1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

The Study of Centralized Load Balance on Distributed Shared Memory Systems

Yi-Chang Zhuang, Ce-Kuen Shieh and Tyng-Yen Liang

Department of Electrical Engineering,

National Cheng Kung University, Tainan, Taiwan, R.O.C.
Email: {zhuang,shieh,lty } @ee.ncku.edu.tw

Abstract

Distributed Shared Memory facilities
programmers with the similar programming
interface of shared memory. However, it suffers
the problem of load imbalance especially when
the composite computers are not equipped with
the same class of processor or when the
workload of program is not partitioned equally
among tasks. As a result, it is urgent to achieve
load balance on a DSM system. In this thesis, we
design a centralized dynamic load balance
mechanism for an available software DSM
system and the experiments show that it
improves the system performance significantly
over that with no load balance involved.

1. Introduction

Distributed Shared Memory (DSM) [6][7][8]
provides a virtual shared space under the
distributed - environment via the software or
hardware simulation. With the virtual shared
memory, programmers can develop parallel
programs in the shared memory programming
model on a multiple computer network, which is
the same as they do on a shared memory
multiprocessor system. Besides, the Distributed
Shared Memory system reduces the complexity
of parallel processing under a distributed
" computing environment. However, there are
some important issues that are critical to the
performance of a DSM system. Among all, load
balance [1][3][4][9][10]{11]{12] is the most
important.

Generally, there are two basic strategies to reach
the goal of load balance. One is static scheduling,
and the other is the dynamic load balance. The
philosophy of the static scheduling is to design
an algorithm that can find the optimal or nearly

-137-

optimal solution to distribute the workload in
advance according to the status of the system. As
a result, programmers can make best use of
system computing power and shorten the
execution time of parallel applications. In some
specific cases, such as that the system resource
configuration is always the same when one
parallel program runs, it really performs as we
expected. However in all the other cases, its
performance is not as good as that in previous
cases, especially in the situation that the runtime
information of the programs cannot be described
in specific pattern. On the contrary, dynamic
load balance delays the actions of the runtime
system information collection and analysis and
puts them into action concurrently with the
execution of the applications. Consequently, it
can take action to redistribute the workload
according to the state of the system at that time
and it can detect and deal with the load
imbalance resulted from the fluctuation of the
program on the instant.

In our research, we mnot only focus on
dynamically balancing the workload but we also
pay attention to minimize the communication
overhead incurted by the workload redistribution.
Because software DSM systems consists of a
cluster of computers connected by network, the
data which is not located on the node must be
fetched from the remote nodes through the
underlying network and the consistency of
memory pages is maintained by message passing.
It is apparent that if we only focus on balancing
the workload without taking the data locality
into consideration, many network messages will
be presented on the network after the workload
redistribution. To solve this problem, we had
proposed a Dependency-Driven Load Balance
(DDLB) algorithm designed for the iterative-
barrier type of parallel applications and it was
implemented on a distributed load balance

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

mechanism on a sofiware DSM system
developed in our laboratory — Cohesion [6][7].
From the proposed paper [1], it shows that the
DDLB algorithm is not only able to keep the
load of a DSM system well-balanced but it also
can minimize the communication overhead
resulted from the load balance. However,
because distributed load balance takes only local
system information into consideration in most
cases and the work to balance the load is carried
out on every computer independently without
any negotiation and compromise, it seldom
performs the best. In worst cases, it may waste
the system resource on load balance and degrade
the system performance. In addition, the design
logic and implementation of distributed load
balance is more complicated and subject to
errors than that of centralized load balance. On
the other hand, in the centralized load balance all
the system-related information is gathered on
one computer. This computer makes use of the
information to search the optimal or nearly
optimal workload distribution and acts as the
manager to direct all the other computers to
balance the workload. Consequently, centralized
load balance is likely to outperform the
distributed one in most cases except that
centralized load balance will more likely to be
the bottleneck of the whole system as the scale
of the system is getting larger and larger. But, the
proposed software DSM systems are seldom in
large scale and thanks to the rapid hardware
advance, the computing capability of the
computer is more powerful than before. So, we
implement the DDLB algorithm on a centralized
load balance.

The remainder of this paper is organized as
follow. In next chapter, we discuss the design
issues and consideration of a load balance
mechanism on a DSM system. Then we illustrate
the detail of the implementation of our
centralized dynamic load balance in chapter 3. In
chapter 4, we show and analyze the experimental
results of the performance evaluation. Finally,
the conclusions and suggestions for the
centralized dynamic load balance on a DSM
system are given in the last chapter.

2. Design Issues

Basically, a dynamic load balance algorithm
consists of four elemental components: a transfer

-138-

policy, a location policy, a selection policy and
an information policy [4][10][11]. Similarly, all
of these four policies are critical to the efficiency
of our centralized dynamic load balance
mechanism and take effect on the performance
improvement of the DSM system.

