1998 international Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

AUTOMATIC DESIGN OF NEURAL NETWORKS BASED ON GENETIC ALGORITHMS

CHEN Ching-Han

Department of Electrical Engineering
I-Shou University, Kaohsiung, Taiwan, R.O.C.
Email : neotech@ms19.hinet-net

ABSTRACT

Nowadays, the theories, models, methods and tools
concerning neural networks are approaching complete
and mature. Nevertheless, there still exists a main
difficulty for industrial applications. That is how to
design optimal network architecture according to every
specific problem. The task includes optimization of
network size, metwork topology, connection weights
between neurons etc. This paper proposes-an automatic
design methodology of neural networks based on genetic
algorithms. We analyze firstly the building blocks of
neural networks in order to obtain design specifications.
Then, we develop a genetic encoding method, after
which the evolution process is elaborated for finding the
optimal neural network. The results of our experiments
reveal that our methodology is superior to the error back-
propagation algorithm both for its executing efficiency
and performance.

1.INTRODUCTION

There have been a number of successful cases using
neural networks as an automation technology, = for
example, applications in the complex non-linear
information processing, pattemn recognition, time series
prediction, intelligent control, etc. The success of those
applications depends mostly on the design of the specific
network architecture for specific problem rather than the
learning algorithms for the networks [1]. However, an
efficient and systematic method for neural network
architecture design doesn't exist till nowadays. Let's take
the generally applied multi-layer perceptron as an
example. The topology (number of hiding layers, number
of neurons and connections between neurons) before
leaming and the leaming parameters are decided by
experiences or the try-and-error method. Concerning the
connection weight, it is generated by way of learning like
the famous error back-propagation method. But, some of
the neural network models are not governed by
differential equations. The recurrent neural network is
the one with which it is impossible to obtain connection
weights via the error back-propagation method [1].

The aforementioned difficulty restricts the
applications of neural networks. Especially, in the field
of industrial automation, the developer of a neural
network application system always needs to rapidly
design a prototype according to the problem's
particularities and its environment. The prototype has to

...8..

satisfy the optimization of both performance (problem
solving capability) and efficiency (executing speed).
Aiming at this problem, this paper will propose a
methodology using genetic algorithms (GA) in the
automatic design of neural networks.

Presently, nearly all the commercial neural network
development systems follow the procedure of design-
evaluate-test cycle [2]. At the stage of architecture design,
the ‘network structure, the connection topology, the
transfer function of neurons, the learning algorithm and
the learning parameters must be determined previously.
The stage of evaluation aims at the simulation of neural
network and the evaluation of its performance via
training data. At the final stage, the tests are carried out
with testing data. If the result is not satisfactory, the
architecture has to be modified, which means that a new
design cycle restarts. Such design procedure implies that
the designer of neural network architectures searches at
random or through some heuristics among all possible
network configurations for the optimal one. If a network
configuration can be formalized or parameterized, the
original design problem is regarded as a parameter
optimization problem.

Beside other optimization techniques, the GA owns two
important properties: first, it forms a global optimization
method by way of stochastic search, which is different
from local optimization methods like conjugate gradient
method [1]; secondly, it adopts multi-agent searching
strategy enabling the parallel processing performance,
which is different from the single-agent searching
strategy like simulated annealing method [3]. Those two
properties make GA capable to find the optimal solution
in the high-dimensional searching space. The sheer
number of recent researches integrating GA and neural
networks proves the possibility of combining these two
techniques [3]{4][5].

Nevertheless, there exist several obstacles in combining
GA and neural networks for applications [6]{7]. First of
all, the applied problem must be formalized into input-
output mapping model of neural networks. The possible
neural network architectures corresponding to this model
constitute a constrained searching space. Before seeking
for the optimal neural network architecture, it is
important to elaborate the encoding method, then to
decide the required precision of the solution. The higher
the precision is, the longer the code will become so the
space and the time needed for searching will be increased.

On the contrary, if the precision is too low, the suitable
solutions may probably be missed. Finally; it comes to
choose or to design new genetic operators such as
selection, crossover, mutation and other problem related
genetic operators.

