1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

A SCHEME TO ACHIEVE WEIGHTED MAX-MIN FAIRNESS
ALLOCATION FOR HIGH SPEED NETWORKS

Yen-Jen Chen and Suh-Yin Lee
Department of Computer Science and Information Engineering,
National Chiao Tung University, Hsin-Chu, Taiwan, R.O.C.
Email: {ctchen, sylee} @csie.nctu.edu.tw

Abstract

In this paper, a scheme is proposed to achieve the
weighted max-min fairness on bandwidth allocation in
networks. Since allocation is done according to the
weights of all the user flows, the scheme supports
various bandwidth requirements of users. The scheme
can achieve the fairness allocation rapidly once the
network condition changes. Before the fairness
allocation is achieved, the switches an active flow
passes through may allocate individual bandwidth
shares to the flow. With the proposed scheme, for this
active flow the smallest share can be quickly found and
is allocated. For each active flow if its bandwidth shares
at different switches converge to the smallest share, the
weighted max-min fairness is achieved. The correctness
has been proved in this paper. On the other hand, the
scheme is efficient since each switch takes O(log N) to
allocate bandwidth to N active flows.

Keywords: Flow control; Bandwidth allocation;
Weighted max-min fairness; Constrained flow; Red
black tree

1. Introduction

One of the most important issues of flow control
for networks is to allocate the available bandwidth to
user flows fairly. Each of the flows, assumed with a
fixed route, would set its source rate to the allocated
bandwidth to avoid network overflow. Two important
criteria for the bandwidth allocation are the max-min
fairness [1][2] and efficiency. The goal of the max-min
fairness is to maximize the smallest flow bandwidth,
and once this is achieved then next is to maximize the
second smallest flow bandwidth and then next. The
efficiency is in terms of the response time from the
change of the network condition until a new max-min
fairness allocation is achieved.

For example, in Fig. 1, a scheme A achieves the
max-min fairness by the following way. Initially the
switch sl and s2 take 7 seconds to allocate the
bandwidth for the flows passing through link! and link2.
For fairness, sl allocates the bandwidth of 75 Million
bits per second (Mbps) for each of flow | and 2 and s2

allocates 50 Mbps for each of flows 1, 3, and 4. And
then the switches take 7z seconds to propagate the
allocation information to their neighbor nodes. After the
first propagation, the source nodes of flow 3 and 4 get
the allocation 50 Mbps while those of flow 1 and 2 get
the allocation 75 Mbps. When sl receives from s2 the
information 50 Mbps of flow 1 at link2, it would
allocate the new bandwidth 50 and 100 Mbps for flow 1
and 2, respectively. After the second propagation, the
source nodes of flow 1 and 2 get the allocation 50 and
100 Mbps, respectively. Then the max-min fairness

. allocation 50, 100, 50, and 50 Mbps for flow 1, 2, 3, and

4 is achieved. Thus the response time for this example is
27 + 2n. In fact, the scheme A is very efficient, since it

takes only two times of propagation to achieve the
fairness while many schemes need more.

2 3
/_I' link] ﬁ link2 ?\

! —] N—
— Ty >
s s2 4 s3
T l T

- propaga-
H tion time

computa-

T T JHPE

H H tion time
y response
k time

The capacities of link] and link2: 150 Mbps.
The max-min aliocations for flow 1, 2, 3, and 4 are 50, 100,
50, and 50 Mbps, respectively.

Fig. 1. Response time for max-min fairness

Recently, the max-min fairness has been adopted
by the ATM Forum to evaluate the performance of
different flow control schemes for the Available Bit Rate
(ABR) service [2]. These well-known schemes for ABR
either do not achieve the fairness or are not efficient.
The Congestion Avoidance using Proportional Control
(CAPC) scheme [3] takes a long response time to
achieve the fairness. The Explicit Rate Indication for
Congestion Avoidance (ERICA) scheme [4] overcomes
the problem of CAPC, but not always achieve the
fairness. The Max-Min scheme [5] solves the above
problems while its algorithm takes O(N?) time in the

-258-

worst case to allocate bandwidth to N active flows
passing through a link.

