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ABSTRACT

A receipt-free voting scheme is proposed based on
partially compatible homomorphic encryptions. The
new scheme differs from the previous works in two
features: receipt-freeness and the limitation for the
mazimum number of ’yes’ votes a woter can cast.
Although there are solutions for ”receipt-freeness”
of a voting scheme, they are either impractical or
inefficient. Solution based on partially compatible
homomorphisms is not existed so far.

1. INTRODUCTION

Many promising electronic voting schemes [5, 7,
9, 10, 12-14, 19, 21] have been proposed to sat-
isfy several important security properties includ-
ing: completeness, soundness, privacy, unreusabil-
ity, fairness and verifiability as discussed in [12].
However, these properties are not good enough to
realize the security requirements of a physical vot-
ing booth mechanism used nowadays. Most existing
electronic voting schemes give each voter a receipt
for him to check whether his vote is counted or not.
By this receipt, however, each voter can prove his
voting choice and thus it provides a chance for a
malicious user (a briber) to buy the votes. To solve
this problem, one has to use a receipt-free voting
scheme.

Benaloh and Tuinstra [1] proposed the first work
on receipt-freeness but used a special hardware as-
sumption. Independently, Niemi and Renvall [16]
tried to solve the bribery problem by using a physi-
cal voting booth where a voter performs multiparty
computation with all centers. Both approaches need
impractical assumptions on the use of physically se-
cure equipments.

A practical solution for bribery problem had
been proposed by Sako and Kilian at Eurocrypt’95
[20], which assumes the existence of untappable
private channel. Their scheme is based on the
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mixer/anonymous channel technology [5, 12 17],
which has two critical problems: the batch pro-
cess and the individual verifiability [19]. Due to the
batch process, if one vote is omitted, then the elec-
tion will be blocked and each voter has to revote.
Though individual verifiability allows each voter to
check whether his own votes are counted correctly
by the center or not, it virtually restricts one to
check that for the others’ votes. To solve this prob-
lem, Sako and Killian {20] proposed a protocol of
universal verifiability to allow a voter to audit all
voters’ votes, but it performs sequentially through
all mixers, which is very time-consuming.

Another approach to construct a secure voting
scheme uses the number theoretic techniques {2, 10,
13, 19] (e.g., partially compatible homomorphisms).
This approach does not require the batch process.
Each voter can easily verify whether the election
is performed properly or not. However, this ap-
proach suffers from both the communicational cost
and computational complexity. Sako and Kilian [19]
have proposed an improvement with moderate com-
munication cost and low round complexity. Their
protocol is also implemented on current generation
PC’s and obtains satisfactory results.

Unfortunately, Sako-Kilian’s scheme [19] failed to
provide the receipt-free property, which is essen-
tial to solve the bribery problem. Each voter in
their scheme has to publish a few encryptions of
subvotes for verification. These encryptions pro-
vide the voter a way to prove his voting choice to
bribers. The purpose of this paper, therefore, is
to construct a receipt-free voting scheme based on
partially compatible homomorphisms. The newly
proposed scheme can also be extended to provide a
way to verify whether the maximum number of ’yes’
votes that a voter can cast is less than or equal to
a threshold value I".

This paper is structured as follows. Section 2
reviews the previous techniques. Section 3 proposes
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several new basic protocols and a new voting scheme
with receipt-free property. The extended scheme
which limits the maximum number of ’yes’ votes
is also presented here. Section 4 gives the security
analysis and discussions. We conclude this paper in
Section 5.

2. TECHNIQUES USED

Techniques used to construct the new voting
scheme are discussed here. While Section 2.1 re-
views the existing techniques for partially compati-
ble homomorphisms, Section 2.2 proposes two new
ones.

2.1 The Previous Techniques

Two techniques are reviewed in this section: the
partially compatible homomorphic encryptions, and
two zero-knowledge proofs for partially compatible
homomorphic encryptions, which provide methods
for the voter to securely split his votes over two or
many centers.

Partially Compatible Homomorphic Encryp-
tions

Let z,y be in Z;, where ¢ is a large integer,
and z + y be in S, where S has only a few ele-
ments (e.g., S = {1,-1}). =z, y, and z + y are
secret values. Let E() be a probabilistic encryp-
tion. If E() has additive homomorphic property

(ie., E(z +y) = E(z)E(y)), then given E(z) and -

E(y) one can reveal the value of z+y (i.e., s; = z+y,
for some s; € S E(s;) = E(z)E(y)). Similarly, if
E() has multiplicative homomorphic property (i.e.,
E(zy) = E(z)E(y)), then given E(z) and E(y), one
can reveal the value of zy.

