operation or
convolution, etc. The information for the template includes
its height and width and the data type can be integer, float
or Boolean. The general image format supports users’
defined data format, which is processed as strings in the
infrastructure and stored as files. Then the system just
prints out the strings of the descriptions without further
processing. The users need to interpret the data by
themselves and must be responsible for the error handling

1998 Internationat Computer Symposium _
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

for their own uploaded classes, the system just pipelines
the error strings to the display.

2.4. Populating Image Processing Java Class

As described above, the infrastructure allows users to
contribute his/her own Java version of image processing
classes. So far, the image processing function in the
system is quite primitive. However, as Java gains
popularity, we can expect more and more image
processing algorithms to be implemented in Java. The
purposes of the proposed format are to allow users to
conveniently use the image processing functions and to
provide an easy way for users to prepare their image
processing class that will be uploaded to the infrastructure.
It also allows the infrastructure to invoke the uploaded
components (Java Class) dynamically.

2.5. Wrapped Objects

Based on the general data format defined above, we can
wrap these formats into classes as illustrated in Figure 4.
The Java classes uploaded to the infrastructure must
inherit these classes. First, the user imports the class of
java.util.vector, Vector is a dynamic array, which can grow
or shrink as needed, so we use it to store image data in the
form of integer, float, or boolean in the vector. Three basic
data structures imageData, templateData and featureData
are defined. The “imageData” describes the I/O of image
data and related information. The “templateData” contains
the neighborhood operator and related information. The
“featureData” contains the users’ defined /O features of
image processing. After inheriting the classes defined
above, the user can use the protocol as defined in Figure 5
to implement his/her image processing function in class. In
the protocol, we provide several methods including
processing, getResultlmage, getResultFeature and
getErrorMSG methods. The method of “processing™ has
three inputs that compose of “imageData”, “templateData”
and “featureData”. The users’ Java code for image
processing is inserted in the the place of “processing”
function. The slave programs can get results by invoking
these methods of getResultimage, getResultFeature and
getErrorMSG.

2.6. Distributing Components and Tasks

In contrast to other systems as mentioned above, the
infrastructure uses a central control mechanism to manage
all clients’ uploaded classes. The client only needs to
upload the class following the protocol provided above.
This gives the server greater flexibility in dispatching the
class and scheduling the workload. The server can
dynamically distribute the Java classes to the computing
hosts. The mechanism can be fulfilled through the Java
Class’s method “forName” and Java Object’s method
“newlnstance” to invoke the components of image
processing. A sample program is listed in Figure 6. It
illustrates how a slave in the client sides to retrieve the
required applet. It also provides Java Class’s method

-179-

1998 International Computer Symposium -
Workshop on image Processing and Charact_er Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

“getMethod” to call these methods of processing,
getResultimage, getResultFeature and getErrorMSG.
Furthermore, the central control mechanism allows the
system to keep tracking all the processes and maintain the
consistency of returned data.

2.7. Load Balancing and Image Partitioning

The global computing infrastructure consists of local
computing pool and the Web computing hosts. The further
provides a reliable computing resource, the latter
potentially provides a massive computing resource.
Generally, the infrastructure consists of a cluster of
heterogeneous workstations. In practice, even the
configurations of the workstations are the same, their loads
may not be the same. Hence, it is important to distribute
the workload dynamically according to the ability of
workstations, so that the computational efficiency can be
improved.

We utilize a dynamic load-balancing strategy to prevent
machines from idleness. At first, we partition a job into
many tasks and distribute tasks to every host. For host who
has finished one task already, will get another new task
from the server. The remained tasks are distributed by the
same way. Of course, to further improve the efficiency by
reducing the communication overhead, the system can
dispatch a number of tasks to the hosts based on the actual
load behavior of the workstation, which is estimated from
the execution time of the previous task.

The partitioning of images is dependent on the numbers of
image data and the number of computing hosts. Let Ni be
the number of image data and Nw be the number of
computing machines. If Ni is larger than Nw, our system
will not partition these images. The system uses each
image frame as a task unit and the load distributing
method mentioned in the above paragraph is used to
dispatch the tasks. When Ni is less than Nw, the system
will divide these images into sub-images. The number of
sub-images is equal to the portion of integer of
machine_numberfimage_number. Of course, the sub-
images must have the overlap region, which is determined
by the template data, or the users’ provided information. If
the number of sub-images is Nsi, and the constraint of Nsi
Is 2<=Nsi<=((image_height/template_height)/2). Then, the
sub-image is used as one task unit and the distribution
method is the same as previous method. In other words,
the distribution of image processing should prevent from
idle machines and make powerful machines responsible
for more tasks during execution.