In this paper, a scheme, named Weighted Max-
Min Fairness (WMF), is proposed to rapidly achieve the
max-min fairness allocation. Its efficiency is better than
that of the Max-Min scheme since it requires the same
number of propagation as Max-Min to achieve the
fairness and takes only O(log N) time in the worst case
for bandwidth allocation at each switch. In addition, the
scheme proposes the method for weighted bandwidth
allocation, which supports users with various bandwidth
requirements.

For weighted fair allocation, we define the
weighted max-min fairness as follows. Assume each
flow f is associated with a weight Bo.f. The normalized
bandwidth Zf of flow f is the bandwidth allocated to f
divided by its weight Bo.f Let 4 be the normalized
bandwidth vector of all the active flows in a network,
numbered from J/ to K, i.e. 4= (..., 4i,...),i=1,2, ., K.
Definition 1. (Feasibility) A normalized bandwidth
vector Ais said to be feasible if it satisfies the following
constraints: the normalized bandwidth 4i > 0 for any
active flow i and F, < CA, for any link [in the network,
where F; is the sum of the allocated bandwidths of the

-active flows passing through link [and CA, is the
capacity of link /.

Definition 2. (Weighted Max-Min Fairness) A
normalized bandwidth vector 4 is weighted max-min
fair if it is feasible and for each active flow i, for
maintaining feasibility, the normalized bandwidth Ai
cannot be increased without decreasing A4j, for some
active flow j where 4j < Ai.

/I linkl ﬁ link2 ?\
_Z *) >
sl SZ\i s3

The capacities of flow| Bo | 4 | 4*Bo |

linkland link2:

150 Mbps I 3110 | 30
2 2 60 120

A*Bo: allocated 3 5 10 50

bandwidth in Mbps 4 7 10 70

Fig. 2. Weighted max-min fairness allocation

For example, Fig. 2. shows four flows in the 3-
switch tandem network and the vector 4 (10, 60, 10, 10),
is a weighted max-min fairness allocation. Obviously,
whenever we increase one element of the vector, there
must be another element decreased for maintaining
feasibility.

The remaining of this paper is as follows. In
Section 2, the proposed scheme is described. Then the
correctness of achieving the weighted max-min fairness

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

allocation is shown in Section 3. A logarithm-time
implementation for the scheme to allocate bandwidth at
each switch is shown in Section 4. In Section 5, we give
the comparison with some well-known flow control
schemes. Finally, in Section 6 we give the conclusion.

2. Proposed scheme

The basic idea of the proposed scheme WMF is as
follows. Initially, each active flow obtains a weighted
bandwidth share at each switch. Thus an active flow
might have different shares at the switches it passes
through. The share of the flow at a switch is propagated
to the neighbor nodes along the path of the flow. When a
switch receives a bandwidth share of the flow from its
neighbor node, it compares the external share with the
bandwidth share of the flow in the switch itself (i.e the
internal share). If the external share is less than the
internal, the internal is updated to the external and the
flow is said constrained since the internal is limited to
the external. If the external share is no less than the
internal, the internal will not change and the flow is said
unconstrained. The bandwidth is allocated to the
constrained flows according to their internal shares, and
the remaining is distributed to the unconstrained flows
proportional to their weights. The new bandwidth share
of each flow at the switch will be propagated to the
neighbor nodes. Finally, the bandwidth shares of the
flow at the switches it passes through converge to a
common share. For each active flow if its bandwidth
shares at different switches converge at a common share,
the weighted max-min fairness allocation is achieved.

