1998 International Computer Symposium
Workshop on Cryptology and Information Security

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O0.C.

SECURITY ARCHITECTURE OF DCOM AND ITS
INTEGRATION WITH RBAC

Gail-Joon Ahn and Ravi Sandhu
Information and Software Engineering Department, MS 4A4
George Mason University
Fairfax, VA 22030, U.S.A.
{gahn,sandhu}Q@isse.gmu.edu

ABSTRACT

The explosive growth of the Web, the increasing pop-
ularity of PCs and the advances in high-speed net-
work access have brought distributed computing into
the mainstream. To simplify network programming and
to realize component-based software architecture, dis-
tributed object models have emerged as standards. One
of those models is DCOM (Distributed Component Ob-
ject Model) which is a protocol that enables software
components to communicate directly over a network in
a reliable, and efficient manner. In this paper, we inves-
tigate an aspect of DCOM concerning software archi-
tecture and security mechanism. Also, we describe the
concept of role-based access control (RBAC) which be-
gan with multi-user and multi-application on-line sys-
tems pioneered in the 1970s. And we investigate how
we can enforce the role-based access control as a secu-
rity provider within DCOM, specially in access security
policy.

1 INTRODUCTION

Distributed applications introduce new design and de-
ployment issues. For this added complexity to be
worthwhile, there has to be a significant payback.
Some applications are inherently distributed. Multiuser
games and teleconferencing applications are examples
of such applications. For these, the benefits of a ro-
bust infrastructure for distributed computing are obvi-
ous. Many other applications are also distributed, in
the sense that they have at least two components run-
ning on different machines. But because these applica-
tions were not designed to be distributed, they are lim-
ited in scalability and ease of deployment. Any kind of
workflow or groupware application, most client/server
applications, and even some desktop productivity ap-
plications essentially control the way their users com-

municate and cooperate. Viewing of these applications
as distributed applications and running the right com-
ponents in the right places benefits the user and opti-
mizes the use of network and computer resources. The
application designed with distribution in mind can ac-
commodate different clients with different capabilities
by running components on the client side when possible
and running them on the server side when necessary.

DCOM is an extension of the Component Object
Model (COM). COM defines how components and their
clients interact. This interaction is defined such that the
client and the component can connect without the need
of any intermediary system component. The client calls
methods in the component without any overhead what-
soever. This study will look at the DCOM architecture
and DCOM'’s security mechanism. DCOM provides an
extremely efficient default security mechanism that lets
developers write distributed applications without hav-
ing to worry about security at all. Any security provider
supported by windows NT can be used with DCOM’s
security mechanism.

The concept of role-based access control (RBAC) be-
gan with multi-user and multi-application on-line sys-
tems pioneered in the 1970s. The central notion of
RBAC is that permissions are associated with roles,
and users are assigned to appropriate roles. This simpli-
fies management of permissions. Roles are created for
the various job functions in an organization and users
are assigned roles based on their responsibilities and
qualifications. Users can be easily reassigned from one
role to another. Role can be granted new permissions
as new applications and systems are incorporated, and
permissions can be revoked from roles as needed. Sev-
eral researchers have showed that RBAC can be accom-
modated in current systems, such as Oracle, Unix.

But DCOM does not have role concept but rather
than groups. With mapping and analysis, it is possible
for RBAC to be applied to DCOM security mechanism

71

1998 Intermational Computer Symposium x
Workshop on Cryptology and Information Security '
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

with RBAC’s advantages, which can satisfy DCOM’s
access security policy and achieve ease of administra-
tion.

This paper begins with the description of the DCOM
model in section 2. In section 3, we discuss the RBAC
model following by section 4 which includes integration
between RBAC model and DCOM. Section 5 concludes
the paper.

2 DISTRIBUTED COMPONENT
OBJECT MODEL

In programming and engineering disciplines, a compo-
nent is an identifiable part of a larger program or con-
struction. Usually, a component provides a particular
function or group of related functions. In programming
design, a system is divided into components that in turn
are made up of modules. In object-oriented program-
ming and distributed object technology, a component
is a reusable program building block that can be com-
bined with other components in the same or other com-
puters in a distributed network to form an application.
Examples of a component include: a single button in
a graphical user interface, a small interest calculator,
an interface to a database manager. Components can
be deployed on different servers in a network and com-
municate with each other for needed services [4]. A
component runs within a context called a container.
Examples of containers include pages on a Web site,
Web browsers, and word processors.