A partially compatible additive homomorphic en-

cryptions family is a family of probabilistic encryp-.

tions {E,---E,} where each E; satisfies additive
homomorphism (E;(z +y) = E;(z)E;(y)), however,
for different encryptions E; and Ej, there is no feasi-
ble way to find an Ej, for some k, such that Ex(z+
y) = Ei{z)E;(y) (see [2, 10, 19]). Thus, given E;(z)
and E;(y), it reveals nothing about z+y even if z+y
is in a small set S. Consequently, let z;,22,--+,Zn
be chosen uniformly from Z; to sum up to an s.
If (n — 2) of values {z1,%2, -+, z,} are known (for
simplicity, assume they are z;,z3,---,Tn_2), then
their sum s’ = Y777 z; can be calculated. In this
case, given {E;(z;)}i=1,2..,n, it also reveals nothing
about § = 7y + T2 + -+ + Z, because one cannot
obtain z,_; + z,( = (s — ")) from E,_;(zn—-1) and
E,(z,). This result will be used in Section 3.
Zero-knowledge Proof for Partially Compat-
ible Homomorphic Encryptions

Two efficient interactive zero-knowledge proofs,
provexl and prove-sum, have been proposed by
Sako and Kilian [19]. Before describing them, we
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give a simple example of the voting scheme to ex-
plain their usage.

Assume there exist two centers C; and C; in the
voting scheme. The centers randomly select two
public encryptions E; and E, such that the set of
{Er, E,} belongs to a family of partially compatible
additive homomorphic encryptions and no one has
any idea about the decryptions of these encryptions.
Each voter V;, t € [1,0), splits his vote into two
subvotes :c§t) and a:gt). Then he publishes El(a:§t))
and Eg(:zgt)) and uses provetl to prove x§t) +:cgt) €
{1,-1}. The sum of z&t) and a::(:) represents the vote
of "yes’ (+1) or no (—1). Note that the voter hides
the values of xgt) and zgt).

Upon voting, the voter V; privately sends zst) to
C;, 1 < i< 2, and each C; checks whether :zzgt) is
consistent with E; (:cgt)). Then, in the votes count-
ing phase, C; sums up :z:gt) for all voters V;, t € (1,0},
and posts subtally T; = )y, :cgt). Therefore, each
voter can verify E;(Ti) = [1L., Ei(z!?) and com-
pute T' = T} + T, which is the result of the voting.

Further, if there are n centers Cy,---,Cy in the
voting scheme, the voter will split his vote into

n subvotes :z:gt),---,zg'). Then V; publishes all

E,-(zst)), 1< i< n,and proves y ., z; € {1,~1}.
This proof will be broken into two stages. First, the
voter V; randomly generates A® and B(®) such that
A® + B® € {1,-1} and uses prove-sum to prove
v 2 = A® 4 BO). Then he uses prove £1 to
prove A® + B® ¢ {1,-1}.

We now describe these two proofs in the following.
(For simplicity, we drop the superscript ). Note
that the value ¢ is a large prime, g—1 should contain
a large prime factor, and w is a parameter of security
level.

(1) Proving z1 + z € {1, ~1} without revealing z;

and T2

PROTOCOL-prove & 1(z1,z2): Given E;(z;1) and

E;(z2), where the set {E;, Ey} belongs to a family

of partially compatible additive homomorphic en-

cryptions and no one has any idea about the de-

cryptions of these encryptions, prove that z; +z2 €

{1,-1} (mod q).

For A=1,2,---w

1. The prover randomly chooses M € 2Z,
and s € gl, —1} and computes a bit
commitment R™ for #(». Then he posts
¥ ¥ N BN where Y,V = B (sW (21 +
rM) = (By@)E M), and ¥,V =
Ey(sM (25 = 10)) = (Ba(a2) Ex (rPM) ).

2. The verifier has the following two choices:



2.1 Asks the prover to reveal 7(*) and s(*) and
then checks that r(») is consistent with
R™, and ;™ and ¥ are constructed
as above correctly.