This paper is divided into five sections. In section 2, we
will propose neural network building blocks, which
provide systematically the neural network design
specifications. In section 3, we will firstly determine the
neural network/genetic encoding mapping. Then, we will
define the performance evaluation function of neural
networks and elaborate the evolutionary searching
procedures. The section 4 demonstrates an experiment to
compare the conventional approach and ours. A
conclusion is given in the last section.

2. ANALYSIS OF NEURAL NETWORK BUILDING BLOCKS

The purpose of analyzing neural network building blocks
is to acquire a modular and hierarchical network
architecture with which we can easily modify, extend or
build more complex neural network architecture. In
addition, it is facile to extract design specifications from
building blocks. The biggest challenge of this task comes
from the assurance of the independence of every building
block and the consideration of a good communication
interface between building blocks in order to facilitate
the design and the synthesis of complex networks.

Figure 1 shows a single neuron building block.
When N incoming stimulating signals reached the neuron,
they will be multiplied by N connection weights w;, i =1,
2,...N. The summation of the multiplication will be added
up by a bias b and the result is obtained after the transfer
function f7).

'13’1'11.‘ w2

NN

©
Figure 1 Neural network building blocks

We define f) to be a parameterized transfer function:
ot}
=f(x)=—=% ¢))
y=f(x) g
where a;is used to modify the form of the function and

a, its scale. x and y are respectively the input and the
output. This function can be considered to be a

9

1998 Intemational Computer Symposium
Workshop on Artificial Intelligence

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

generalized sigmoidal function. When a,= 1 and a,=1,
we obtain the normal sigmoidal function:

y=f(x)=

2
1+e” @

A neural layer is composed of L parallel single neurons
(see Fig.1(b)). A feedforward multi-layer neural network
is composed of K neural layers connected in serials. The
output of each layer will become the input of the
following layer (see Fig. 1(c)).

From the building blocks of the neural network, we can
easily extract their design specifications. For each neuron
we have a set of design parameters Pgy including:

array of weights : { w;,i=1,2, .., N};

bias: b;
adjustable parameters of the transfer function: « , X &
a;

>

For each neural layer, we obtain thus a set of design
parameter Py,

PNL : {PSNJQj = 1’ 2’ esey L}
Finally, we get a set of design parameters Py of the
neural network

PNN : {PNL"h': 1’2’--"K}

3. AUTOMATIC DESIGN OF NEURAL NETWORKS

The conventional design method of neural networks

relies on the try and error method or on the heuristic

method to determine firstly the transfer function of
neural networks and the learning parameters of learning

algorithms. Then, the analytical method is applied to

compute connection weights between neurons, which is

the so-called learning. In this paper, we use GA in the

search of the optimal neural network configuration

comprising the weight of each single neuron, the bias.
and adjusting parameters of the transfer function, in

order to achieve the automatic design.

3.1 GA and the principles of the optimal search

The typical GA performs their evolution process in a
binary searching space noted Q={0,1}". GA is used to
find the maximum of the performance evaluation
function Fin Q. The domain is positive real :
F: Q={0,1}">R*

An element of Q is called an individual or a
chromosome. Here, the chromosome is structured by a
binary string with length N, A population ITis composed
of Npop chromosomes. The genetic operators of GA
make the population II; of the i generation evolve to the
offSpring generation, noted population II ,,. Fach
generation is regarded as an iteration in GA. For discrete
dynamic systems, it is a time step. The three most often

used genetic operators are selection, crossover and
mutation [8].

19898 International Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O0.C.

An evolution process can be described as follows:
L. Initialization of the population

Normally, individuals of the initial population I, are
generated at random. Every individual is assigned a
value arbitrarily from {0,1}. But in certain cases, we
could also take some known near-optimal solutions for
the initial population.

II. Performance evaluation

It is brought out by the calculation of evaluation function
for each individual.

II1. Selection

By way of duplication, an identical but temporary
population II' is created from the populationII; . The
number of duplication of each-individual is proportional
to its performance.