COM (Component Object Model) is Microsoft’s
framework for developing and supporting program com-
ponent objects. The Component Object Model pro-
vides a set of interfaces allowing clients and servers
to communicate within the same computer (running a
Windows 95 or NT system). It is aimed at providing
similar capabilities to those defined in CORBA (Com-
mon Object Request Broker Architecture), the frame-
work for the interoperation of distributed objects in a
network. Whereas OLE provides services for the com-
pound document that users see on their display, CoOM
provides the underlying services of interface negotia-
tion, life cycle management (determining when an ob-
ject can be removed from a system), licensing, and event
services (putting one object into service as the result of
an event that has happened to another object).

DCOM (Distributed Component Object Model) is a
protocol that enables software components to commu-
nicate directly over a network in a reliable, and efficient
manner. At the same time it is a program interface in
which client program objects can request services from
server program objects on other computers in a net-

Clii}’ grt;’;yct] [Stub o—Emponﬂ
Security | DCE Security | DCE

CoCreate Provider | RPC Provider | RPC
Protocol Stack Protocol Stack

CoCreateinstance

DCOM
Network
Protocol

Figure 1: DCOM Architecture

work.

For example, one can create a page for a Web site
that contains a script or program that can be processed
(before being sent to a requesting user) not on the Web
site server but on another, more specialized server in the
network. Using DCOM interfaces, the Web server site
program (now acting as a client object) can forward a
Remote Procedure Call (RPC) to the specialized server
object, which provides the necessary processing and re-
turns the result to the Web server site. This result is
passed on to the Web page viewer.

Next, we will look at DCOM’s architecture and the
processing steps DCOM takes. We also discuss its se-
curity mechanism and policy.

2.1 DCOM’s architecture

A client that needs to communicate with a component
in another process cannot call the component directly,
but has to use some form of inter-process communi-
cation provided by the operating system. COM pro-
vides this communication in a completely transparent
fashion: it intercepts calls from the client and forwards
them to the component in another process. When client
and component reside on different machines, DCOM
simply replaces the local inter-process communication
with a network protocol. Neither the client nor the com-
ponent are aware that the wire that connects them has
just become a little longer. Figure 1 shows the over-
all DCOM architecture: the COM run-time provides
object-oriented services to clients and components and
uses RPC and the security provider to generate stan-
dard network packets that conform to the DCOM wire-

-72_

1998 International Computer Symposium
Workshop on Cryptology and Information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Client Initialization

The client calls Colnitialize which initializes the COM library for use. Next, the
client calls COM library’s CoCreatelnstance, passing the GUID for the desired class
(CLSID) and an array of desired interface IDs (IIDs).

Server Activation (Client side)

The call to CoCreatelnstance is passed on to the Service Control Manager (SCM)
on the client machine which looks up the Class ID in the local Class Table to see
if the server is already running. If not the SCM will look in the Registry using the
Class ID to find the type and location of the server.

Server Activation (Server Side)

Using the server machine address, the client SCM establishes an RPC link with
the server machine’s SCM, passing it the desired CLSID and IID(s). The server
SCM checks its Class Table to see if the server is running, and if it isn’t, it look
up the CLSID in the Registry to find out what command needs to be excuted to
start the server, and executes it. When a COM server starts up, the first thing it
calls is Colnitialize. The second thing it calls is CoRegistryClassObject, passing the
implemented Class ID and a pointer to the server program’s Class Factory. This
effectively advertises the server program to DCOM, adding its entry into the Class
Table.

The Class Factory

Whenever a client requests a new instance of a server calss, the SCM calls a method
called Createlnstance on the server program’s Class Factory. This is the common
gateway used by all clients. Createlnstance then instantiates the object and passes
the pointer to the object’s IUnknown interface back to the SCM.

Multiple Query Interface (MQI)

Once the SCM has a pointer to the object’s IUnknown interface, it can use Query-
Interface to request pointers to other interfaces.

