1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

THE STUDY OF INDEXING TECHNIQUES
ON OBJECT ORIENTED DATABASES

Yin-Fu Huang and Jau-Min Chen

Institute of Electronics and Information Engineering

National Yunlin University of Science and Technology
Touliu, Yunlin, Taiwan 640, R.O.C.
Email: huangyf@el.yuntech.edu.tw

ABSTRACT

The object-oriented database (OODB) has been
becoming more important in the recent years. It can deal
with a large amount of complex objects and relationships
that relational database systems can not handle well.
However the retrieval and update performance of an
OODB depends on indexing techniques. In this paper, we
study the indexing techniques on object-oriented databases,
based on the inheritance hierarchy and aggregation
hierarchy. Given the access probability and the size of
each class, we propose a cost function to evaluate the gain
of building an index on the inheritance hierarchy. For the
aggregation hierarchy, we use a path-catenation technique
to evaluate how to build index files on classes. Through
the experiments, we found our methods have better
retrieval performance than most ones proposed before.

1. INTRODUCTION

The object-oriented database (OODB) has been
becoming more important in the recent years. This is
because the relational database (RDB) did not work well
in these areas, such as computer-ajided design and
manufacturing (CAD/CAM), computer-integrated
manufacturing (CIM), computer-aided software
engineering (CASE), geographic information systems
(GIS) etc. In general, there are a large amount of complex
objects and relationships between them in these
applications. An OODB is equipped with the techniques to
express complex objects and relationships between them.
To improve the performance of an OODB, many
technologies have been proposed since then. For examples,
if several related objects are often accessed together, we
should place them in the neighbor place to reduce the /O
access. Indexing is one of common techniques to speed up
the query on the database. There are two types of object
indexing in an OODB; that is class indexing and nested
object indexing. The both corresponding hierarchies are
inheritance one and aggregation one, respectively. Class
indexing is used when a user query references a single
class or multiple classes rooted from some specified class
in the inheritance hierarchy. Besides nested object
indexing is used when a user query references a specific

69

class via a reference path defined in the aggregation
hierarchy.

In the inheritance hierarchy, Class Hierarchy Tree
(CH-tree) is a well-known indexing technique. CH-tree
based on B* tree concepts builds a single B* tree on the
collection of all classes in the inheritance hierarchy.
Another indexing technique called H-tree is to build a B*
tree on per class in the inheritance hierarchy, and these
indexes are nested with a superclass-subclass relationship.
An L pointer is used for nesting and expresses the
inheritance relationships between classes. In addition,
hcC-tree and CG-tree are two similar indexing
techniques. hcC-tree builds a class chain and a hierarchy
chain. The class-chain is built according to each class and
used to improve the single query that performs worst on
CH-tree. The hierarchy-chain is like CH-tree. CG-tree is
an index file grouped by set. It has a special directory page
used to improve the range query. Finally, Class-Division
(CD) method is a practical alternative to CH-tree. It is to
find what classes should be combined in an index file (like

- CH-tree structure). CD method includes an index file built

on the root of the inheritance hierarchy (i.e. CH-tree) and
other index files for the other classes. Point queries
involving more than one class can be handled by CH-tree,
whereas the other index files can be used for querying
extents or speeding-up the range query.

In the aggregation hierarchy, there are multi-index,
nested index, path index, and nested-inherited index
(NIX) methods to speed up the search [5]. Multi-index
records all paths from one class to the other classes.
Nested index records the first instance of all paths. Path
index records all instances of all paths. They have more
overheads for update operations. Nested-inherited index is
an index structure integrating the aggregation and
inheritance relationships. It combines the attribute indexes
and auxiliary indexes, but also has more overheads for
update operations.

Since the instances and access probability of each
class in an OODB are not the same, we propose a cost
function for the inheritance hierarchy and a path
catenation method for the aggregation hierarchy, and then
build the index files to improve the performance of the
OODB. In the remainder of the paper, it is organized as
follows. In Section 2, we review the related researches.
The proposed concepts and algorithms are described in

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Section 3. In Section 4, a few experiments are done to
show the results of our methods and other methods.
Finally Section 5 makes a conclusion.

2. PREVIOUS WORKS

Till now, several indexing techniques on object-
oriented databases have been proposed. They can be
classified into two types of index structures, i.e.
inheritance hierarchy and aggregation hierarchy. We will
investigate them in the following sections. Then an
alternative skill of CH-tree called CD-method is also
discussed.