It 1s necessary for a scheme to determine
efficiently if flows are constrained or unconstrained,
since the ways of allocating bandwidth to the two kinds
of flows are different. It is found that for a link the
normalized bandwidth allocated to the unconstrained
flow is always larger than that of the constrained. Thus
the active flows passing through a link can form an
ordered list according to the increasing order oftheir
normalized bandwidths. The list is named Buoy_list
since the sublists of constrained and unconstrained
flows are like the parts of a buoy under and over the
water, respectively. WMF takes advantage of binary
search on Buoy_list to find the first unconstrained flow,
named critical flow, and thus all the constrained and
unconstrained flows are found. Since flows would
become active or idle, Buoy_list changes dynamically.
To achieve the insertion or deletion of a flow in the
Buoy_list with N active flows in O(log N) time,
Buoy_list is implemented as a balanced binary search
tree, named Buoy_tree.

By control packets the bandwidth shares of active
flows at any switch can be propagated to its neighbor
nodes. WMF assumes that the source node of each flow
marks its control packets with “forward” and sends them
into the network periodically. The control packets pass
through the switches along the path of the flow. After

-250-

1998 International Computer Symposium
Workshop on Computer Networks, Intemet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

they are received by the destination node, their marks
are replaced with “backward” and returned to the source
node along the original path. The bandwidth share of the
flow is stored in the expected rate (ER) field of control
packets. Initially, the ER is set to the peak rate of the
flow. After the control packet passes through a switch,
the ER is set to the bandwidth share of the flow at the
switch. The source of the flow sets its sending rate to the
ER of the control packet, as soon as it receives the
control packet with the mark “backward”.

Each switch maintains the information (ERf, ERb)
for each active flow passing through it, where ERf and
ERb denote the value of ER of the latest received
control packet marked with “forward” and “backward”,
respectively. Let ERm be the minimum of ERf and ERb.
In other words, ERm is the currently smallest external

share of a flow. Thus, for a flow at a switch, if its

normalized ERm (i.e.) is less than its

(o]
normalized bandwidth share at the switch, it is
constrained; otherwise, unconstrained. At each switch a
process, named DIVIDING, of WMF is used to divide
the active flows passing through a link into constrained
and unconstrained. The following is the notations used

in DIVIDING.

e CA the capacity of the link.

* N the number of the active flows passing
through the link.

* Lk flow identifier. (i, j, k are integers
from / to N.)

e L the set of the active flows which are
constrained.

s H the set of the active flows which are
unconstrained.

* ERm the minimum of ERf and ERb of a
flow.

s A the normalized bandwidth of a flow.

* Bo the weight of a flow.

* ERfi ERb.i, ERm.i, Bo.i, Ai
and fof a flow i.

ERf, ERb, ERm, Bo,

Assume all the active flows passing through the

link have been sorted according to their normalized

ERm

3

ERm, i.e.

. If two flows have the same
0 Bo

they are further sorted according to their flow identifiers.

Let the sorted flow list be iy, i,,..., iy and be defined as
follows.
Definition 3. The Buoy_list, i), i,,..., iy, of a link is an

ordered list of the active flows through the link, where

ERm.i > ERm.i .

Bo.i ,

- for p < , and if
Bo.i, 1

ERm.i , ERm.i v
= — i, <,
Bo.i v

Bo.i ,

To efficiently distinguish the constrained from
unconstrained flows, the process DIVIDING scans the
active flows in Buoy_list. Let f be a flow passing
through the link. When a control packet of flow k arrives
at the switch and ERm.k changes or when flow &
becomes active or idle, the process is executed as
follows.

Process DIVIDING (Buoy_list, k);
<1> if (ERm.k changes)
/* re-sort the Buoy_list since ERm.k changes */
Delete (Buoy_list, k);
Insert (Buoy_list, k);
}
if (flow k becomes active) Insert (Buoy_list, k);
if (flow k becomes idle) delete (Buoy_list, k);
/* Let Buoy_listbe i), i,,..., iy */
<2> L={();H={i, i, iy;p=1;
_(CA-3" ERmi,)

<3> /=

k4

Bo.i
4=p 4

ERm.i ,

<4> if (——&
Bo.,

<A
L=LU{i,,};H=H-—{iI,};p=p+ l;
if (p < N) goto <3>;