2.2 Asks the prover to reveal s (z; + r(V)
and sM(z, — rV) and then checks
whether the following equations hold.

Y = By (M@ +rV)),
YN = By (sM (zg — rV)), and

sM (@ +rN) + 5N (g5 - 1My € {1, -1},

End For
(2) Proving x,+Ta2+- - - Tn = A+B without revealing
xl N - e xn
PROTOCOL-prove — sum(zy,- -+, Zn, 4, B): Given
Ey(z1),-- -, En(zn), B4 (A), Ey(B), where the set of
{Ea, Ey Ey--- E,} belongs to a family of partially

compatible additive homomorphic encryptions and
no one has any idea about the decryptions of these
encryptions, prove that z; + -.- + 2, = A +
B (mod q).

For A=1,2,---w

1. The prover randomly chooses r,g’\) € Z,, for
0 < i £ n, and computes a bit commit-
ment RE’\) for each rg'\). Then he posts
¥, ¥ Y., 1, RY), where YV
Bis: + 1) = EoyB(®)1 < i
n, Yo = EJ(A+ 1) = E,(AE.(),
and Y, = Ey(B + (L0, r™M) — #)

Ey(B){ Ty Bo(r{™)) Bulr$¥) .

2. The verifier has the following two choices:

IA

2.1 Asks the prover to reveal rg)‘) 0<i<
n) and then checks that rg)‘) is consistent
with RV, and YV ... ¥M, ¥, and ¥,
are constructed as above correctly.

2.2 Asks the prover to
reveal {(z; + 1} ))}1<i§ny (A +75) and

B+ ;/\)) '\)) and then checks
whether the following equations hold.

YN = Bz +rM),1<i <,

Y, = By (A + (M),
Y =Ey(B+ (XL, ™M) —rV), and

i=1 z

SE @+ = A+ + B+
(Zi— (/\)) _ r(/\))
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End For
2.2 New Techniques
Receipt-free Technique

Considering the simple example in the Section
2.1, Ei(xgt) )’s published by the voter can be treated
as the ”receipts” of the voting. A malicious user {(a
briber) can ask the voter to release his argt) ’s after
voting. Then the briber checks whether each :vgt) is
consistent with E;(z (t)) If the verification is suc-
cessful and ) 7 (t) = 1, the briber believes the

1.—1 1
voter had cast a 'yes’ vote. In this case, the voter is
entrapped to sell his vote since his choice can easily

be proved.

Therefore, the main idea of our new scheme is to
prevent that a voter can prove his choice by using
these encryptions of subvotes. Instead, the voter
V: has to post two sets of encryptions E; (m ) and

E; (:z:(t)) 1 £ i < n, where (}; :z:g), Z, fé)
(1,-1) or (—1,1). V; decides his vote in the vot-
ing phase by privately sending either x( ) or :vg) to
the centers. Applying this method, even 1f the voter
reveals all a:g) ’s and a:(t) ’s to the briber, he also can-
not prove what he had voted with these two sets of
encryptions. However, this method may cause some
problems when the centers count their subtallies.
We will explain it later.

Prove-subtally Protocol

Although the voter V; posts two sets of encryp-
tions, he has to select one of them according to his
choice in the voting phase. However, one cannot
check the center C;’s subtally using the equation
E{Ty) = T1i, Ei(zst)) because he knows nothing
about the set of encryption the V; really chose (i.e.,
they do not know which of E; (:z:(t)) and E;(z (t)) the

Ei(z S )) equals to) . Basically, the center knows this
secret information and has to keep it, otherwise the
receipt-freeness cannot be achieved. Therefore, we
provide a prove-subtally protocol that allows a cen-
ter to prove that his subtally is counted correctly
without revealing the voter’s choice between these
two sets of encryptions. This protocol is a "shuf-
fling protocol” which hides the encryptions E,-(a:g))
and E; (a:g)) by using a secret/public key pair of the
center.

3. ANEW VOTING SCHEME WITH
RECEIPT-FREE PROPERTY

3.1 Basic Protocols

Besides the prove £1 and prove-sum protocols de-
scribed in Section 2.1, three new protocols prove-Q,
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multi-commitment, and prove-subtally are required
in our scheme. They are discussed individually in
the following.

(1) PROTOCOL-prove-Q(z;1,22,---,Ty):

Given E;(z,),---,En(Zs), and Q, where the set,
{Ey - -- E,}, belongs to a family with partially com-
patible additive homomorphic encryptions and no
one has any idea about the decryptions of these en-
cryptions, prove that ;1 +---+ 2z, = Q (mod gq)
without revealing z;’s, 1 <1 < n.