2.1 Inheritance Hierarchy Index

For a search predicate on an attribute of a specified
class, we may be against the single class or classes in the
inheritance hierarchy that is rooted on the specified class.
Here five indexing techniques for the inheritance hierarchy
are presentéd. The first one called the single-class index is
maintained by indexing against an attribute of a single
class. It is based on B*-tree and implemented in the object-
oriented database ORION [7]. The second one called the
CH-tree index is a well-known indexing technique on the
inheritance hierarchy [7]. It maintains only one index tree
on an attribute for all classes in the inheritance hierarchy.
It is also based on B*-tree and the format of the non-leaf
node is similar to the single-class index. The third one
called the H-tree maintains one B*-tree for each class, and
these B'-trees are nested according to their superclass-
subclass relationships [8]. The H-tree has good
performance to retrieve data on a signal class, but the
storage overhead on L pointers and the checking of L
pointers against queries should be improved. The fourth
one called the hcC-tree (hierarchy class Chain) uses two
types of chains such as hierarchy-chains and class-chains
to store information [10]. Like the CH-tree, the hierarchy
chain is well used to query the inheritance hierarchy, and
the class-chain improves the CH-tree on its worst
performance for a single class range query. But it must
store duplicate oids on the two types of chains. The last
one called the CG-tree is a set grouping index [6]. The
CG-tree improves the range query like hcC-tree, but no
duplicate oids are required to store.

2.2 Aggregation Hierarchy Index

In object-oriented databases, a search predicate for a
query could be a path expression where an index structure
associates the values of nested attributes with the objects
in the leading classes of the path expression. Here four
indexing techniques for the aggregation hierarchy are
presented.

The first one is the multi-index that defines n
indexes to retrieve the objects with the nested attribute A,
where the first index I, is defined on C,.A,, and the i-th
index I; is defined on C.A; (1 £ < n) [1] [4]. It has less
update cost because only two simple indexes I, and I, are
required to update if an attribute A, is changed on the path.

However the retrieval cost is enormous due to using
multiple indexes.

The second one is the nested index that allocates an
index for the specified nested attribute and the first class in
the path. For a path P=C,.A,.A,...A,, the form of its nested
index is (A,, the list of C,'s oids). It can provide better
performance than other indexing techniques, but when
updating an object in the path, we must use forward and
backward traversal to find the corresponding object; the
backward traversal is very expensive because there are no
inverse references between objects.

The third one is the path index that is based on a
single index {3] [4]. Unlike the nested index, it does not
need the backward traversal. For a key value, the path
index stores all path instantjation, including complete (i.e.
beginning at the first class) or partial (i.e. beginning at the
second class or lower) paths. Thus it is suitable for
retrieval queries because the leading class of the specified
predicate could be any class in the aggregation hierarchy,
but its update cost is very high.

The last one is the nested-inherited index (NIX) that
can support inheritance hierarchy and aggregation
hierarchy [2]. It has two organizations, i.e. primary index
and auxiliary index based on B*-tree. The primary index
maintains the index on the nested attribute A,. If j is one
value of 4, it stores the oids of all classes, which have the
value j in A,. The auxiliary index uses oids to be the key
value, and stores the list of the oids of the parent class
along the aggregation hierarchy. The entries of leaf nodes
in the primary index contain pointers to the leaf nodes in
the auxiliary index, and vice versa. The NIX has good
retrieval performance, but has high update cost due to
modifying the two indexes.

2.3 Class-Division Method (CD)

The Class-division method (CD) is properly viewed
as an extension of CH-tree [9]. Like CH-tree, it contains
an index built on root and includes all classes in the
inheritance hierarchy. Besides there are some smaller
indexes provided to query extents or speed-up range
queries. The CD method uses Class-Division Algorithm to
generate the smaller indexes that can be combined later for
a query. Two heuristic procedures (i.e. Prune-Space and
Rake-Contact) are used to combine the smaller indexes to
retrieve the target objects of a class. As a result, the CD
method avoids the overhead of CH-tree by skipping the
unnecessary data when querying a class in the inheritance
hierarchy.

3. OUR INDEXING METHODS
In this section, we propose the indexing methods for
both inheritance hierarchy and aggregation hierarchy,

based on considering the access probability and the size of
each class.