Proxy/Stub Loading

Data passed back between client and server has to be packaged into RPC packets.
This process is called marshalling, and is performed by the Proxy/Stub DLL(s).
Using the IID(s) returned from the MQI step, the SCMs on each machine interrogate
the Registry for the DLL(s) that need to be loaded into the client’s and server’s
process spaces. Interface Pointers are then handed back to the client that issued
the CoCreatelnstance call.

Method Call

Using the Interface Pointer, the client calls the server method.

Table 1: DCOM steps

73

1998 International Computer Symposium
Workshop on Cryptology and Information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

ent
User: Alice
en
User: Bob ¢
r Security Provider l
irectory: Access Control Lis!
Bob/ o, For Component:
Alice/ Password Bob

Figure 2: Security Mechanism

protocol standard.

Table 1 describes how DCOM works [6]. In sum-
mary, the client program calls Colnitialize, then CoCre-
ateInstance passing the CLSID and IID(s). The client
receives back Interface Pointer(s), and then calls the
desired method. The server program implements the
interface as a class, and has only two extra calls to
Colnitialize and CoRegisterClassObject.

2.2 DCOM’s security mechanism

Different platforms use different security providers;
and many platforms even support multiple security
providers for different usage scenarios or for interop-
erability with other platforms. DCOM and RPC are
designed in such a way that they can simultaneously
accommodate multiple security providers. All these se-
curity providers provide a means of identifying a se-
curity principal, a means of authenticating a security
principal, and a central authority that manages secu-
rity principals and their keys. If a client want to access
a secured resource, it passes its security identity and
some form of authenticating data to the resource and
the resource asks the security provider to authenticate
the client. Security providers typically use low-level
custom protocols to interact with clients and protected
resources.

Using the network for distributing an application is
challenging not only because of the physical limitations.
It also raises new issues related to security between and
among clients and components. Since many operations
are now physically accessible by anyone with access to
the network, access to these operations has to be re-
stricted at a higher level. Without security support
from the distributed development platform, each ap-
plication would be forced to implement its own secu-

rity mechanisms. A typical mechanism would involve
passing some kind of username and password—usually
encrypted—to some kind of logon method. The appli-
cation would validate these credentials against a user
database or directory and return some dynamic iden-
tifier for use in future method class. On each subse-
quent call to a secure method, the clients would have
to pass this security identifier. Each application would
have to store and manage a list of usernames and pass-
words, protect the user directory against unauthorized
access, and manage changes to passwords, as well as
dealing with the security hazard of sending passwords
over the network. A distributed platform must thus
provide a security framework to safely distinguish dif-
ferent clients or different groups of clients so that the
system or the application has a way of knowing who
is trying to perform an operation on a component.
DCOM uses the extensible security framework provided
by Windows NT. Widows NT provides a solid set of
built-in security providers that support multiple iden-
tification and authentication mechanisms, from tradi-
tional trusted-domain security models to noncentrally
managed, massively scaling public-key security mecha-
nisms. A central part of the security framework is a user
directory, which stores the necessary information to val-
idate a user’s credentials. DCOM can make distributed
applications secure without any security-specific cod-
ing or design in either the client or the component.
Just as the DCOM programming model hides a compo-
nent’s location, it also hides the security requirements
of a component. The same binary code that works in a
single-machine environment, where security may be of
no concern, can be used in a distributed environment
in a secure fashion.

DCOM'’s default security mechanism is illustrated in
figure 2. DCOM achieves security transparency by let-
ting developers and administrators configure the secu-
rity settings for each component. Just as the Windows
NT File System lets administrators set access control
lists (ACLs) for files and directories, DCOM stores Ac-
cess Control Lists for components. These lists simply
indicate which users or groups of users have the right
to access a component of a certain class. These lists
can easily be configured using the DCOM configura-
tion tool. Whenever a client calls a method or cre-
ates an instance of a component, DCOM obtains the
client’s current username associated with the current
process. Windows NT guarantees that this user creden-
tial is authentic. DCOM then passes the username to
the machine or process where the component is running.
DCOM on the component’s machine then validates the
username again using authentication mechanism and
checks the access control list for the component. If the

74

client’s username is not included in this list (either di-
rectly or indirectly as a member of a groups of users),
DCOM simply rejects the call before the component
is ever involved. This default security mechanism is
completely transparent to both the client and the com-
ponent and is highly optimized. It is based on the Win-
dows NT security framework, which is probably one of
the most heavily used parts of the Windows NT oper-
ating system: on each and every access to a file or even
to a thread-synchronization primitive like an event or
semaphore.

