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Abstract

In this paper, new information called structuralinforma-
tion is proposed. Structural information is composed of
two types of information: the first order and the second
order information. The first and second order informa-
tion represent information on deviation from the equi-
probable distribution and the independence respectively.
‘We have so far dealt with total information to be stored
in neural networks. However, by introducing structural
information, we can control appropriate types of infor-
mation, depending on methods and problems. In other
words, we can control information, taking into account
the quality as well as the quantity of information. We ap-
plied the structural information to information content
in input-hidden connections and hidden units. Then it
was applied to XOR problem to show how the structural
information control affects the simplification of network
architectures. In addition, we applied the methods to
language acquisition problems complex enough to test
the performance. Experimental results confirmed that
generalization is not concerned with total information
but with the second order information.

1 Introduction

Many attempts have been made to describe neural learn-
ing from information theoretic points of view [1], [2]. In-
formation, appropriately defined, has been maximized
or minimized, depending on problems [2], [3]. However,
we can definitely say that information is not simply con-
trolled in living systems. To cope with extremely un-
certain living conditions, information is controlled and
stored in very complicated ways [4]. We think that sim-
ple information maximization and minimization so far
developed are inadequate to modeling actual informa-
tion control and storage in living systems. At the present
stage, we should ask the quality of information, that is,
what kinds of information should be stored as well as the
quantity of information to be stored.

In this context, we propose structural information
composed of two types of information. The structural
information is applied to information content in connec-
tions. We attempt to maximize information to be stored
in connections and hidden units, considering which type
of information is necessary in learning.

2 Structural Information

2.1 Utility of Structural Information

Many methods to optimize the network architecutre have
been proposed, for example, connection and unit pruning
and weight decay. The optimization is necessary for im-
proving generalization performance and for interpreting
clearly internal representations. For example, Figure 1
shows two typical examples of weight pruning and weight
decay. (a) shows that unnecessary connections are elim-
inated, producing an architecture in which each connec-
tion is connected with different hidden units. (b) shows
that unnecessary hidden units are eliminated, giving an
architecture in which just one hidden unit is obtained.
Finally, (c) shows a combined method in which hidden
units and connections are both eliminated.

If it is possible to move from (2) to (b) and to (c), we
can generate optimal network architectures, depending
upon the problems. Structural information is introduced
to control freely network architectures by changing the
structural parameter a.

2.2 Simple Structural Information

We are here concerned not with information to be trans-
mitted but with stored information [4]. Thus, informa-
tion is considered to be the decrease of uncertainty. As
shown in Figure 2, the first order information D, is the
decrease from the maximum uncertainty Hy. The second
order information D is the decrease from the first order
uncertainty. Total information is obtained by summing
two types of information.

Let J and K denote discrete random variables taking
the values j and k with probabilities p(j) and p(k), and
p(j | k) represent the conditional probability of j for k,
then maximum uncertainty (Hp), the first-order uncer-
tainty (Hp) and the second-order uncertainty (H») are
defined by :

Hy = logM
M

H = —Zp(j)Ing(J’)
Lo

H, = - ZZP(k)P(j | k)logp(j | k). (1)
k3
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Figure 1:

Three typical examples obtained by the pruning and weight decay methods. (a) shows that each

connection is connected with different hidden units. (b) shows that only one hidden unit is connected with all the
input-hidden connections. In (c), unit and connection elimination are combined to simplify network architectures.

The first-order information is defined by the decrease of
uncertainty from maximum uncertainty

D, Hy - H;

log M + 3" p(s) log p(3)-
j

2

The first order information D; means how much the dis-
tribution of j is deviated from the equi-probable distri-
bution. The second-order information is defined by the
decrease from the first order uncertainty

D2 H1 - H2
- Zp(j) log p(5)

+3 > pk)p(G | K)logp(i | k). (3)
k J

The second order information D; means deviation from
the independence, that is, how much k-j pairs are related
with each other. Total information is defined by

D D, + D,
Hy - Hy
log M+ > p(k)p(j | k)logp(i | k). (4)

Kk J

Using the structural parameter ¢, structural information
is defined by

SI

aDy + (1 -a)D;
alogM + (2a — 1) Zp(j) log p(5)

+(1-2)Y_p(k) Y p(j | k)logp(j | k) (5)
k J

_2_

where the parameter a range between zero and one
(0 < a <1). In this structural information, the param-
eter a is used to determine the ratio of each information
to total information. We maximize this structural infor-
mation, changing the parameter a. To interpret easily
the ratio of the first and the second order information,
we introduce normalized measures

-_— Dl
RD, = 5
_ D
RD, = o (6)

The normalized total information is defined by the to-
tal information divided by the maximum information:

(7)

2.3 Generalized Structural Information

As shown in Figure 3, this second order structural in-
formation is easily extended to the nth order structural
information content as follows:

SI™ =%"0a,D, (8)
where
D, = Hn.y ~ Hy, (9)
and
> o, =1 (10)
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Figure 2: Structural information composed of the first
order information content (D;) and the second order in-
formation content (Dy).