3.1 Inheritance Hierarchy

CH-tree is widely used in practice and seems

-70..

simpler (i.e. only B*-tree used) than other structures. The

major drawback of CH-tree is that it must filter a large

amount of unnecessary data, especially in a query with the
target class on the lower level in the inheritance hierarchy.

The CD method mentioned in Section 2.3 is an alternative

way to avoid filtering huge unnecessary data. Besides

building an index on root, the CD method also builds a

few small indexes using Class-Division Algorithm.

However, the CD method does not consider the influence

of the access probability and the size of each class. We

expect that our method based on the two factors will
improve the retrieval performance of an OODB. Besides
the CD method can not deal with the multiple inheritance
that can be handled in our method.

Here are the assumptions for the classes in the

inheritance hierarchy {1].

1. All key values have the same length.

2. The key values for all classes are totally inclusive.

3. The cardinality of a class in the inheritance hierarchy is
independent of the cardinality of any of its super-
classes or subclasses.

4. Bach class has its own access probability and
instantiations.

3.1.1 Basic Concepts and Algorithms

For an inheritance hierarchy where the access
probability and the size of each class is given, we try to
build index files such that the total file number and the
accessed block number when querying a class in the
inheritance hierarchy, are minimized as possible as we can.
In general, a query with a higher-probability target class
should have the less accessed block if we have a good
design for the index files. Then the retrieval performance
of database systems will be improved.

Like CD method, we also use small indexes. Each
small index is applied to one class and its subordinate
classes (i.e. subclasses). Which small indexes are built is
depended on the access probabilities and the sizes of the
class and its subclasses. Here we have a cost function to
determine the gain (or weight) to build a small index on a

class.
) Si— S
G()=Pi—- Y. .p» —
Cyjesubclass(Ci) Si

andCjgsubclass(Ck)

Within the cost function, G(i) is the gain to build a small
index on class i, P, is the access probability of class i in a
query, class & is one on which an index has been built, and
S, is the sum of all the instances in the sub-tree rooted at
class i, excluding the subclasses of class k.

On the right hand side of the formula, P, (or P;*1)
implies the "clean" gain when a small index is built on
class i, and no unnecessary data are filtered. However it is
impossible unless class 1 is a leaf node in the inheritance
hierarchy. Thus we must consider how many data should
be filtered, if an index is built on class i and the subclass of
class i is the target class in a query. Here the number of
filtered data is expressed as a ratio in the formula. The

7]

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

classes that are subclasses of class i and not subclasses of
some class & on which an index has been built, should be
considered and summed up as a negative item against the
"clean" gain.

In general, we think that the more index files built,
the better performance on retrieving target instances.
However it is not true since more index files might be
accessed when we query a target class, not to mention the
storage cost and update cost. Therefore we can not build
the index files as many as we can. Here we sort the gains
of all classes G(i) and build the index files class-by-class
beginning from the class with the largest gain. If the gain
value of a class is positive and none of its ancestors have
been built, we think building an index file on the class
would be beneficial for the system. The building is kept on
going till the root class is reached or the gain of the current
class is negative. In our method, an index file is always
built on the root class like CH-tree.

The algorithm to build small index files is shown as
follows:
procedure Build_Index_File
/* Input: the inheritance hierarchy where its classes are
denoted by C,, C,, ..., C,(C, is a root), the
probability of each class, and the size of each
class
Output: the classes with index files built */
for (i := 1; i <n; i++) do
evaluate G(7);
end for;
sort G(i);
choose the class with the largest gain;
while (the current class is not a root and G(i) > 0)
if none of its ancestors have been built then
build an index file on class i;
adjust the remaining gain values and
resort them;
end if;
choose the next class;
end while;
build an index file on the root class;
end procedure Build_Index_File;

3.1.2 Examples

Here we take an example to explain our method. As
shown in Figure 1, we have an inheritance hierarchy with
nine classes and the links from the lower-level classes to
the upper-level classes indicate the inheritance
relationships. Around each node, we label its access
probability and instance number.

1998 Intemational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 19988, N.C.K.U., Tainan, Taiwan, R.0.C.

Prob.=0.342236
insts.=100

Prob.=0.030045
insts.=20
-=0.020030

insts.=840 insts.=300

Prob.=0.101403
insts.=180

Prob.=0.152105 Prob.=0.067602
insts.=1400 insts.=500

Prob.=0.045068
insts.=40

Figure 1 The inheritance hierarchy rooted at class 1

After the evaluation on G(i), we sort them as shown
in Table L In the first iteration, an index file is built on
Class 5 since none of its ancestors have been built. After
building the index file, we adjust the remaining gain
values (i.e. Class 3 and 1) and resort them as shown in
Table II. In the second iteration, an index file is built on
Class 3. At this iteration, only the gain of Class 1 is
adjusted and resorted as shown in Table III. In the third
iteration, we have Class 1 with the largest gain value, but
it is also a root class. Thus we build an index file on Class
1 and terminate the algorithm. In summary, we have built
three index files on Class 5, 3, and 1.