}

<S> r=p; Ai,=4:

First, DIVIDING adjusts Buoy_list to reflect the

change due to flow k. Then all the flows passing through

-260-

the link are assumed unconstrained and placed in the set
A initially. The link bandwidth minus the bandwidth
allocated to the constrained flows is allocated to the
unconstrained flows proportional to their weights. Thus

the normalized fair share of flow i, is 4, computed in

ERm.i,
step <3>. If —— < 4, the normalized bandwidth
Bo.i
14
ERm.i,
allocated to i, is limited to ————— . Flow i, is thus
0.l

I)
constrained and moved into the set L. On the other hand,

ERmi,

if /< ————, i, is unconstrained. Finally, the active

Bo.i,

flows are partitioned into the sets L and H, by the flow i,

which is defined as follows.

Definition 4. (Critical flow) For a link, with the process
DIVIDING, the Buoy_list i), i,,..., iy is partitioned into
constrained and unconstrained flow sets, L and H. If H
={i, ip..., iy for 1 <r <N, i, is the critical flow. If H
= {}, there is no critical flow.

With the critical flow, for a flow i,, the normalized

ERm.ip
bandwidth Ai, is ————— if i, is in L; otherwise Ai,

Boi,

is Ai. There is an important property about the

normalized bandwidth as follows.

Theorem 1. For a link, the normalized bandwidth of any
constrained flow is less than that of any unconstrained
flow.

Proof)‘All the unconstrained flows are of the same
normalized bandwidth as that of the critical flow i,
Since i, is the constrained flow with the largest
normalized bandwidth, to prove the theorem we
compare the normalized bandwidth £i, with i ;. From
the step <3> and <4> of DIVIDING, we have that £/, =
(CA-3" ERmi,) ERmi_,

and Ai,, -
Bo., Bo.i,

<

q=r

1998 internationat Computer Symposium .
Workshop on Computer Networks, Internet, and Multimedi
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0O.C.

r-2 .
(CA-3, ERmi)

N :
Zqzr_l Bo.i,

follows.

. We write Ai, — Ai,, as

Ai-Ai,, =

(CA - Z;; ERm.i))—ERmi,_, ERmi _

N - .
i — Bo. Bo.i
E g=ri Bo.i, - Bo.i, r-1
The result of the right side of the “=" sing in the above

expression is positive, since for any real numbers «, b, c,
c—-a a ¢ _a
——>0if —>— andd>b>0. Thus
d-b b d b

Ai > Ai_, Proven.

and d,

Theorem 1 can be used to determine if an active

. : ERm. f o
flow f is constrained or not. If ——— < Ai, fis
Bo.f
) . ERm.f) .
constrained and Af is —————; otherwise, f is
Bo.f

unconstrained and 4f = A4i,. Finally, WMF update ER
of a control packet as follows. Immediately before a
control packet of flow f departs from the switch, the ER
of the packet is set to the bandwidth allocated to f, i.e.
Af*Bo.f.

Evidently, the process DIVIDING takes O(N) time
to find the constrained and unconstrained flow sets, L
and H. In fact, if the critical flow i, is found, L and H are
determined. With the following theorem, i, can be found
by the binary search on the Buoy_list, which takes only
O(log N) time.

Theorem 2. Let i, be a flow of Buoy_list. Let £, be the
supposed share of i,, where

CA-S""ERm.i
ti, = %‘F‘ — (1
Bo.zq

q=p

ERm.ip
Flow i, is constrained if and only if ————— < 4,
Boi,

Proof) If i, is constrained, i, must pass the check in the

step <4> of DIVIDING and is moved into L. Thus

-261-

1998 International Computer Symposium]]
Workshop on Computer Networks, Internet, qnd Muitimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R,Q.C.