The normalized nth order information is defined by

(11)
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Figure 3: Generalized structural information composed
of nth order information.

3 Application to Neural Net-

works

Weight decay or weight elimination methods have so far
been used to simplify internal representations to improve
generalization. This means that connections are forced
to be distributed as unevenly as possible. In terms of
information, information in connections is increased as
much as possible.

-3-
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Figure 4: Network architecture for defining structural
information.

We consider a network architecture shown in Figure
4. Let us define information for input-hidden connec-
tions and attempt to maximize it, that is, to distribute
connections as unevenly as possible. The strength of
connections w;x naturally denotes the degree of relation
between the jth hidden unit and the kth input unit. The
strength of connections can be computed by squared con-
nections wjz-k. For probabilistic interpretation, we must
normalize input-hidden connections
wfk

Zm w72nk )

Then, a probability of the hidden unit p(j) can be com-
puted by

p(j k) = (12)

L
p(3) = D p(k)p(j | k). (13)
k
To simplify computation, let us suppose that
()~ 7 (14
p(k) ~ 7.

Thus this supposition is purely for simplification in com-
putation. However, we can interpret it as a statement
that no information on input units should be incorpo-
rated as the initial stage. Information on input units
can be inferred from hidden units. Then, we have

L
TORES Y L) (15)
E .

Thus, the first order information is approximated by -

~
~

M
log M + ij(j) log p(3).- (16)

2

D,

By definition, the first order information measures devi-
ation from the equi-probable distribution. We can also
say by definition that the information represents to what
extent specific hidden units are affected by input units
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on average. The second order information D, is approx-
imated by

M
D: ~ - p(i)logp(s)

=1

£ 32 8 1 Rlogp( 1B, (1)
k i

The second order information represents deviation from
the independence. As the second order information
is larger, specific pairs of input and hidden units are
strongly connected, while all other connections are close
to zero. Structural information is approximated by

SI = aDj+ (1 —-a)Dy

alog M + (2a - 1) >_n(j)logp(s)
J

-~

H(1-a) Y7 TP 1K) loga(j | K).(18)
k J

Differentiating structural information with respect to
input-hidden connections wj, we have

L1 ~ (3a-1)logp(i)Qn
Wik
—(2a—-1))_p(m | k)logp(m)Q;x
+(1 — o) logp(j | k)Qjix
~(1-a)Y_p(m|k)logp(m | k)
xQjk (19)
where ]
Qjx = ————E:zgnk (20)

Input-hidden connections are updated so as to maximize
information.

In addition to controlling information, errors (repre-
sented in a cross entropy in this paper) between targets
and outputs should also be minimized.

4 Application to XOR Problem

The simple XOR problem was used to demonstrate the
performance of the structural information control. First,
we examine whether the parameter a can efficiently be
used to control structural information. Figure 5 shows
the normalized second order information RD, as a func-
tion of the parameter a. The second order information
is decreased as the parameter «a is increased. When the
parameter « is zero, only the second order information
D, can be increased. On the other hand, when the pa-
rameter o is one, the first order information D; can be
increased. Thus, as the parameter « is increased from
zero to one, the second order information D5 is expected
to be decreased as demonstrated by Figure 5.
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Figure 5: The second order information for ten differ-
ent values of the parameter a represented on the right

hand side of the figure. In the figure, 3 is the learning
parameter.

Then, keeping the parameter a a constant, the learn-
ing parameter 3 is increased as much as possible at the
expense of the increase in training errors. As shown in
Figure 6, an original network architecture in (a) can be
transformed to (b) and (c) by controlling structural in-
formation. Figure 6 (b) shows an internal representation
when the parameter « is set to zero, that is, only the
second order information is used to control information.
As can be seen in the figure, the bias, the first, and the
second input unit are connected with the first, the sec-
ond, and the third hidden unit. Completely specialized
connections are generated.

On the other hand, Figure 6(c) shows an internal rep-
resentation when the parameter « is set to one, that is,
only the first order information is used to control infor-
mation. As can be seen in the figure, just one hidden
unit is connected with all input units and bias, while all
other hidden units are not used.