2.8. Faults Tolerance and Security

The faults may come from the computing errors, the host
disconnections and the host failures. During the
components (classes) are distributed to computing hosts, if
computing errors, such as the data formats mismatched or
exceptions. etc., happen, the system will use the error_msg
mechanisin in Figure 3 to pipeline the error messages

generated by classes to the display screen. If the class
executes correctly, the slaves get “NULL” message and
return the results to the server. If some exceptions are
produced, the system will get the string of error messages.

Due to the central control mechanism, once a computing
host is disconnected from the computing pool and the
results of the tasks cannot be returned, the server will
reassign the tasks to other computing hosts. At the same
time, the disconnected machines are set to the status of
fault and are eliminated from the computing pool.

The security of server is an important issue and attracts
great concern. Java itself is a language of strongly type
and safety, and it has no pointer operation. Besides, the
JVM (Java Virtual Machine) has the ability of garbage-
collect memory to prevent memory leakage. In addition to
Java internal security, we will test the uploaded classes in
a sandbox before moved to the public area to avoid the
destructive components slipping into our system such as
programs that have infinite loop or always allocate new
memory, etc.

3. System Overview

3.1. Background

Just like other applications that need huge of computation
resources to process jobs, the parallelism of image
processing has received great attention over the years. Due
to the growing development of the Web technology, it is
very essential to work out a proper Web-based working
infrastructure that can support both distributed computing
and group collaboration. Thus, we design the system to
allow users to upload image processing Java classes by
following a simple protocol, to allow the server to
dynamically distribute the Java classes to the clients, and
support collaborative work.

Generally, there are two ways in using Java for global
computing: one is Java applet-based distributed computing;
the other is Java enabled distributed computing. Java
applet can be downloaded, when the Web page is
requested. The potential of computing power could be
huge, because machines connected to the Web server can
be regarded as its processors in the virtual distributed
computing environment. Theoretically, the distributed Java
applet-based massively parallel processing can be possible,
but it can never become a daily-use for the science
computation for a couple of reasons. First, the network
bandwidth can cause problems. For example, the image
processing that needs to operate on a huge number of
image data will cause the network traffic jam. Second, the
computing power mainly relies on the connection of
someone’s machine, it may not be there when you need it.
Third, Java applet is not allowed to use the I/O on the
client machine that restricts the flexibility of using applets.
Some other disadvantages of using Java applet-based
distributed computing are that its’ execution efficiency is
still lower than other languages such as C/C++.

-180-

Furthermore, Java applet control platform is not as flexible
as those existing parallel computing platforms, such as
PVM.

Two mechanisms, integrated computing mechanism and
hybrid computing mechanism, are developed to enhance
the system performance and to avoid the disadvantages
described above. We will describe these mechanisms
hereafter.

3.2. Integrated Computing Mechanism

In this subsection, we describe the integrated mechanism
to allow users to make requests of image processing, to
offer components and to join into the computing pool.
Figure 7 shows the flowchart of the integrated computing
mechanisms. We describe the flowchart as follows:

i. The users can upload image data and related
information to our server and choose a processing
function. These requests are added to the “Request
Queue” of the “Task Distributor”. In the request queue,
each processing function points to the related tasks.

ii. The resources manager must keep the status of each
computing resources such as “busy”, “idle” or “fault”.
Hence, the task distributor can be aware of how many
computing resources are available, so that it can get
the TP address of available machines from the
resources rnanager.

iii. The task distributor asks the class manager about the
classes of the users’ requests and related information.

iv. Then the task distributor distributes the image data,
related information and classes (components) to the
computing resources as illustrated in Figure 6.

v. After the tasks are processed, the computing resources
immediately return the results to the server. The data
manager rearranges these results based on the users’
updated requests.

V1. Finally. the data manager returns these results to the
corresponding users or reports the related error
messages.

3.3. Hybrid Computing Mechanism

In this subsection, we discuss how to integrate the Java
distributed computing and PYM. This is an example of the
integration of both Java computing and Java enabled PVM
computing. The PVM’s master program is written in
C/C++. We first wrap the PVM’s master into Java’s
libraries that can be called by the Java’s native method.
Then the system can call the image processing functions
written in PVM. Assume that we have the same functions
written in both Java and PVM programs. Then the system
can utilize both of the computing resources. The
mechanism of the hybrid computing is shown in Figure 8.
Because the Java applet can’t directly communicate with
C/C++ even by the native method, we design tags for both
PVM and Java distributed computing to keep trace of the
progress of their tasks. If the progress of the tasks is
overlapped such as the PYM’s tag over the PIC’s tag, or
vice versa. then the system knows that all the tasks are

1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

done. Eventually, the system assembles the results and
sends them back to the user.