Table I The gain order after sorting

Class|5 3 6 7 . 9
Gain [0.152105(0.1343420.067602 |0.064529 [0.045068
Class |8 4 2 1

Gain [0.02003010.013354 }-0.015%962 1-0.099690

Table II The gain order after building an index on Class 5

Class|5* 3 6 7 9
Gain }0.1521050.220914 10.067602 |0.064529 10.045068
Class |8 4 2 1

Gain [0.020030]0.013354 }-0.015962 1-0.060425

Table III The gain order after building an index on Class 3

Class|5* 3* 1 6 7
Gain [0.15210510.220914[0.165138 [0.067602 {0.064529
Class |9 8 4 2

-0.015962

Gain [0.045068 0.020030[0.013354

3.2 Aggregation Hierarchy

As mentioned in Section 2.2, the path index is a
popular index structure and is suitable for retrieval queries
because the leading class of the specified predicate could
be any class in the aggregation hierarchy. However, it
always has a lot of redundant space because many object
identifiers are recorded for a long path. Besides, it does not
consider the influence of the access probability of each
class. Here we reduce the length of the object identifier list
and get better retrieval performance by splitting a long
path into several sub-paths according to the access
probability of each class. '

72

Here are the assumptions for the classes in the
aggregation hierarchy.
1. All key values have the same length.
2. All attributes are single-valued.
3. There are no partial instantiations.
4. The key values of the instances of a class are uniform-
distributed.
5. Each class has its own access probability.

3.2.1 Basic Concepts and Algorithms

Basically our method is a variation of the path index.
Instead of building a long path, we build several sub-paths
to reduce the redundant space. Besides our method can
handle the aggregation hierarchy with the multiple
references on a class, where other methods can not be
applied. Like the path index, given a nested attribute, users
can access the target class following the reference path in
the aggregation hierarchy. As shown in Figure 2, when
users want to access Class Vehicle with a nested attribute
Country.name, two reference paths such as
Vehicle.Assuror.City. Country.name and
Vehicle.Manufacturer.Division.City.Country.name
should be built in advance. However these two paths have
the common sub-path City.Country.name. In our method,
the common sub-path is not necessarily built twice. Here
we first find how many path catenations of a path could be
generated, and then apply a cost function to evaluate
which path catenation is the best for the retrieval
performance.

Figure 2 The aggregation hierarchy

In our method, we build an optimal path catenation
for each path based on the access probabilities. First, for
each target class C, we find all paths from class C; to
nested attribute A, and put them into the set possible_path.
Second, to reduce the redundant space, the paths that are
sub-paths of another paths are removed from
possible_path. Third, for each path P, in possible_path,
we include the classes in the set split_node, which are 1)
the target class nodes on the path P, 2) the class nodes
with in-degree > 1 or out-degree >1 on the path P,, and 3)
Co1 (C,sy is an alias of A}). The set split_node is used to
find all catenations of sub-paths on the path P, which will
be put into the set catenation. For each path catenation of
a path P, we will calculate its retrieval cost according to
the cost function and the access probabilities of all target
classes on the path P,. Finally we find a path catenation
with the least retrieval cost for the path P,

The cost function used in our algorithm was defined
by Bertino and Kim [1], which is the number of index
pages accessed. It is expressed as follows:

A=h+] if _XP<P
A=h+|XP/P| if XP>P

where h is the number of nonleaf nodes accessed (i.e. the
height of a B” tree), P is the page size, and XP is the
average length of a leaf-node index record for a path index.
As for XP, it can be calculated as follows:

XP=PN*UIDL*n+kl+ol if XP<P

XP=PN*UIDin+ki+ol+DS and
DSH|PNUIDEn+k+ol || P*UIDEn+pp if XP-P

PN is the average number of path instantiations ending
with the same value for the nested attribute A,

PN = f[k(i)

UIDL is the length of the object-identifier.

kl is the average length of a key value for the nested
attribute.

ol is the sum of sizes of the key-length field, the record-
length field, and the number oids field.