2.1Transfer Policy

Typically, the transfer policy determines whether
a node is suitable for participating in the load
redistribution at the execution time of the
parallel programs. It is usually based on the load
function, such as ready queue length, predefined
in the design of the algorithm. Researches [4][12]
have shown that even simple load function is
effective in representing the load indices of the
system. However, such a simple policy as the
one described above usually performs well under
the situations that the computing power of all
constituent processors are almost the same or the
workload of the parallel programs is equally
distributed between every task. But, as time
revolves, it is common that a DSM system is
composed of the processors with the same
hardware architecture but with different
computing power. Consequently, a load function
may be too simple to be adopted in representing
the load indices of the system. What is worse,
when the workload is not equally partitioned
among the tasks, the dynamic load balance
mechanism may make wrong decisions and
degrade the system performance. As a result, in
order to evaluate the workload correctly, we get
rid of all simple policies and design a more
complicated load function which takes not only
the workload of every tasks but also the
computer power of processors into consideration.
Besides, the transfer policy of our centralized
load balance mechanism is designed to
determine whether a node is overloaded to be the
sender of the task redistribution and whether
redistributing workload will improve system
computing resource utilization and shorten the
execution time.

2.2Location Policy

Secondly, the location policy tries to find a node,
which is capable of consuming the workload
transferred from the sender node and will not
extend the execution time after task transfer. In

general, the location policy can be categorized
based on the complexity of algorithm it adopted
and the implementation of dynamic load balance,
such as random transfer, polling. In
consideration of the overhead introduced to the
system and the design of our dynamic load
balance mechanism, we adopted the centralized
coordinator to locate a suitable node for load
sharing. With enough system information
available, the centralized coordinator can

correctly locate a suitable node as the destination.

And our centralized load balance mechanism can
transfer the task selected by selection policy on
the sender node to the destination node.

2.3Selection Policy

As regards the selection policy, it is responsible
for selecting a suitable task to transfer. Once the
transfer policy determines a node to be a task
sender and the location policy finds a competent
destination node, the centralized dynamic load
balance mechanism starts to perform the
selection policy. Generally speaking, the
criterion of task selection is to select a task that
is not related to the sender node or less related to
the sender node and minimize the overhead
incurred by the task transfer. On a DSM system,
the relationship between a task and a node is
evaluated according to the information that how
many memory pages accessed by the task are
located on the node. That is, the more memory
pages accessed by a task a node owns, the more
close relationship between the task and the node,
because a software DSM system is constructed
by grouping a cluster of computers connected by
the underlying network. As a result, if the load
balance mechanism happens to migrate out a
task that is more related to the node than the
others are, it will certainly result in more
communication overhead than the others do after
the task mmigration. And it is probable that the
communication message may be too much to
degrade the system performance. In view of this
phenomenon, our centralized load balance
mechanism adopt the proposed Dependency-
Driven Load Balance (DDLB) algorithm which
was proved to be able to reduce the
communication overhead incurred by dynamic
load balance mechanism. In the design of the
DDLB algorithm, it takes both the relationships
between the source node and the transferred task

1998 Internationai Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C.

and between the destination node and the
transferred task into account. Therefore, our
centralized dynamic load balance mechanism
will be able to improve the system performance
without incurring too much communication
overhead.

2.4Information Policy

Finally, the information policy decides what
information should be collected and when the
information of the system is to be collected. The
information used as the parameters of the
dynamic load balance mechanism can be the
ready queue length, the history of system
workload, the mean response time, etc. However,
collecting too many kinds of information may
not significantly improve the effect of dynamic
load balance. To make the matters worse, it
probably turns out to be another burden on the
DSM system. According to the requirements of
the three policies described above, the
computing power of every processor, memory
pages accessed by every task and execution time
of every task are all indispensable to our
centralized dynamic load balance. Besides,
because our centralized dynamic load balance is
designed to solve the load imbalance problem of
iterative-barrier type of applications, we prefer
to collect these kinds of information and report
them to the centralized coordinator at the end of
each iteration to eliminate the load imbalance
phenomenon in no time.

3. Implementation

3.1Cohesion

We have discussed the considerations and the
design issues of our centralized dynamic load
balance mechanism in last paragraph. The
following is the detailed implementation. Since
it is designed and implemented on our available
software DSM system, Cohesion, which was
designed and implemented in our laboratory. We
will first give an introduction on Cohesion.

Cohesion i1s a multithreaded softiware DSM
system built on top of Intel 80x86 personal
computers. It facilitates programmers with a
convenient parallel programming environment
with the user-level object-oriented thread system

-139-

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U)., Tainan, Taiwan, R.0.C.

which resembles the programming interface of
PRESTO [2], a user-level thread package that
was originally designed and implemented by
University of Washington. Besides, there are
also a communication subsystem and a DSM
layer in Cohesion. The communication
subsystem provides a reliable and efficient data
communication service between computers.