ERmi,
——— < #i,. Next, we will show if i, is not
Bo.i
P
_ ERmi,
constrained, — 2 4i, If i, is unconstrained, the
BO.IP

= r—| .
CA - Zq=| ERm.i ‘

’

normalized bandwidth Ai, is

or Bo.i g

where i, is the critical flow. Thus, we have

(CA-Y," ERmi,)

Ai, - di,= ~ o —
4=r B0y
r-1 . p-1 .
(CA=. ERmi)~3 " ERmi, "
. p-i .
q:,BO"q - qero.zq
r-1 R
(CA- Z _ERm.) ERmi
. q=I q . . q
Since m = AL, = /Zl, < —B——'
] 0.1
i Bo.i, q
for g 2 r, we have Ai, - di, = 0. Since i, is
ERmi , ERmip
unconstrained, — 2 Ai, . Therefore — >
ol Bo.i
r P
&i,. Proven.

Corollary 1. A flow i, in Buoy_list is unconstrained if

ERmi,
and only if ———— >4,
Boi,

Although the critical flow i, can be found in O(log
N) time, to insert or delete a flow in Buoy_list still takes
O(N). The solution is to construct Buoy_list as a
balanced binary search tree. The detail will be shown in
Section 4.

3. Correctness

In this section we prove that the scheme WMF can
achieve the weighted max-min fairness allocation.
Theorem 3. The scheme WMF can achieve the
weighted max-min fairness atlocation.

Proof) Assume there are K active flows in the network,
numbered from / to K. With WMF, the normalized
bandwidth allocated to each flow i is 4i. Let 4 be the
normalized bandwidth vector of all active flows, i.e. 4=

(..., 4i, ..}, i =1, 2, ..., K. From Definition 2, 4 is
weighted max-min fair if 4 is feasible and for each
active flow i, for maintaining feasibility, .4/ cannot be
increased without decreasing A, for which Zj < 4i for
some active flow j.

With the WMF scheme, consider the situation after
a stable allocation (i.e. after the bandwidth shares of
each active flow at different switches converge to a
common share). If an active flow i is constrained at a
link, the bandwidth allocated to i at the link is limited to
the bandwidth share of flow i at another link at which
flow i is unconstrained. Thus for any active flow i there
is at least one link / at which the flow is unconstrained.
Since flow i is unconstrained at link /, the normalized
bandwidth of flow i is equal to that of the critical flow
of link L Therefore, the normalized bandwidth of any
flow passing through link / is no greater than that of
flow i. If we try to increase the normalized bandwidth
Ai of flow i, we must decrease the .Zj of another flow j
passing through link [for maintaining feasibility.
Clearly, Ai cannot be increased without decreasing Zj
for some j, where 4j < Ai. Therefore, the vector 4 is
weighted max-min fair.

4. Implemelitation

The process DIVIDING can be implemented as an
algorithm with log(N) complexity if we construct
Buoy_list as a balanced binary search tree, named
Buoy_tree, and employ Theorem 2 to search the tree for
the critical flow i.. Each node in Buoy_tree represents a
flow in Buoy_list and contains the fields shown in Table
1.

SERm key SBo
I id r

Table 1. Node of Buoy_tree

For a node x the field id is the identifier of the flow

represented by x. It and rt are the node identifier of the

.) ERm
left and right sons of x, respectively. The value

Bo
of the represented flow is stored in the field key. The
sum of the ERm and Bo of all the nodes in the tree
rooted in x are stored in SERm and SBo, respectively. By
specifying a field of node x with x"<field>, we show the

properties of Buoy_tree as follows:

P1) if node y is in the left subtree of x, y*key < x*key (if
ykey = x"key, yNid < xMid).

-262-

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multlmedna
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.O.C.

P2) if node y is in the right subtree of x, y*key > xkey
(if yrkey = x"key, yNid > x™id).
P3) x"SERm = xt"SERm + ERm.(x"id)} + x"rt"\SERm;

P4) x"SBo = xM"SBo + Bo.(xid) + x*rt"SBo.