3.4. User Interface

We briefly introduce the user interface of the proposed
system in this subsection. Figure 9 shows the user
interface of image processing services. The users can
browse their images and fill related information. After
choosing a processing function, the user can submit their
requests to our system. If the processing function needs the
template or other feature, the interface will pop up the
“Browse Template” or “Browse Feature” options.
Otherwise the user interface just shows the “Browse
Images” option.

Figure 10 shows the user interface for a user to upload
their Java classes. The users can browse their components
file (Java classes) and fill in the related information such
as the component name, image type, etc. If the users'
applet needs other feature, they will upload the feature
description file. After filling these options, the users can
submit their processing components to our system.

When a user would like to contribute his computing
resource to the computing pool, he can push the "Offer
Computing Resource” button in Figure 11 to commit the
volunteer computation.

3.5. Collaboration Support

To support the group collaboration functions, such as
multi-users interactive discussion, design, information
sharing, the system discussed above is embedded into a
collaborative infrastructure [9]. The infrastructure provides
collaborative tools to handle the local and remote inputs
and outputs in a form of centralized model. The tools
include chatting box, whiteboard, and video conferencing.
The tool is developed in a modular way to facilitate future
tools and improvement. The infrastructure provides
flexible collaboration control methods to initiate and
terminate collaborative sessions, to join or leave ongoing
sessions, and to invite a new participant in a collaborative
environment. Figure 12 shows the infrastructure that
consists of clients, collaborative server, Web server,
distributed computing platform, and applications. Each
component is realized as the cooperation of some agents.
A user first accesses the environment from any WWW
browser. Then a Java byte-code encapsulating the interface
in shared workspace agent is shipped to the client site.
From the front-end interface, the user can input parameters
for collaborative environment, set up peripheral devices,
and activate the distributed image processing application,
and submit Java classes and data. The user interface for
the group collaboration is shown in Figure 13.

4. Hybrid Computing: A Corner Matching
Example

In this section, we evaluate the performance of Java and

-181-

1998 Intemmational Computer Symposium -
Workshop on Image Processing and Character Recognition
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

PVM distributed computing in the infrastructure. We use a
corner matching which is used in image mosaic and
implemented in both C version of PVM and Java applet.
The execution of C version in PVM environment is
invoked as a native method in Java. That means we wrap
the C version of corner matching. Therefore we can
integrate the computing resources of parallel Java
computing and PVM.

Table 1 lists the execution time for corner matching
written in both Java and C versions and running under
different platforms. Using Netscape 4.02 running on
Pentium 200MMX with 64MB RAM, the performance of
Java is similar to the performance of C/C++ program
running on Sun Ultra Sparc | without optimization.
However, optimizing the performance of C/C++ program
(using optimization option of C/C++, -O) is about 9.6
times faster than that of Java. Unfortunately, to run Java on
Sun ultra Sparc 1 with either Netscape 3.03 or Netscape
4.0b3 which is no JIT (Just In Time) compiler is very
inefficiency.

Table 2 lists the sending time of two 512 by 512 size
image files and two corner points files and the execution
time for different platforms. As one can see, the
communication overhead becomes a problem for Java
computing.

Table 3 lists the execution time on one PC, paralle] Java
computing, PVM, and hybrid distributed computing,
respectively. We define the relative computing power of
Pentium 133 with 32MB RAM as one and compare its
execution time with the rest of machines. With four PCs,
the speedup for parallel Java computing is 2.413. In the
PVM environment, the image data server is mounted as a
network file server by the machines in the cluster. Hence,
the communication time can be neglected. Under the
circumstances, the speedup for four Ultra Spac I's on PVM
is 5.117. With four PCs on parallel Java computing and
four Ultra Spac 1s on PVM the speedup can be further
improved but not that much.

5. Conclusions

We have discussed the issues to develop a global
computing system for distributed image processing. We
have presented a prototype, which allows users to upioad
the image data and related information to the server for
image processing on WWW. The system also utilizes a
load balancing strategy to extend the ability of
computation in the global computing environment. We
integrate the existing Java applet-based computing with
Java enabled PVM software to provide more efficient
reliable computing resources and to reduce the
development cost. Experimental results show that the
execution speed of Java applet is still slower than that of C
program.