DS is the length of the directory at the beginning of the
record.

pp is the length of a page pointer.

The algorithm to find a path catenation with the least
retrieval cost for the path from class C; to nested attribute
A, is shown as follows:
procedure Best_Catenation
/* Input: the aggregation hierarchy where its classes are

denoted by C,, C,, ..., C,(C, is a root), nested
attribute A,, and the probability Prob; of each
class

Output: catenations of sub-paths with the least retrieval
cost */

for each class C; with probability = 0 do

possible_path <« all paths from class C; to

nested attribute A ;
end for;
remove the paths that are sub-paths of another paths
from possible_path;

for each path P; in possible_path do
split_node < all class nodes with probability
(0 on the path P,
W all class nodes with in-degree > | or
out-degree >1 on the path P,
U C,,, (C,,, Is an alias of A);
catenation < all catenations of sub-paths
based on split_node on the
path P;
for each catenation Cat; in catenation do
retrieval_cost; = 0;
for each class C; with probability # 0 do
if C; on this path then
cost < evaluate cost according to
the cost function

_73-

1998 Intemational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-189, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

+ no. of accessed index files
* average seek time;
retrieval_cost, = retrieval_cost,
+ cost * Prob;;
end if;
end for;
end for;
find a path catenation with the least retrieval cost
for the path P,
end for;
end procedure Best_Catenation;

3.2.2 Examples

Here we take an example to explain our method. As
shown in Figure 3, we have an aggregation hierarchy with
eight classes and a nested attribute. Around each target
node, we label its access probability. The label on each arc
indicates the number of instantiations in the predecessor
class for one instantiation in the successor class. For
example, the number of instantiations in class 1 is
50*100*50*5 for one value of the nested attribute. Thus
the instantiations in each class can be calculated using the
formula PN. Besides we list the parameter values used in
the cost function, as shown in Table IV.

Figure 3 The aggregation hierarchy rooted at class 1

Table IV The parameter values
[ki=8 loi=6 [pp=4 [P=4096 |

\UIDL=8

For the target classes C, and C,, we have the paths
C,CiCeA and CeA. Since C,A is a sub-path of C,C,C(A,
the path C¢A is removed. Next we try to find the best path
catenation for the path C,C,C,A. After finding the split
nodes C,, Cs, and A (or C,), we have two path catenations;
that is (C,C,Cq, CiCy) and C,C,CC,. For the path
catenation (C,C,C,, C,C,), we calculate the retrieval cost
on the target class C, based on two path index files C,C,C
and C,C,. The retrieval cost is 33.6 ms. Next we calculate
the retrieval cost on the target class C, based on the path
index file C,C,. Totally we have the retrieval cost 39.85
ms for the path catenation (C,C,C,, CsC,). For another
path catenation C,C,C,C,, we also calculate the total
retrieval cost 59.56 ms based on the path index file
C,C,CCs. The retrieval cost of each path catenation is
shown in Table V. Finally we find that the path catenation
(C,C.Cq, C4Cy) has the least retrieval cost; thus two path
index files C,C,Cq and C,C, is built for the path C,C,C.C,.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Table V Retrieval cost for each path catenation

Table VI The parameters used in the inheritance hierarchy

Parameters Definitions and assigned values

Path catenation | Target class | Retrieval cost | Total cost
(C,C.Cs, CsCy) C, . 33.66 ms 39.85 ms
C 6.19 ms
C,C.CsCs C, 31.64ms | 59.56 ms
Cq - 27.92ms
4. EXPERIMENTS

In this section, we present the experimental results
of performance in an inheritance hierarchy and an
aggregation hierarchy. The probability and instantiations
of each class are considered in our model to reflect the real
usage on an OODB. Here we compare the performance of
CH-tree, CD method, and our method in the inheritance
hierarchy, and the performance of muilti-index, nested
index, path index, and our method in the aggregation
hierarchy.

4.1 Environment of Experiments

Different from the experiments in the previous
works, we use disk access time as an evaluated parameter
in our experiments. This is because using the number of
accessed pages as an evaluated parameter is unfair if these
pages are read from different index files. The seek time
between these different files should not be ignored,
especially because the access time is usually dominated by
the seek time. All these experiments are undertaken on a
PC Pentium 200 Hz where a hard disk "Seagate
ST32122A" is attached. The parameters about the hard
disk are external transfer rate 16.6 MB/sec and average
seek time 12.5 ms. Based on the parameters, we calculate
it takes 0.2353 ms to read a 4K page.