2.3 DCOM’s security policy

DCOM distinguishes between four fundamental aspects
of security [7]:

e Access security: protecting the object

Which security principals are allowed to call an ob-
ject?
The most obvious security requirement on dis-
tributed applications is the need to protect objects
against unauthorized access. Sometimes only au-
thorized users are supposed to be able to connect
to an object. In other cases, non-authenticated or
unauthorized users might be allowed to connect to
an object, but must be limited to certain areas of
functionality. Current implementations of DCOM
provide declarative access control on a per-process
level.

Launch security: protecting the server ma-
chine

Which security principals are allowed to create a
new object in a new process?

Another related requirement on a distributed in-
frastructure is to maintain control over who can
create objects. Since all COM objects of a ma-
chine are potentially accessible via DCOM, it is
critical to prevent unauthorized users from creat-
ing instances of these objects.

Security identity: controlling the object

What is the security principal of the object itself?
Another aspect of distributed security is that of
controlling the objects themselves. Since an object
performs operations on behalf of arbitrary callers,
it is often necessary to limit the capabilities of the
object itself. One obvious approach is that of mak-
ing the object assume the identity of the caller.
Whatever action the object performs is limited by
the caller’s privileges. Although managing access
can be simplified by using user groups, it is often

1998 International Computer Symposium
Workshop on Cryptology and Information Security

December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C.

- .

3

1]
T
o)
]
UA ' ROLE
"HIERARCHY
USER

ASSIGNMENT P

PA IONS

t
5
]
1
l
1
1
L}
' ~-e._
1

! PERMISSION
'ASSIGNMENT

1
S i
'

|l

~ ~

Sl CONSTRAINTS

Figure 3: RBAC Model

simpler to have the object itself run under a dedi-
cated security identity, independent of the security
identity of the current caller.

e Connection policy

Integrity: can messages be altered?

Privacy: can messages be intercepted by oth-
ers?

Authentication: can the object find out or
even assume the identity of the caller?

The scope of this paper will be within the first secu-
rity policy, access security. The following sections will
show how to simulate this security issue with RBAC.

3 OVERVIEW OF RBAC MODEL

RBAC is an alternative access control policy to manda-
tory and discretionary access control. As MAC is used
in the classical defense arena, the policy of access is
based on the classification of objects such as top-secret
level. But RBAC policy is based on the role of the sub-
jects and can specify security policy in a way that maps
to an organization’s structure.

A general family of RBAC models called RBAC96
was defined by Sandhu et al [1]. Figure 3 illustrates
the most general model in this family. Motivation and
discussion about various design decisions made in de-
veloping this family of models is given in [1, 2]. Also,
there are variations regarding distributed systems [5].

The figure 3 shows (regular) roles and permissions
that regulate access to data and resources. Intuitively,

75

PERMISS-

1998 International Computer Symposium
Workshop on Cryptology and information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

a user is a human being or an autonomous agent, a role
is a job function or job title within the organization with
some associated semantics regarding the authority and
responsibility conferred on a member of the role, and a
permission is an approval of a particular mode of access
to one or more objects in the system or some privilege
to carry out specified actions. Roles are organized in a
partial order >, so that if z > y then role z inherits the
permissions of role y. Members of = are also implicitly
members of y. In such cases, we say z is senior to y.
Each session relates one user to possibly many roles.
The idea is that a user establishes a session and acti-
vates some subset of roles that he or she is a member
of (directly or indirectly by means of the role hierar-
chy). The RBAC model has the following components
and these components are formalized from the above
discussions.

o U is a set of users,

R is disjoint sets of roles and administrative roles
respectively,

o P is disjoint sets of permissions and administrative
permissions,

e UA C U x R, is a many-to-many user to role as-
signment relation,

e PA C P x R is many-to-many permission to role
assignment relations,

e RH C R x R is partially ordered role hierarchies
(written as > in infix notation),

o S is a set of sessions,

e user : S —+ U, is a function mapping each session
s; to the single user user(s;) and is constant for
the session’s lifetime,

e roles : § — 2% is a function mapping each
session s; to a set of roles roles(s;) C {r |
(3" > r)[(user(s;),r') € UA]} (which can change
with time) so that session s; has the permissions
Ureroleston {21 B < 7){(p,) € PAJ}, and

o thereis a collection of constraints stipulating which
values of various components of the RBAC model
are allowed or forbidden.