6. References

1 James Gosling, Bill Joy and Guy Steele, The Java
Language Specification, Addison-Wesley, Reading,
MA, 1996. :

2 L. Vanhelsuwe: “Create your own supercomputer

with Java”, http://www.javaworld.com/javaworld/jw-
01-1997/jw-01-dampp.html.

3 P. Cappello, B. Christiansen, M.Ionescu, M. O. Neary,

K. Schauser, and D. Wu: “Javalin: Internet-Based
parallel Computing Using Java”,
Concurrency:Practice and Experience, Vol. 9, No.
11,pp.1139-1160, Nov. 1997.

4 P A Gray Vaidy S. Sunderam: “IceT: Distributed

Computing and Java” , Concurrency:Practice and
Experience, Vol. 9, No. 11,pp.1161-1167, Nov. 1997.

5 L. F G. Sarmenta: “Bayanihan: Web-Based
Volunteer Computing Using Java”,
http://www.cag.lcs.mit.edu/bayanihan.

6 L. Beca, et al. “Tango ~ a Collaborative Environment
for the World Wide Web,” in
http://trurl.npac.syr.edu/tango/papers/tangowp.html.

7 P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A.
Knoche, “Coordinating Multiagent Applications on
the WWW: A Reference Architecture,” IEEE Trans.
Software Engineering, vol. 24, no. 5, pp. 362-375,
May. 1998.

8 G. A Geist and V. S. Sundream, “The PVM system:
Supercomputer level concurrent computation on a
heterogeneous network of workstations,” Proceeding
of the Sixth Distributed Memory Computing
Conference, IEEE, April 1991, pp. 258-261.

9 Tain-chi Lu, Chung-Wen Chiang, Chungnan Lee, and
Tony-Yee Lee, “A Web-Based Distributed and
Collaborative 3D Animation Environment,” ACM
1997 Workshop on Java for High-Performance
Network Computing, Las Vegas, 1997.

1. Request services 5. Notify results

|
']

Task E Data
Distributor = Manager

Server
3. Return
results

2. Distribute tasks

~

Computing Pool

Figure 1. The computing service mechanisms used by the
system. The PJC is parallel Java computing.

-182-

1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Class className

{

1. Qlter compuning 2 Distabute * g"":"h"" sesults
33

imageData outlmage = null;
s "‘""l’ results featureData outFeature = null;

3. Request
services

rEMUrCes Classes \ 1 .
> . =~ ‘ . String errorMsg = null; .

osoute® | |Manaper | | Task Disribwor | (8 s blic void sing(imageData image templateData

: Manager f Manager ’ Manager publIC vOId processing g ge, p

template , featureData feature)

4. Disinbute tasks 3. Return results {
W,
Computing Pool /1 add user’s code for image processing application
// here.
B AR e TR s R /)
Figure 2. The flow diagram shows how the Web users | He-eereeeenn.

volunteer to offer their computing resources and how the } o
Web users request the computing service. public imageData getResultlmage(){
return outlmage;

}

public featureData getResultFeature(){
return outFeature;

—image_data—»| [image_data—» a1 - pixel’s valucs.
—image_type —| [—image_type— type: int. float. boolean.
—image_num —» F—image_Aum-» num: the numier of imases
—image_band -» —image_band-» bhand : muliipic color channels.

—image_row —» ?‘:\\,:,‘. —image_row—» row T height. }
—image_column SR t~image_column» column: widih, . -
T Class template : ditterent types of pUth Stnng gC[EITOI'MSG(){
—~template_dala » —teature_set—» neighbourhood return EXTOI'MSg;
—template_type» —set_description»] h°pm“"“:f-f }
— . cature : the amay of feature.
temlelr:tpla(zl,row % L—error msq—s YeScription : describe the teatre. }
platscalumn » -msg cmor_msg ¢ the messages of -
—featura_set— running exor. Figure 5. The methods of components.