Buoy_tree
root ’

5_1--4_'3.--%1-:::1_3’_-_/ plper

Buoy_list

Fig. 3. Progress of searching in Buoy_tree

Let the node x in the Buoy_tree, as shown in Fig.
3, represent the flow i, in the Buoy_list i), i,,..., iy. With
the property P1 and P2, the nodes framed with the dash
line represent the sublist i, iy,..., i, in the Buoy_list On
the other hand, the nodes not framed represent i, i,,,,.
iy.

Consider the process DIVIDING. In the step <1>,
to delete or insert a flow k can be implemented by
deleting or inserting the flow from or into Buoy_tree.
These operations take O(log N) time if we use the red
black tree [6]{7] as Buoy_tree. A red black tree is a
binary search tree of which every node is colored either
red or black. The root of the tree is black, and, if a node
is red, its children must be black. Since the tree is binary,
each node-in the tree has two pointers to its children. A
pointer is null if the child it points to does not exist.
Every path from a node down to any null pointer must
contain the same number of black nodes. Thus, the
height of a red black tree is at most 2 log(N + 1). The
advantage of the red black tree is that the operations on
the tree, such as searching, insertion, and deletion, take
O(log N) time in the worst case.

The searching for the node, named critical node,
representing the critical flow i, starts from the root of
Buoy_tree and advances down until a leaf. When the
searching advances to a node x as shown in Fig. 3, x is
checked if it is constrained or unconstrained by the

inequality x*key < £i,, where i, is the flow represented

p-1 .
CA - Z,,:l ERm.tq

by x and &, is 7

. Since x"key is

Bo.i

q=p 4

ERmi
Bo.i ,

, from Theorem 2 if x’key < #i

» X 1s said

constrained; otherwise, unconstrained. If x s
constrained, the critical node must be in the right subtree
of node x and thus the searching advances to the right
son of x. If x is unconstrained, the critical node may be x
or in the left subtree of x. Thus, x is kept as the possible
critical node, and the searching advances to the left son
of x. In the later advances, if a new possible critical node
is found, the old one will be replaced by the new one.
The searching ends at a leaf node, and the current
possible critical node, if it exists; represents the critical
flow i,.

In the above, it is necessary to compute i, to

check if node x is constrained or unconstrained. From

) . '
the definition of #i, the terms 2:_] ERm.lq and

=p Bo.iq is computed first. This can be achieved in

O(1) time by using the SERm and SBo of the nodes the
searching has advanced to. Let variables Ir_SERm and
lt_SBo be maintained in the progress of the searching.
For example, in Fig. 3, when the searching advances to
x, It_SERm has contained the sum of ERm.iq of the flows
i, represented by the node v and w and the nodes in the
left subtrees of v and w. Let T be the node identifier.
Initially, T is set to root, and It_SERm and It_SBo are set
to zero. Immediately before the searching advances to
the next node, lr_SERm and it SBo are updated as

follows.

If (the searching will advance to the right subtree of T) {
It_SERm = It_SERm + T"SERm — T"rt"SERm;
It_SBo =It_SBo + T"\SBo — T"rt*SBo;

T =T\,

-263-

1998 International Computer Symposium])
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

}
else T = T™\t;

Therefore, when the searching advances to node x
. . r-l .
(i.e. when T is set to x), the terms 2 ,ERm-lq and
q=

¥ .
Bo.i are as follows.
—{q=p 4

o
. ERm.i, = lt_SERm + Ti"SERm.

- Bo.i 4 = root"SBo — (It_SBo + TNt"SBo).