For A=1,2,---w

1. The prover randomly chooses rg’\) € Z,, for
1 < i < n, such that E‘-rg'\) = @, and
computes a bit commitment R,(.”\ for each
r¥. Then he posts YV = E;(z; - rMy =
Ei(z)(E(rM)1<i<n

2. The verifier has the following two choices:

2.1 Asks the prover to reveal r'™ (1 <i < n)
and then checks that r,w is consistent
with R™; verifies that 3,7 = Q, and
Yl(k),---,Y,S'\) are constructed as above
correctly.

2.2 Asks the prover to reveal {(z; —

r ))}1<,<,,, and then checks whether the
followmg equations hold.

Yl.()‘) = E;i(z; — r?‘)), 1<i<n,

n

Z(z —-r(’\)) 0.
=1
End For
(2) PROTOCOL-multi-commitment:
The purpose of this protocol is for n + 1 users
(e.g., C1,--+,Cr and V;) to cooperatively determine

a random number e; € [1,n]. Assume V4 is an ini-
tiator.

Comumitting
1. V; asks each C;, 1 £ i < n, to compute a bit

commitment M;; for a random number M;; €
Zq and publish M;;.

2. V; computes a bit commitment B, for arandom
number R; € Z, and also publishes R;.

Opening
1. All Cy’s and V; open their own commitments

M and R, respectively by revealing the keys
used in committing.

2. V; obtains e; by computing e, = f(Mi: @
Mo -+ ® My @ R;), where f is an one-way
hash function and 1 < f(z) < n.

(3) PROTOCOL-prove-subtally:

Let ¢ be a large prime and ¢'|g — 1 (ie.,

= hqg + 1). Assume the prover has a secret
key/public key pair {¢,y), where y = g¢ (mod ¢)
and g is a public parameter. The value g is de-
fined as g = (¢)* mod q, where g’ is a gen-
erator in Z,, to avoid the attack in [18]. The
prover publishes the following pairs of encrypted
messages: {(E(z11), E(z12)), (E(z21), E(z22)), - -,
(Boa) Ewa))}, and  {(E(zh), B'(5h)),
(B'(zhy), B'(@h)), -+, (B'(@n), B (@,0))}, where
{E,E'} belongs to a family of compatible additive
homomorphic encryptions and no one has any idea
about the decryptions of these two encryptions. As-
sume the prover knows only one message, 24,, Out
of each pair (zi,zi2) and similarly iy, out of
(z}y,2k), for 1 < i < u. In other words, d; € {1,2},
the secret of prover, indicates the d;th message
known by the prover in the ith pair. Given a value
T, the prover wants to show T' =3 (Zig; + Zjg,)
without revealing the secret (z;1, zi2), (2}, Z},) and
d;.

To perform this proof, the prover has to
hide the encrypted messages (E(z;;), E(z)) and
(E'(z},), E(zy)) using his public key. He chooses
4y random numbers i1, Ti2, T4, and i, € Zj
(1 € i <€ u) and u private permutations, m;{-)
(1<i<u), from {1,2} onto {1, 2} to generate:

H® (2

Hii (1) = ( 17r.(1)’Hi,1r.~(1)) =

(g7 mod q, E(zn)y™ mod q),

1
H; i (2) = ( :(73.(2)’ i 1r.(2)) =
(972 mod q, E(z:2)y™* mod q), a.nd

1
Hé,ﬂ'{(l) = , ( l(‘lr,)(l)’ 1,7 (l)) =
(g™ mod g, E'(z};)y™ mod q),

_ '(2)
H 1.2 = (H; i) Finic2))

(g7 mod g, E'(z}y)y™2 mod q).