A user can be a member of many roles and a role
can have many users. Similarly, a role can have many
permissions and the same permissions can be assigned
to many roles. Each session relates one user to possibly
many roles. Intuitively, a user establishes a session dur-
ing which the user activates some subset of roles that

76

ient

User: Alice | ~~~< Wiew

TaEoerd 00 Component,
ent - = 1Add

User: Bob
Access Contro] List Access Control List
for Component: for "Add":
Bob Bob
Access Control List
for "View™:
Alice

Figure 4: Security using Registry Key

he or she is a member of the permissions available to
the users are the union of permissions from all roles ac-
tivates in that session. Each session is associated with
a single user. This association remains constant for the
life of a session. A user may have multiple sessions
open at the same time, each in a different window on
the workstation screen for instance. Each session may
have a different combination of active roles. The con-
cept of a session equates to the traditional notation of
a subject in access control. A subject is a unit of ac-
cess control, and a user may have multiple subjects (or
sessions) with different permissions active at the same
time.

4 INTEGRATION WITH RBAC

In this section we outline one approach to enforc-
ing RBAC in DCOM. For some applications, a single
component-wide access control list which is described
in section 2.2 is not sufficient. Some methods in a com-
ponent may be accessible only to certain users. For
example, an accounting business component may have
a method for registering new transactions and another
method for retrieving existing transactions. Only mem-
bers (such as Bob) of the accounting department (user
group “Accounting”) should be able to add new trans-
actions, while only members (such as Alice) of trans-
action management (user group “Transaction”) should
be able to view the transactions. And members of top
management (user group “Top Management”) should
be able to add and view the transaction. How can an
application use DCOM security to implement the selec-
tive security required in this example?

We can approach this example with programmatic
control using DCOM [8]. This approach is shown in
figure 4. When a method call comes in, the component

SUBJECT TARGET

ROLES COMPONENTS

ACCESS COM‘RDHRBAC)I

Figure 5: Conceptual abstraction of RBAC

asks DCOM to impersonate the client. After this, the
called thread can perform only those operations on se-
cured objects, that the client is permitted to perform.
The component can then try to access a secured ob-
ject, such as a registry key, that has an Access Con-
trol List on it. If this access fails, the client was not
contained in the ACL, and the component rejects the
method call. By choosing different registry keys accord-
ing to the method that is being called, the component
can provide selective security in a simple way.

We can simulate RBAC in DCOM along the lines of
this example!. Figure 5 shows a conceptual abstraction
of a role-based access control model. With this abstrac-
tion we can see that RBAC can be inserted into DCOM
architecture (in figure 1) as a part of security provider.

An approach to mapping the above model to design
mechanisms is to consider the role-based access control
model as a security-specific abstraction of the software
architecture of the system.

In order to use RBAC model, we should accommo-
date role-hierarchies. Roles would map to NT user
group(s) (which do not support hierarchies). For.ex-
ample, user group “Accounting” would map to role
“Accounting”. We can represent the role-relationship
as role-hierarchy. The role hierarchy of this example
would be as shown in figure 6. The Accounting role can
have permission to add new transactions, while only
the Transaction role can have permission to view the
transactions. The Top Management role is senior to Ac-
counting and Transaction and thereby inherits all per-
missions from junior roles.

In figure 4, the DCOM checks the ACL of compo-
nent and then the component checks the ACL of meth-
ods. Whenever the component is accessed the ACL
of the component should be checked. Instead of doing
this two-step process, we can have a unified checking
mechanism using RBAC as shown in figure 7. In the
role hierarchy checking step, the client’s role should be

1We assume that the assignment is done by {3, 9], including
the simulation of role-hierarchies.