Since the Buoy_tree is not fixed, the values of the
SERm and SBo of nodes change with the insertion and
deletion of a node. In general, a new node y is inserted
as a leaf according to property Pl and P2. Let f be the
flow represented by y. Then ERm.f and Bo.f is added
into the SERm and SBo of each node along the path
from the root to y, respectively. To delete a node gz, it is
necessary to make z become a leaf first by the following
way. Replace z with the leftmost (i.e. the smallest) node
in the right subtree of z if the subtree is not null;
otherwise, with the rightmost (i.e. the largest) node in
the left subtree. Do this until z becomes a leaf. Let g be
the flow represented by z. ERm.g and Bo.g is subtracted
from the SERm and SBo of each node along the path
from the root to z, respectively, after z is deleted. Since
only the nodes along a path from the root to leaf are
concerned, the insertion and deletion take O(log N)
time.

Rotate_with_left

—>

x Rotate_with_right

Fig. 4. Operation of tree rotations

When the insertion or deletion occur in a red black

tree, the tree rotation is necessary to maintain the tree
still being a red black tree. Two classical rotation
operations are Rotate_with_left and Rotate_with_right
shown in Fig. 4. For example, for Rotate_with_left, the
left subtree of node x is rotated toward x, and then node
y becomes the root of the tree. The SERm and SBo of x
and y are recomputed, this takes O(1) time. The similar
fact is for Rotate_with_right. .

Since we employ the red black tree as Buoy_tree,
the searching, insertion and deletion with rotation, and
the computation of SERm and SBo on Buoy_tree take
O(log N) times in the worst case. Therefore, we
implement the process DIVIDING as a logarithm-time
algorithm.

5. Comparison

It is shown in [5] that the response time of the
Max-Min scheme to achieve the max-min fairness is
less than that of the ERICA scheme. It is found in [8]
that the response time of ERICA is much less than that
of the CAPC scheme. Since the Max-Min scheme is
better than the others in terms of the response time, we
compare it with our scheme WME. Because the. fairness
for the Max-Min scheme is not weighted, we set the
weight of each flow to one in WMF for comparison.

For the Max-Min scheme, the bandwidth shares of
active flows are also carried in ER of control packets
and conveyed between network nodes. Each switch also
maintains an ERm for each active flow passing through
it. The active flows passing through a link are marked
with either “constrained” or “unconstrained”. The
bandwidth allocated to each “constrained” flow is equal
to its ERm. The remaining of the link bandwidth CA is
evenly distributed to the “unconstrained” flows. At a
switch, when the value of ERm of an active flow
changes or a flow becomes active or idle, the fair share
A of the “unconstrained” flows is computed as:

CA-Y . ERmi
_ i:"constrained"” flow
number of "unconstrained” flows

(3)

All the “unconstrained” flows with the ERm no greater
than A are marked with “constrained” and all the
“constrained” ones with the ERm greater than A are
marked with “unconstrained”. Then Eq. (3) is computed
and the flows are marked again, until the mark of any
flow is not changed any more. Let A,,, be the final value
of A, which is the bandwidth allocated to the
“unconstrained” flow. Clearly, it takes O(N?) time in the
worst case to divide the N active flows passing through
a link into “constrained” and “unconstrained”.
By A, the N active flows can be separated into i,,
iy0eees by @and iy, Bpypye.., iy, Where] <m <N + 1 and m
satisfies the following conditions: 1) ERm.i;, < ERm.i,
...$ERm._ , < A, and 2) A,,, < ERm.i,, < ERm.i

m+{

<
<... < ERm.iy. From Max-Min, the bandwidth allocated

-264-

to flow i, is either ERm.i, for p < m or A, for p > m.
Consider the process DIVIDING of WMF, with which
the active flows are moved into constrained flow set one
by one until the critical i, is found. Since Eq. (3) is the
special case of Step <3> of DIVIDING while all
weights are one, the critical flow i, found by DIVIDING
is the flow i, done by the Max-Min scheme. Thus the
results of allocating bandwidth to the N flows by Max-
Min and WMF are the same. On the other hand, Max-
Min and WMF use the same way to propagate the
bandwidth share of the active flows. For both the
reasons, Max-Min and WMF take the same number of
times of control packet propagation to achieve the max-
min fairness allocation. However, the response time of
WMF is less than that of Max-Min since WMF takes
only O(log N) time to allocate bandwidth to N active
flows while Max-Min takes O(N?).