The prover than publishes all (H; r;(1), Hi x:(2))s
H iy iy di (5 mildi)), and 4 (=
>i(rig; +7ig.)). Note that publishing d; leaks no
information about the real index d; because the
prover uses 7;(-) to permute the original orders of
(E(zi1), E(zi2)) and (E'(z};), E'(z},)). This proof
will be given in the following two stages:

Phase 1: Prove Shuffling

The prover shows
(H‘l ,mi(1)s zr.(2)) and ( 1,7 (1) ,H,”‘, (2)) are shuf-

fled from (E(zi1), E(zi2)) and (E'(z},), E'(z},)) re-
spectively in the above manner.
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1. The

For A=1,2---w

prover ran-
domly chooses r(l),r(; ),ré)‘),r,g'\) € Zy, for
1 <i<u. Thenhe postsY M) = (Y(l)m(l)

A)
Y ) = @ mod g, E(ea)y™ mod g),
— 1
Vi) = (Y}f,r)gn(z)’
i(i)w(z)) = (9"’ mod ¢, Elaa)y™s’ mod q),
and (1) '(2)
! — —_
Yi,w?’(l) (Y (”(1) 1,7r§>‘)(1)) -
gey)
(g™ mod q, El(xh)y e mod q), Yil,7r§")(2) -
1 (2 ’
of (‘)”(2> e.SrE)*’(z)) -
(672" mod g, B'(zly)y"s mod q) ,where

WE’\)(-) is a private permutation from {1,2}
onto {1,2} used in the A-th iteration.

The verifier has the following two choices:

2.1 Asks the prover to reveal rfi\ ), rfz’\ ), r;§’\)
and rig’\), for 1 €7 < u, and then checks
that Yi1, Yi2, Y} and Y}, are constructed

as above correctly.

2.2 Asks the prover to reveal ( N _ Ti1),

(rg‘)—r,g), ( —-ri;) and ( T —r,z) for
1<i<u, a.nd then checks if the following
equations hold.

Y (1)

(rglx)—rn) _
,,r’( )y g (*)(1) (mod q)
g (e =riz) __ y) (mod q)
imi2) "9 = Tia®(2) g
(2) M _p 2
() y(".l Ti1) - Y,(,r)(l)(l) (mod q)
(2) P er; v
imi(2) Syl ) = : w)(*’(z) (mod q)
and
O oy y' W (mod q)
i) "9 = e® 1
HO gl Y0 nod
i,m:(2) i,ﬂ'ﬁ”(?) q
(2 ) _ "(2
Hi,(m)(l) cylraT ) = Yi,i‘g)x)(l) (mod g)
’(2) 1‘1-()‘)— : _ '
AL —Y,-,Erg)”(z) (mod q)

End for
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3. If the above steps are correct, the veri-
fier computes the following values accord-

ing to ( the d; published by the prover:
1) g3

Hu,_1 = 9 (mod Q) H H:L_l id: =
BTy (mod q) and [[a, HY)
gt (mod gq) ; [Tie H,.,(;‘.) =

E'(T2)y*? (mod q) , where 4 = Y% | g,
A2u= Yoty Ty = Y5, 24, and Tp
i1 Tia,

Phase 2: Prove Sum(T)

Let Wi (W11, Wi2)
(g4 modgq, E(Ti)y* mod @), Wy = (Wa1, W) =
(g% mod q, E'(Ta)y** mod q).

The prover shows T = T, + T5 as follows:

1. The verifier checks Wy Wey = g4 (mod q).

For A\ =1,2,---w

2. The prover randomly chooses r(*) ¢ Zq and
computes a bit commitment R for rA),

Then he posts (RY, Y™, v M), where
Yl(/\) = E(T]_ -+ T(’\))yAl = ngE(T(A))

(/\)

= B (T, ~ )y = Wi (B'(rV))

3. The verifier has the following two choices:

3.1 Asks the prover to reveal ¥ and then
checks that (™ is consistent with R,
and Yl(’\) and Yz(’\) are constructed as
above correctly.

3.2 Asks the prover to reveal (71 + (M) and
(T: —r™) and then checks if the following

equations hold.

T+ + (T -y =T

YVY® = BTy + 1) BT - r )y

End for

4. If the above steps are correct, the verifier ac-
cepts

T=T+T,

u
= (@ia; + Thg,)
=1

Theorem 1 The prover can successfully forge the T
in the prove-subtally protocol with negligible prob-
ability of 27%.

Proof. (Proof will be given in the final paper.)
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Theorem 2 If the prover follows the prove-subtally
protocol, the secret d; cannot be revealed.
Proof. (Proof will be given in the final paper.)