In both cases, the number of input-hidden connections
is the same. However, completely different internal rep-
resentations are obtained. Structural information can
freely control internal representations: concentrated to
specialized internal representations.

5 Application to Language Ac-
quistion

5.1

We evaluated relation between information and general-
ization performance by using complicated problems con-
cerning language acquisition. The problems were com-
plex enough to test the performance, because the actual
existence of consonant clusters as well as the simple the-
oretical inference must be inferred by neural networks.

Consonant Order Detection
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Figure 6: Internal representations generated by struc-
tural information control. (a) depicts an original net-
work architecture. (b) and (c¢) show representations for
the structural parameter o = 0, and 1.0.
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Figure 7: Networks to infer the theoretical and actual
existence of consonant clusters: (a) /pr/ and (b) /sp/.
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In natural languages, the combination of consonants is
regulated by some rules. For example, the combination
has been said to be regulated by a sonority principle. In
actual natural languages, for example, in English, many
exceptional cases to the sonority principle, have been ob-
served. For example, a consonant cluster /sp/ (speech)
is well-formed in English. However, by the sonority prin-
ciple, this is not well-formed. In experiments, in addition
to the theoretical inference by the sonority principle the
inference of the actual existence of consonant clusters
are incorporated. Figure 7 explains the inference for the
experiments. A consonant cluster /pr/ is theoretically
possible and actually exists. Thus, a network must be
trained to produce an output string 11, as shown in Fig-
ure 7(a). The first bit and the second bit in 11 represent
the theoretical and the actual possibility. The consonant
cluster /sp/ is well-formed in spite of the theoretical im-
possibility. Thus, the network should produce 01, as
shown in Figure 7(b).

The number of input, hidden and output unit were
10, 10 and 2 units respectively. The number of training,
validation and testing patterns were 50. The fifty train-
ing patterns were so small that by using the standard
BP method, at the extremely earlier stage of learning
over-training occurred.

We increased total information D as much as possi-
ble. For almost all values of the structural parameter a,
total information D can be close to a maximum value.
However, we could see that generalization errors are ap-
proximately independent of total information D. Figure
8 shows generalization errors as a function of normal-
ized total information RD. Values in the figure show
the structural parameter a. As shown in the figure, gen-
eralization errors are independent of total information.
However, we can see that as the structural parameter is
smaller, generalization errors are smaller.
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Figure 8: Generalization and total information (RD).

Figure 9 shows generalization errors as a function of
the normalized second order information RD;. We can

detect two distinct groups. In one group, the second
order information RD; is small, and generalization er-
rors are relatively high. On the other hand, in another
group, the second order information RD is relatively
high, and generalization errors are small. These results
suggest that generalization errors are smaller, as the sec-

‘ond order information is larger.
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Figure 9: Generalization and the normalized second

order information RD».
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Figure 10: Generalization comparison with five meth-
ods: standard BP methods, weight elimination methods
[5] and structural information methods (o = 0,1, 0.26).

We compared generalization performance by control-
ling structural information with the performance by
other traditional methods. Figure 10 shows generaliza-
tion errors by standard BP methods, weight elimination
methods [5], methods to control structural information.
As shown in the figure, generalization errors are largest
(RMS: 0.235; error rate: 0.226) by standard BP meth-
ods. All values in the figure were averages over ten dif-
ferent runs. By using the weight elimination by Weigned

_6_



et al. [5] with good reputation for improved generaliza-
tion, generalization errors are slightly decreased to 0.229
in RMS of RMS (error rate: 0.18). When the struc-
tural parameter « is set to one, that is, only the first
order information D; is maximized, generalization er-
rors are slightly decreased to 0.223 in RMS (error rate:
0.178). When the structural parameter a is zero, that
is, the second order structural information is exclusively
maximized, generalization errors are further decreased
to 0.215 in RMS (error rate: 0.176). Finally, the low-
est level of generalization errors (RMS: 0.193; error rate:
0.138) is obtained when the average parameter value is
0.26.

6 Conclusion

We have introduced the structural information in order
to control freely the simplification process of network ar-
chitectures. The structural information is composed of
two kinds of information: the first and the second order
information. The first and the second order information
represent the distribution of hidden units and input hid-
den connections. By changing the structural parameter
o, we can control a simplification process.

As mentioned, the simple structural information can
be extended to the more general structural information,
composed of nth order information. With this general-

ized version of the structural information, network ar- -

chitectures can more freely be controlled.
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