IV. Crossover

We take randomly from II' pairs of individuals for
crossover operation. The individuals of each pair
exchange their bit values to produce offspring which
form the population II".

V. Mutation

The mutation operation alters randomly certain bit values
of the individuals with a small probability.

VL. Production of the next generation IT;,,= 11"

When the (i+1)* generation is produced, check if the
evolution termination criterion is reached. If not, take II
., for the population of i* generation and go back to step
1L

Genetic operators are of decisive importance for GA's
performance. They possess double functionality [9] : on
one hand, they permit the evolution process taking place
around the better individuals (exploitation) ; on the other
hand, they enable the evolution process to explore virgin
domains (exploration). Among the three operators
mentioned above, selection enables the current best
solution to go on exploiting. Mutation permits the
exploring of solutions in global searching space.
Crossover is gifted with both mechanisms. It makes the
individuals of the offspring generation differ largely from
those of the parent generation. However, the exploration
happens only in a limited region around individuals of
the parent generation.

3.2 Genetic encoding of neural networks

The binary string is the most common data structure used

-10-

in GA [9]. Therefore, we adopt it for neural network
encoding. We enumerate design parameters of neural
network in series and translate them into binary string
according to the required precision, so we will get a
binary encoded individual.

For a real-value parameter, the length of its binary string
depends on the required precision. Assume a variable x
whose value domain is [g, b]. If the required precision is
T decimal places for x, it implies that x will have (b -
a)x10” resolution ranges. Thus, The needed length of the
binary string m can be obtained via the following
formula :
2™ < (b-a)x107< 2™-1 ?3)
As for decoding the binary string into real-value, the
formula is : »
x=a+decimal(binary_string)x 6-2_ (4)
27 -1
Figure 2 demonstrates how a single neuron is encoded
into a binary string. In this figure, each design parameter
is encoded in four bits. The total length of the binary
string is Ngy=(N+3)x 4, where N is the number of the
single neuron weights. Regarding the single neuron with
L layers, the total length of the binary string is Nyy=Lx
Ngn As for a neural network with K layers, its total
length of the binary string is Njw=Kx Ny

s
+—{=]
.
3]
Encoding l I Decoding
(I[OTI[I]2]010 1] === Ja[2]3 00 o[0 2f1]of2 [o]2 01 0]
N, N U N N

Figure 2. Encoding of a single neuron by a binary string
3.3 Evolution process of neural networks

The population is the object of GA process. From the
viewpoint of the optimization, if the number of
individuals constituting the population is large, it is
favorable for finding the global optimum, but the -
convergent speed will therefore be diminished. Since our
purpose is to find the optimal neural network architecture,
we generate several neural networks to form a population
and apply the genetic operators including selection,
crossover and mutation in the population to search step
by step the optimal neural network configuration.

We use a set of observed data {J, O,i= 12, .., M} »
where I, is the feature vector, O, is the associated
observed output, M is the number of data records. Taking
feature vectors for input and applying them in the neural
network, we will get a set of inferred output {7}, i =

1,2, .., M}. The average error function of the neural
network can be expressed as :

L $%0,,0-T,, 1
AMXNoy) it 1 /

)

err(x) =

where O, , is the j* observed output of the i* data and T}
is the j™ neural network inferred output of the i data ;
N, is the number of output data.

We define the performance evaluation function of neural
network as follows :

gk)=1-err(x) ©
The evolution process of the population of neural
networks is formalized by the following algorithms :

Step 1. Initialization of the population

a. Set the number of generations Ng for
terminating the evolution.

b. Set the number of neural networks Npop for the
population.

c. Set the probability of crossover p.. and
mutation pogy,.

d. Generate randomly Nyqp neural networks with
binary string v;,i=1, 2, ..., Npgp.

Step 2 Performance evaluation of neural networks

a. Use formula (4) to transform v; into real-value
parameter x; * i =1, 2, ..., Npop-

b. Construct the neural netwdrks with x; and test
them with observed data. Use formula (6) to
evaluate x; .

c. Assign the evaluation function value g(x;) to the
performance fitness of the neural networks, that
is fitness(y;) = g(x,).