—set_description-»

Figure 3. The general data format for the input and output -
of an uploaded classes. String strClassName;// user's class name
// input,output image
: - p i ge u Data;,
import java.util, Vector: Irr}ageData inImageData,outImageData;
- // input template
class imageData -
{ TemplateData inTemplateData;
// input,output feature
FeatureData inFeatureData,outFeatureData;
// error message
String errorMsg;

/' pixel's values

public Vector image_data;
/1 type: "int", "float”, "boolean”

public String image_type;

/1 multiple color channels "1", "2", "3"
public String image_band;
public int image_row;

Class dynamicClass = Class.forName(strClassName);
J/ heicht Object objectClass = dynamicClass.newlnstance():

public int image._column; // width Class[] paramType = new Class[] {imageData.class,
| bl ’ templateData.class, FeatureData.class };
// call processing function to process image
class templateDatz : p > P o
(e Method mainMethod =

dynamicClass.getMethod(“processing”, paramType);
Object[] methodParam = new Object[]{inImageData,

inTemplateData, inFeatureData};
MainMethod.invoke(objectClass, methodParam);

/1 different types of neighbourhood operations
public Vector template_data;

/f type: "int", "float”, "boolean”

public String template_type;

public int template_row; // template height

public int template_column; /f template width Figure 6. Slaves (Complfting resources) invoke
) components and their related methods.

class featureData
{ .
public String feature_set; // the string of feature

public String set_description; // describe the feature

}

Figure 4. The 1/0 format of the component are wrapped
into objects.

-183-

1998 International Computer Symposium -
Workshop on image Processing and _Charactgr Recognition
December 17-19, 1998, N.CK.U.. Tainan, Taiwan, R.0.C.

— —_ -

— « Hotleva{tm): Autopeneeated ITML
— Externai Computing ™~ B

s

| Roguost

Queue Tisks
| [Funt = imer aen
i Funl —|+ "
L — [T bl o | Class Manager |
T : Usfrz T = | [Class! Into i wm‘wmm:mmmwwmww e » — ”
A i | | Clias2 Info Figure 9. Illustration of the user interface, when the system
provides the services to the Web client.

k Reguesi Service
\

Upload Classes

Figure 7. The flowchart of the integrated computing
mechanism.

PW Tag

L. fpdate
/ :]
/' : Check Computing

. Proptess
i | i 4| i
» | Tash Caller bNaiwe Mool
| Y Jose

Chok

Compul ing

H s hutar Envi roment
pic | .
(Paraltel | e

i Java [/
i Computing) N™—

! Data
/ Manapcr

\ / HXE Server 4 XL
E \/ v," -> Cliemis

% . i retarn result

Web Server L (ot Applet

>
Fi
gure 8. Hybrid computing by using the resources of PIC
and PVM.,

= = : SS e
Figure 11. The user interface of offering computing
resource.

-184-

1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Disterduted
Compating Plattorss

(oo

L3
'
|
'

Applicauves

Caurdination
Comrother

1 Shures
i Dua
H Manager

M
 —'
Sesann
Canualber

[FIEpEpp———

re—y
[fe—

Figure 12. Block diagram of the collaborative
infrastructure.

Figure 13. The user interface for the collaborative
infrastructure.

Table |. The execution time for corner matching module written in Java and C version and running under different
platforms. The unit is second.

Time| C version with | C version without | Java applet under | Java applet under | Java applet under
Machine optimization optimization Netscape 3.03 Netscape 4.0b3 Netscape 4.02
tium 200 M .
e D M 0.8 2.86 9.280 Not available 6.860
Ultra Sparc 1 .
SunOS 5.51 0.713 5.2004 58.93 84.183 Not available

Table 2. The sending time of two 512 by 512 size image files and two corner points files and the execution time for Java
computing on different platforms. The unit is in second.

Machine| Pentium 133, Pentium 120, Pentium 166, Pentium 200, gt;%sspg“;l
Time 39MB RAM 43MB RAM 32MB RAM 64MB RAM :
Netscap 3.03
Startup SZ?CSE“d‘“g 5.550 5220 4.340 2.870 11.672
Execution time 10.270 11.100 10.220 ’ 6.860 58.939

Table 3. The execution time for matching 28 pairs of images on one PC, Java parallel computing, PVM, and our distributed
computing platform. The unit is in second. The linear time indicates the idea situation. The parallel efficiency is the ratio of
achievement and the unit is in percentage (%).

PVM envi ' PVM and Java
Environment{ - One Pentium 133 Four PCs with relative | using f envlljrl(:nmsen environment with
32MB RAM with > With refative) using four Litra Sparc | ¢\ peg and four Ultra
) . . computing power as Is with relative . .
Time relative computing : Sparc 1s with relative
4.428 computing power as .
power as one 6.693 computing power as
’ 11.121
Execution time 291.56 120.824 56.983 42775
Linear time 65.845 43.562 26.217
Parallel efficiency 54.50% 76.45% 61.29%

-185-

	
	178
	179
	180
	181
	182
	183
	184
	185