3.2 The New Voting Scheme

Assume that the system has
n centers C, Cy, - - - Cy, and m candidates. All cen-
ters firstly agree on a randomly selected family of
partially compatible additive homomorphic encryp-
tions {Ey, Ey,- -+, By, By, By, E, }, and have no idea
about the decryptions of these encryptions. To vote
for each candidate k, each voter V;, for 1 < ¢t < o,
chooses n+3 different sub-votes x?’k), 1<i<n+3,

such that Z{*® (= z{t®) 4+ o) 4. .4z B0 | 7 B8y

n+l
(tk)(_ (tk)+z(tk)+ +x$f_f‘l) Sf_:g-l—x’(::g) €

{1,-1} (1 € k £ m) and ZH) = _Z®W ¢
Z; {&F) = 11 thenit represents a " yes” vote , and vice
versa. These n + 3 subvotes are encrypted with the
predetermined family of partially compatible ad-
ditive homomorphic encryptions mentioned above.
These encryptions of all sub-votes are published for
verification. Upon voting, the voter chooses the
subset of votes which sum up to either Z(t ¥

Z( k) depending on his choice for a ’yes’ or a 'no’
vote. Then, each voter privately sends two subvotes,
(@ ,23) or (@, 202, v a physical untap-
pable channel {20] to the center Ce, (1 < e; < 1),
which is cooperatively determined by the voter and
all centers. C,, is so selected to achieve receipt-
freeness as will be discussed in Section 4. The other
subvotes are distributed randomly to the other n—1
centers , one for each center, via a secure chan-
nel implemented by cryptographic method. Finally,
each center counts his subtally and publishes it.
Then he proves the correctness of his subtally with-
out revealing the voter’s choice between Z] (%) and

Zy (1) by performing prove-subtally protocol. The
new scheme is described as follows by three phases:
precomputation, voting ,and vote-counting:

Precomputation
Centers : Cy,Ca,---Cp
Voters : Vi, V,,---V,

The possible votes of voter V; for candidate k are
Z8%) and Z0P 1<k <m.

Step 1. Each voter V; chooses n + 3 sub-votes
{z; tk)},_ 1,~n+3 to form Z(t ") Z(t e

{1 —1} such that Z(t ® z(t ) +:z(t *

+x(t k)+z(t k) _ A(t k)+B(t k) Z(‘ &) _

(R 4 gt 4 +x“ 4 Sffz) +x,(f+’2

A‘“" +B(”‘), where A,, B, 1<i<?,
are arbitrary integers which add up to

Z*® | He publishes {E;(z{")}ic1 2, 1m0

B eR), Bl B,
E (AL, B (A$H), E,(BE ")) and
Ey (B,

Step2. V; proves the validity of the following
equations to any trusted authority by per-
forming prove-sum protocol as described
in Section 2.1: z&t’k) +z§t’k) 4oz 4

(t k) A(t R L B(t,k) xgt,k) +z§t,k) .

Wk t.k t.k t,k t.k
o) 1 o) 1 o = a0 B0,

Step3. V; shows that both A{"® + B§t’k) and
Agt'k) + Bét"’) are in {1,-1} using prove
=1 protocol, and then shows that (Agt'k) +
BERY 4 (4¢P 4 BER)Y = ¢ by perform-
mg prove-Q protocol (set @ = 0) as de-
scribed in Section 3.1.

Voting

Stepl. V; performs multi-commitment protocol
with C1, Cs,---,Cy, to get a random value
e: € [1,n].

Step2. V; privately sends :c(t " o C; (1<t
n—1,i# ¢) and a:(tk) to Cp, (if e: #n).

Especially, he sends one of (:z:(t Mz Sffl) )

and (z $f +k2) ,a:ff _:3)) to C,, depending on his
decision to candidate k& , through a physi-
cal untappable channel (for simplicity, we
assume V; sends the centers his subvotes
by this way instead of a random choice).
See Figure 1.

Vote-counting

Stepl. Each center C;, (1 <1< n—1,i # e),
verifies :zzgt'k)’s for all ¢ and k¥ whether
they are consistent with E; (:c(t k)) or
not. Cp verifies the correctness of ze, (k)
with E,, (xgt k)) (if ex # n). Espec1ally,
Ce,, for voter V; and candidate k, ver-
ifies one of the two pairs, (x(t k),szl)
and (z $f+’;’,z$f+"3)) to see if it is con-

sistent with (E (z(t k)) E, (a:sf f])))
, K
(En (ngz)% E, (zg-f»a))) -

Step2. Each C; computes and posts his subtally
for the candidate

k T( = Zte[l,a e¢=z(x(§tk‘-) izzkk))) +

{Zte[lﬂl»ﬁt?&‘l S'): fori=1,2---,n-1

ztell oliec#i Ig" )1 fori=n
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, where (s(t k),s2 k)) decided by V; equals
to either (n,n + 1) or (n + 2,n + 3).
Besides, C, has to publish G(-k) =
&