Step 3. Selection

Use roulette wheel method [8] to carry out the

following steps :

a). Find out firstly the performance fitness of the

whole population of neural networks :

F= fimess(v) @)
Then, calculate the probability of being selected
for each neural network v;:
_ fimess(v,) 8)
" F
Finally, accerding to order of the neural networks,
calculate the accumulated probability :

AW ®)
After that, execute steps b) and ¢) with each neural
network.

b). Generate a random number from {0, 1].

c). If r < q,, choose the first neural network ;
otherwise, choose the k" neural network to
make g, <r<q;

Step 4 Crossover

According to the crossover probability p.,, it is

anticipated that crossover of p..,x100% neural

networks will take place.

a). For each neural network v;, generate a random

‘I‘l

1998 International Computer Symposium
Workshop on Artificial Intelligence

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

number 7, from [0, 1]. If 7, € Py » take v; for a
parent neural network. The parent neural
networks selected are matched to form pairs.
b). For each pair of neural networks v, v v, , use
one-point-cut method [8] to choose randomly
a position so that the portions of the two
neural networks beyond this position to the
right can be exchanged to the offspring v/, and
vh.
Step 5 Mutation
Among the whole population, p..xNuXNpgp
bits will be selected for a mutation, where Ny
is the number of bits of a neural network and
Npop , the number of neural networks of the
population. We execute the following mutation
operations :
. 2). Generate NyyxNpoprandom numbers r;(j = 1,
2, ..., NawxNpop) from [0, 1]. If 1; < ppe
note the position for mutation as pos =j .
b). From each mutation position pos , we are
able to find its neural network i and its
location bit_no in the neural network.
i = quotient(pos / N\);
bit_no = remainder (pos / Ny);
Then, flip the bit value of the location.
Step 6 : verify the termination criterion
If the iterations reach the number N,
terminate the evolution and save the neural
network with the optimal performance.
Otherwise, return to step 3 and continue the
evolution of the next generation.

4. EXPERIMENTATION .

In order to validate the automatic design methodology of
neural networks that we have proposed, we use Fisher's
iris data [10] to automatically generate a feedforward
multi-layer neural network. Besides, we train a back-
propagation neural network with the same topology via
this set of data. Finally, we compare the efficiency and
the performance of these two approches.

Fisher's iris data is a set of experimental data widely used
in the comparison of diverse recognition models. It has
150 records of data with three categories (each category
contains 50 data). Each record of data possesses four
feature values and an observed category. In our
experiment, the observed category is transformed into
three observed outputs. Category 1 corresponds to [1, 0,
0] ; category 2 corresponds to [0, 1, 0] ; category 3
corresponds to [0, 0, 1].

The back-propagation network adopted is an ameliorated
version of the back-propagation advanced by Minia and
Williams [11]. They used the learning rate adaptation and
momentum adaptation techniques to accelerate the
convergence of the learning algorithms and to increase
the precision. Since the back-propagation network takes
sigmoid function for the neurons' transfer function, we
must normalize the original data to [0, 1]. The result of

1998 International Computer Symposium
Workshop on Adificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

momentum , An . momentum change factor per learning per learning cycle.

cycle; a : learning rate, Ac : learning rate change factor

Table 1. Back-propagation neural network training by iris data

Learning parameters of back-
propagation neural network Result
n An o Ac | Training cycle Training time(sec) _error(x100%)
02 0998 02 0999 5,000 15.4 1.43
1.0 0995 05 0.99 5,000 15.4 1.45
2.5 099 08 0985 10,000 30.8 1.35
50 0985 10 0.980 15,000 46.2 1.34
We apply the automatic design procedures of the neural =0.01 and Pees,=0-6 .
networks in the same experimental data. The result is
shown in table 2. We adopt for every experiment po.
Table 2. Automatic design of neural networks
Evolution parameters Optimal neural networks obtained
Npor Nea Evolutionary ermror(x100%) performance
time(sec) index(x100%)
20 50 6.2 0.78 99.22
40 100 15.6 0.58 99.42
50 50 12.4 0.65 99.35
100 100 58.3 0.53 99.47

The comparison between table 1 and table 2 reveals that
our method is much better than the conventional error
back-propagation algorithm both for the executive
efficiency and for the performance.