6. Conclusion

Bandwidth allocation is one of the most important
issues for flow control. Two important performance
criteria concerned are the max-min fairness and
response time to achieve the fairness. A lot of flow
control schemes have been proposed, but they either
cannot always achieve the fairness or take long time to
achieve. The Max-Min scheme is one of the schemes
with better performance in terms of response time.
However, it takes O(N°) in the worst case to allocate
bandwidth to N active flows passing through a link. This
is inefficient, especially for high speed networks, in
which there are a large number of flows. We propose the
scheme WMF, which can allocate weighted bandwidth
and achieve the weighted max-min fairness allocation
rapidly. The correctness of achieving the weighted max-
min fairness is shown in Theorem 3. The response time
to achieve the fairness is less than that of the Max-Min
scheme, since WMF takes only O(log N) time to
allocate bandwidth while Max-Min takes O(N?). In fact,
from the simulation Max-Min takes O (N) time in
average for bandwidth allocation. Nevertheless, WMF is
much more efficient than Max-Min when N is large.

Since WMF possesses the property of the
weighted max-min fairness, it can support various
bandwidth requirement of users. With the reservation
strategy, WMF can guarantee the minimum bandwidth
for each flow. Since it achieves weighted fairness
allocation rapidly, it is suitable for variable-rate flows.
For these reasons, it can support the Variable Bit Rate
(VBR) service [9]. In the future, we will introduce the
video traffics [10] into the network employing the WMF
scheme. WMF will be compared with the schemes
allocating bandwidth dynamically [11][12] according to
the criteria of utilization, QoS, and efficiency.

References
[1] D. Bartsekas and R. Gallager, ed., Data Networks,

1998 International Computer Symposium B
Workshop on Computer Networks, internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Prentice Hall, 1992,

[2] F. Bonomi and K. W. Fendick, “The rate-based flow
control framework for the available bit rate ATM
service,” IEEE Network Mag., vol.9, no.2, pp.25-39,
March/April 1995.

{3] A. W. Barnhart, “Explicit rate performance
evaluation,” ATM Forum 94-0983R 1, 1994,

[4] R. Jain, S. Kalyanaraman, R Viswanathan and R.
Goyal, “A sample switch algorithm,” ATM Forum
95-0178R1, 1995.

{51 D. H. K. Tsang and W. K. F. Wong, “A new rate-
based switch algorithm for ABR traffic to achieve
max-min fairness with analytical approximation and
delay adjustment,” Proc. IEEE INFOCOM’96,
pp.1174-1181, 1996.

[6] M. A. Weiss, ed., Data Structures and Algorithm
Analysis in C, Addison-Wesley, 1997.

[7]1 R. Sedgewick, ed., Algorithm in C, Addison-
Wesley, 1990.

[81 D. H. K. Tsang, W. K. F. Wong, S. M. Jiang, and E.
Y. S. Liu, “A fast switch algorithm for ABR traffic
to achieve max-min fairness,” Proc. IEEE
International ~ Zurich Seminar on Digital
Communications, pp.19-23, 1996.

[9]1 Martin de Prycker, ed., Asynchronous Transfer
Mode: Solution for Broadband ISDN, Ellis
Horwood, 1993.

[10]M. Schwartz, ed., Broadband Integrated Networks,
Prentice Hall, 1996.

[I1JE. W. Fulp and D. S. Reeves, “On-line dynamic
bandwidth allocation,” Proc. IEEE International
Conference on Network Protocols (ICNP’97),
pp.134-141, 1997.

[12]E. W. Fulp, M. Ott, D. Reininger, and D. S. Reeves,
“Paying for QoS: an optimal distributed algorithm
for pricing network resources,” Proc. International
Workshop on Quality of Service (IWQOS '98),
pp.75-84, May 1998.

-265-

	
	258
	259
	260
	261
	262
	263
	264
	265