Zte[l ”] ec_] g ) 1 < J < n— 1 fOl' fu-r'

ther verification.
Step3. Each C;, 1 < i < n, proves the cor-
rectness of his posted subtally T(k) Let

T(k) = Zte 1 cr],eg-z (itkz) (t(lkz)) The

EP]

center C; publishes T(”) and proves it
is correct without revealing (sj (&.F) (t”’))
by performing the prove-subtally protocol.
Note that in this case, {E,, E,} corre-
sponds to {F,E'} in the prove-subtally
protocol. Similarly, T(k) corresponds to
T and {(=0,25)), (= Sffl’,xiffg)} cor.
responds to {(zi1,Zi2), (z};,%k)}

everyone can check 1f
the following equations hold: E; (T(k) -

f;(k)) Hte [1,0],ec74 ( ( k)) fori =
L,2--m - 1, K (Gg.k))
Teeq o, enms Bi (M), for 1<j<n—1,
and T = 19 4 31 o).
Stepd. The total tally of the vote for candidate k
18 n
) — ZTi(k)'

=1

3.3 The Property of Limiting the Number
of "Yes’ Votes

Th new scheme can be easily extended to limit the
maximum number of ” yes” votes that each voter can
cast to a threshold value T'. For m(> 2) candidates,
the sum of all votes for each voter is less than or
equal to 2I" —m. This property is important for our
scheme to implement a practical election. The mod-
ifications are described by adding some extra steps
into the precomputation phase and voting phase as
the following:

Precomputation

Step4. V; performs prove-@Q protocol to show that
the following equation holds (set @ = Q:):

Voting

Step3. The center Ce; publishes a value &; for V;
and performs the protocol prove-subtally
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to prove

m y .
t,
D (g + ) =6
k=1
without revealing (sgt"‘), sgt,k)).
Step4. FEach one then checks if Q;+6; < 2" —m.

4. SECURITY ANALYSIS AND
DISCUSSION

The security of the proposed scheme is based
on the security of the family of partially compati-
ble homomorphic encryptions. Besides, this scheme
not only provides the receipt-free property, but also
meets the general security requirements of elec-
tronic voting systems [12].

Definition 0.1 A electronic voting scheme is se-
cure and receipt-free if it satisfies the followmg
requirements [12]:

1. Completeness: all valid votes are tallied cor-
rectly.

2. Soundness: a dishonest voter cannot disrupt
the voting.

3. Verifiability: no one can fake the result of the
voting.

Privacy: the privacy of the voter is preserved.
Unreusability: no voter can vote twice.

Fairness: nothing can affect the voting.

NS &

Receipt-freeness: the voter has no receipt to
prove what he had voted after voting.

Theorem 3 (Completeness) If the voter casts a
valid vote, it will be tallied correctly.
Proof. (Proof will be given in the final paper.)

Theorem 4 (Soundness) A dishonest voter dis-
rupts the election that will be detected by other
voters or centers.

Proof. (Proof will be given in the final paper.)

Theorem 5 (Verifiability) Even if all centers col-
lude, they cannot forge the result of the election.
Proof. (Proof will be given in the final paper.)

Theorem 6 (Privacy) If two centers or more are
honest, the privacy of the voter can be preserved.
Proof. (Proof will be given in the final paper.)

Theorem 7 (Unreusability) No voter can vote
twice in the voting scheme.
Proof. (Proof will be given in the final paper.)
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Theorem 8 (Fairness) If two centers or more are
honest, no one can get any information about the
tally result before the vote-counting phase.

Proof. (Proof will be given in the final paper.)

Theorem 9 (Receipt-freeness) If the center C,, is
honest, the voter V; cannot prove what he had vote
after voting.

Proof. (Proof will be given in the final paper.)

5. CONCLUSIONS

This paper proposed a receipt-free voting scheme
based on partially compatible homomorphisms.
The new scheme is also extended to have the prop-
erty of limiting the mazimum number of 'yes’ votes.
However, for the voter V;, the trustworthyness of
C., is essential to the security of receipt-freeness.
How to split the control factors of receipt-freeness
over all n centers is a further research problem.
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