5. Conclusion

Our automatic design methodology of neural networks is

caracterized by the following virtues :

- The neural network building blocks are of medular and
hierarchical structure. It is rather easy to organize and
to modify them. Moreover, the transformation between
neural networks and genetic encoding is linear and
reversible. We can thus extend this methodology to
design neural networks with different topology like
recurrent neural network, bi-directional associative

" memory, etc.

- The single neuron uses adjustable transfer function
instead of the classical fixed transfer function. In
neural network, the transfer finctions of neurons may
be different from each other for this reason. Such kind
of neural networks will be more suitable for non-linear
modeling and the models obtained will be more
precise than conventional neural networks.

- The a,anda , of the formula (1) are able to adjust the
form and the scale of single neuron'’s transfer function.
That's why the training data need not to go through the
normalization process. In applications like simulation
and prediction of dynamic systems, this architecture is
obviously more appropriate than the conventional one.

- In our design methodology, the evolutionary computing
replaces the analytical learning algorithms. The search
is carried out by parallel and multi-directional ways

and is thus capable of escaping from local optimum to
find the global optimum.

- The length of genetic codes is variable, which means
that the designer of neural networks can increase the
number of bits according to the required precision. On
the contrary, if the efficiency is considered to be an
important factor, the number of bits is to be decreased.
For hardware implementation of the neural networks,
this functionality may be helpful in the optimization of
performance/surface.

6. Acknowledgement

The support received from the National Science Council,
Taiwan, R.O.C. under the grant No. NSC-87-2212-E-
214-003, is gratefully acknowledged.

References

[1] Hecht-Nielsen, R, Newrocomputing. Reading, MA,
Addison-Wesley, 1990.

[2] Wong, F. & Tan C., "Hybrid Neural, Genetic and
Fuzzy Systems," in Trading on the Edge (Deboeck
G. Ed.), John Wiley & Sons, Inc., 1994.

[3] Kirkpatric S., Gelatt C. and Vecchi M., "Optimization
by simulated annealing”, Science, Vol.220, No.4598,
pp.671-680.

[4] Xin Yao, "Evolutionary Artificial Neural
Networks",Int. Journal of Neural Systems, 1993, 4,
3, pp-203-222.

[5] Frederic Gruau, "Genetic Synthesis of Boolean
Neural Networks witha Cell Rewriting
Developemental Process”, Combinations of Genetic

..12..

Algorithms and Neural Networks, pp. 55-74, IEEE
Computer Society, 1992.

(6] D. J. Montana and L. D. Davis, "Training
feedforward networks using genetic algorithms”, In
Proceedings of the International Joint Conference
on Artificial Intelligence, Morgan Kaufmann, 1989.

[7] G. E. Miller, P. M. Todd and S.U. Hegde, "Designing
neural networks using genetic algorithms”, In J. D.
Schaffer, ed., Proceedings of the Third International
Conference on Genetc Algorithms, Morgan
Kaufmann, 1989.

[8] David E. Goldberg, Genetic algoritims in search,
optimization and machine leaming, Addison-
Wesley Inc., 1989.

[9] Zbigniew Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Springer-Verlag,
1994.

[10] R. Fisher, "The use of multiple measurements in
taxonomic problems”, Annals of Eugenics, vol. 7,
part I, pp. 179-188, 1936.

[11] A. A. Minia and R. D. Williams, "Acceleration of
back-propagation through learning rate and
momentum adaptation”, Proceedings of the

International Joint Conference on Neural Networks-)

90, Vol.1, pp.676-679.

‘]3

1998 Intemational Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

	
	8
	9
	10
	11
	12
	13