Two different database sizes are given in the
experiments for the inheritance hierarchy, and the common
ratios of class sizes are SR=1.7 and SR=2.7, respectively.
The size of the maximal class is 201 times than that of the
minimal one in the smaller database, and the maximal one
is 20589 times than the minimal one in the larger database.
We assign the size and probability to each class according
to SR and PR in Table VI. Ten inheritance hierarchies,
each with 10 classes, are generated randomly in both
databases. The parameters used in the inheritance
hierarchy are shown in Table VL.

In the experiments for the aggregation hierarchy, we
have two different class numbers in the hierarchy: one is
with 10 classes and another is with 15 classes. The target
class numbers are 3 and 4, respectively. The number of
instantiations in the predecessor class for one instantiation
in the successor class (i.e. K(/)) is. assigned randomly, as
shown in Table VII. Ten aggregation hierarchies are also
generated randomly in both experiments. The parameters
used in the aggregation hierarchy are shown in Table VII.

N total number of objects - 85,965 (small)

or 3,633,195 (large)

D total number of distinct key values - 300

C the length of the control field in the key record
of a leaf node - 16

RP the common ratio of the geometric series in
probability - 1.5
RS the common ratio of the geometric series in

size - 1.7 or 2.7
cid the length of class id - 4

offset |the length of offset - 2
d the order of an internal node - 146
f the average fan-out of an internal node on the
B'tree - 218
UIDL the length of 0id - 8
P the page size - 4096
L the average length of a non-leaf node index
record - 14

Table VII The parameters used in the aggregation

hierarchy
Parameters Definitions and assigned values
K@) the average number of objects of class i,
assuming the same value for attribute
Ai-1orS5or50or100or 1000
PP the length of a page pointer - 4
k1 the average length of a key value for the
nested attribute - 8
ol the sum of sizes of the key-length field,
the record-length field, and the number
oids field - 6
d the order of an internal node - 146
f the average fan-out of an internal node on
the B* tree - 218
UIDL the length of oid - 8
P the page size - 4096
L the average length of a non-leaf node
index record - 14

4.2 Inheritance Hierarchy

The retrieval performance of three indexing
techniques is shown in Figure 4(a) and Figure 4(b). When
the database size is small, CH-tree and our method have
better performance than the CD method, because the latter
one opens more index files and requires more seek time
than the former ones. When the database size is large, CH-
tree is the worst among three indexing techniques, because
it reads_all instantiations on the inheritance hierarchy and
has a lot of filter overheads. Our method still performs
better than the CD method, because the number of its
opened files is far more than ours.

74

ik BiSeike Ui ()

Figure 4(a) Retrieval cost in the inheritance hierarchy with
RS=1.7

3

&

disk aorue bime (ms)
5

Figure 4(b) Retrieval cost in the inheritance hierarchy with
RS=2.7

On the other hand, we also compare the update
performance of three indexing techniques, as shown in
Figure 5(a) and Figure 5(b). When the database size is
small, CH-tree is the best, because it accesses only one
index file (i.e. CH-tree structure). Besides our method still
performs better than the CD method, because of more seek
time required for the CD method. When the database size
is large, the same results occur for three indexing
techniques.

3

0@

disk wicens Um (ns)

A CH tresr

Figure 5(a) Update cost in the inheritance hierarchy with
RS=1.7

75

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.O.C.

Figure 5(b) Update cost in the inheritance hierarchy with
RS=2.7

4.3 Aggregation Hierarchy

The retrieval performance of four indexing techniques
is shown in Figure 6(a) and Figure 6(b). The multi-index
has the worst retrieval performance because of using
multiple index files. The nested index has the best retrieval
performance because only the target oids for a key value
need to be stored. However since each nested index is only
for one class, users can not query other classes using the
same nested index file. As for our method, owing to
considering the access probabilities of target classes, it is
at least better than the path index, and the difference is not
small (see the vertical scale in Figure 6). Especially when
the reference path is longer, the gain from our method
usually increases more.