77

1998 International Computer Symposium
Workshop on Cryptology and Information Security
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

Top Management

Accounting Transaction

Figure 6: An example of role hierarchy

checked. After that the role permission check decides
whether the client can have permission(s) to access the
component according to given role(s)2. For example,
assume that a client Chris has a role Top Management
in figure 6 and tries to access an accounting business
component. During role hierarchy check, we can know
Chris’s role memberships { Accounting, Transaction, Top
Management}. After the role permission check, he can
have all permissions from junior roles such as Account-
ing and Transaction using Registry Key. It means Chris
can add new transactions and also view the transac-
tion. Let’s consider that Bob has a role Accounting in
figure 6 and tries to access an accounting business com-
ponent. We can simply know that Bob can only add
new transactions but he can not view the transaction.
Using an approach with RBAC we can have the same
result as the previous approach illustrated in figure 4.
The RBAC approach can also reduce the interactions
between a component and secure object such as Reg-
istry. And we can have a separate security mechanism
because the integrated RBAC can only access the se-
cure object such as Registry.

Integrating with RBAC, we just showed that we can
simplify access control in DCOM. In further study, we
will investigate the details how RBAC can be achieved
in the end-to-end mechanism of DCOM.

5 CONCLUSION

In this paper, we have described the architecture and se-
curity mechanism of DCOM. Also, we briefly looked at
the RBAC model as a security specification model. Fi-
nally, we have shown that RBAC can be accommodated
in DCOM. Also we can see that the adoption of Role-
Based Access Control as a part of security provider can
simplify access control and achieve ease of administra-

2These permissions can easily be configured using DCOM con-
figuration tool (addressed in section 2.2).

1998 International Computer Symposium
Workshop on Cryptoiogy and Information Security
December 17-19, 1898, N.C.K.U., Tainan, Taiwan, R.0.C.

Client
User: Alice

View
DCOM

O
— ~__| COMPONEN
/ K {Add

[security Provider |

User: Bob

Role Hierarchy Checking
(obtaining all roles)

Role-Permission Checking
(checking permissions for object access)

Role-id | Permission list

AN yd

Registry

Figure 7: Integration with RBAC

tion. This framework was just based on DCOM’s access
security policy. In the future work, we also would in-
vestigate whether DCOM has sufficient flexibility to ac-
commodate administrative access control models such
as URA97 [10].

(3]

(4]

References

Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-
puter, 29(2):38-47, February 1996.

Ravi Sandhu. Rationale for the RBAC96
family of access control models. In Pro-
ceedings of the 1st ACM Workshop on Role-
Based Access Control. ACM, 1996.

Ravi Sandhu and Gail J. Ahn. Decentralized
Group Hierarchies in UNIX: An Experiment
and Lessons Learned. In Proceedings of 21st
NIST-NCSC National Information Security
Conference, 1998.

M. Moriconi and et al. Secure Software Ar-
chitectures. In Proceedings of IEEE sym-
posium on Security and Privacy, Oakland,
May 1997.

78

(5]

[6]

(7]

[10]

Nicholas Yialelis,Emil Lupu, and Morris Slo-
man. Role-Based Security for Distributed
Object Systems. In Proceedings of the IEEE
Fifth Workshops on Enabling Technology:
Infrastructure for Collaborative Enterprise,
Stanford, June 1996.

Richard Grimes. Professional DCOM Pro-
gramming. WROX Press Ltd.

DCOM Architecture. Microsoft Professional
Developers Conference. September, 1997.

Microsoft Windows NT server DCOM Tech-
nical Overview White Paper.
http://www.microsoft.com/com/dcom95/.

Ravi Sandhu and Gail J. Ahn. Group Hier-
archies with Decentralized User Assignment
in Windows NT. In Proceedings of IJASTED
Conference on Software Engineering, Octo-
ber, 1998.

Ravi Sandhu and Venkata Bhamidipati. The
URA97 model for role-based administration
of user-role assignment. In T. Y. Lin and
Xiaolei Qian, editors, Database Security XI:
Status and Prospects. North-Holland, 1997.

	
	71
	72
	73
	74
	75
	76
	77
	78