100000

oo

|~ Mult-index
e Owe method
O P iier

Figure 6(a) Retrieval cost in the aggregation hierarchy
with 10 classes

Figure 6(b) Retrieval cost in the aggregation hierarchy
with 15 classes

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

On the other hand, we also compare the update
performance of four indexing techniques, as shown in
Figure 7(a) and Figure 7(b). The ranks of four indexing
techniques are exactly reversed in Figure 7, compared with
Figure 6. The nested index has the worst update cost,
because the path length is always larger than two and it
should care about the reverse traversal operation. In
general, the reference path should be forward traversed
twice and reversely traversed once when updating a nested
index. The muiti-index has the best update cost, because
only one sub-path is required to update. Besides our
method is almost equal to the path index. Even if ours
performs worse than the path index, the difference is very
little (see the vertical scale in Figure 7). In fact the results
of the path index are the special ones of our method.

0
» ' .

0

]

dink xcresse Uime (ms)
&

B
1
!

-1
»

Figure 7(a) Update cost in the aggregation hierarchy with

10 classes
120
[
100
B .
H
i © -~ Nesied index.
=~ Malti-iacex
H - O metod
“ 80— Puch inex
Dk %*4!~w;3 AAAAA Ao N "

Figure 7(b) Update cost in the aggregation hierarchy with
15 classes

5. CONCLUSIONS

The object-oriented database system (OODB) is
more popular than before. It can deal with complex objects
and is used in many applications where relational database
systems can not be applied. The performance of an OCODB
is strongly dependent on the indexing techniques. In this
paper, we study the indexing techniques based on the
inheritance hierarchy and aggregation hierarchy in the
OODB. Here we consider the access probabilities and the
number of instantiations of the classes in the OODB and
expect our methods to have better retrieval performance
than other ones.

For the inheritance hierarchy, we provide a cost
function to evaluate the gain of building an index file on

_76-

the sub-inheritance hierarchy rooted at one class. We use
the CH-tree structure and improve it by avoiding extra
checking when the target class in a query is not the root
class. We also compare our method with the CD method.
In despite of the database size, ours has better retrieval and
update performance than the CD's. Finally the CD method
can not deal with the multiple inheritance that can be.
handled in our method.

For the aggregation hierarchy, we use the path-
catenation technique to evaluate how to build index files
on the classes where users are interested. After the
evaluation, the path-catenation with the least retrieval cost
is found, and the built index shows better retrieval
performance than the path index in the experiments. At the
same time, it has not-bad update performance. Besides our
method' can handle the aggregation hjerarchy with the
muitiple references on a class, where other methods can
not be applied.

REFERENCES

[1] E. Bertino and W. Kim, “Indexing Techniques for
Queries on Nested Objects,” IEEE Trans. on
Knowledge and Data Engineering, Vol. 1, No. 2,
Oct. 1989, pp. 196-214.

[2] E. Bertino, “An Indexing Technique for Object-
oriented Databases,” Proc. IEEE International
Conference on Data Engineering, pp. 160-170,
1991.

[3] E. Bertino and C. Guglielmina, “Optimization of
Object-oriented Queries Using Path Indices,” IEEE
Computer, 1992, pp. 140-149.

[4] E. Bertino and L. Martino, Object-Oriented Database
Systems: Concepts and Architectures, Addison-
Wesley Publishing Company, Inc., 1993.

[5] E. Bertino and P. Foscoli, “Index Organizations for
Object-oriented Database Systems,” IEEE Trans. on
Knowledge and Data Engineering, Vol. 7, No. 2,
April 1995, pp. 193-209.

[6] C. Kilger and G. Moerkotte, “Indexing Multiple
Sets,” Proc. International Conference on VLDB, pp.
180-191, 1994..

[7] W. Kim, K. C. Kim, and A. Dale, “Indexing
Techniques for Object-oriented Databases,” in
Object-Oriented Concepts, Databases, and
Applications, Addison-Wesley Publishing Company,
Inc., 1989, pp. 371-394.

[8] C. C. Low, B. C. Ooi, and H. Lu, “H-trees: a
Dynamic Associative Search Index for OODB,”
Proc. ACM SIGMOD International Conference on
Management of Data, pp. 134-143, 1992.

{9] S. Ramaswamy and P. C. Kanellakis, “OODB
Indexing by Class-division,” Proc. ACM SIGMOD
International Conference on Management of Data,
pp. 139-150, 1995.

{10] B. Sreenath and S. Seshadri, “The hcC-tree: an
Efficient Index Structure for Object Oriented
Databases,” Proc. International Conference on
VLDB, pp. 203-213, 1994,

	
	69
	70
	71
	72
	73
	74
	75
	76