Multi-threaded Parallel Application

RESTO runtime s

! N /
> I

user level
Cohesion Cohesion Cohesion kernel level
kernel kernel kernel

Netwark.

Fig.1 System architecture of Cohesion

private space private space

sequential consistency
4 with object based

migratory protocol shared space

release consistency
with
write update protocol

page based
shared space

sequential consistency
with '
write invalidate protocol

page based
shared space

Fig. 2 Memory spaces in Cohesion

The DSM layer acts as the memory coherence
manager and maintains the consistency of the
virtual shared memory space in four kinds of
protocols. First, the private space is provided to
record local data of each computer and is not
shared with the other computers. As a result,
there is no network communication message
resulted from the modifications in this address
space. The object based shared space is
implemented sequentially consistent with
migratory protocol. Consequently, the data in
this space, such as the synchronization object,
will get free of false sharing. For the page based
shared space, it can be further divided into
sequential consistent memory and release
consistent memory. While the sequential

consistent memory is maintained with write
invalidate protocol, the release consistent
memory is maintained with write update
protocol [5][6]. Since Cohesion provides an
abstraction of a global shared address space,
writing parallel programs on it is like writing

parallel programs on shared memory
multiprocessors.
Node 1 Node 0 Node 2 Node 3

1) (T AT
oy vl oLy lovm{Lw/

<w> <am> <1mM>
e/

LM:Local Manager

<im>

CM:Central Manager
TM:Thread Migration Manager

Fig. 3 Components in our mechanism

3.2Centralized Dynamic Load Balance

We have discussed the design issues of the
centralized dynamic load balance on Cohesion.
Now it is the time to explore the implementation
of the centralized dynamic load balance to
understand how it can solve the load imbalance
problem on a DSM system.

As we have mentioned earlier, the central part of
the dynamic load balance is composed of four
important policies and detail implementation is
shown in last figure.

The Local Manger (LM) and Thread Migration
Manager (TMM) are implemented in the load
balance mechanism on each computer, while the
Central Manager (CM) is just implemented only
on one computer, which is usually located on the
root node. The LM module is responsible for
collecting the various kinds of local system
information and reporting them to the CM in the
course of execution. Besides, it also adjusts the
copyset after the task redistribution to avoid
false sharing anses. After receiving the
information sent from all other nodes, the CM
module is activated to redistribute the workload
of the system if necessary. At last, the TMM
module migrate the tasks from the source node
to the destination node according to the
calculated results of the CM module. However,

- 140-

the tasks will not be migrated until they are
finished from the point of the synchronization in
our recent implementation. This kind of
implementation is to simplifies the design of the
dynamic load balance because there is no
additional overhead, such as message forwarding,
necessary to have the entire system operational.
The following is the flow chart of the CM
module.

one node sends its
local information

receiver node
is competen

choose a sender node
i li
according to transfer polic save the result
choose a receiver node
according to location policy

choose a task)J
according to selection policy;

Fig. 4 Flowchart of the CM module

3.3Data Dependency Load Balance(DDLB)

Another key point of our centralized load
balance is the DDLB algorithm that minimizes
the communication overhead resulted from task
migration. Let’s take an example in next figure.
Suppose that there are two nodes on the system
and three tasks executed on each node.
According to the load balance algorithm, we
determine that the sender node is node 1 and the
receiver node is node 0. Then we make use of
the data access pattern of every task to calculate
the intra-dependency and inter-dependency of
every task. In the DDLB algorithm, intra-
dependency is defined as the amount of pages
accessed by a task and its sibling tasks on the
same node. Inter-dependency is defined as the
amount of pages accessed by a task on source
node and the task on destination node.

According to the definition, it is clear that inter-
dependency is the source of communication
message before task migration while intra-
dependency is the source of communication
overhead after task migration. As a result, the
dynamic load balance will select thread 4 on
"node 1 for task migration.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systerns
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

node 0 node 1
access pages access pages

thread 1 18 thread 4 123689
thread 2 3789 thread 5 1257
thread 3 1568 thread 6 12457
Thread intra-dependency inter-dependency

4 12 13689

S 1257 157

6 1257 157

Fig. 5 An example of DDLB

4. Experimental Results

In this section we present the experimental
results of the centralized dynamic load balance
on DSM system.

4.1Experimental Environment

The test bed is a multithreaded software DSM
system based on Intel 80x86 series of personal
computer, 486DX-33 and Pentium-90, and the
underlying network is 10Mbps Ethernet.

4.2Experimental Results

We evaluate the performance improvement of
our dynamic load balance in two applications,
Successive Over-Relation (SOR) and N-Body.
SOR is a linear equation problem found in the
field of engineering phenomena. It uses the
algorithm of the iterative method to approximate
the solution of a partial differential equation. The
idea of the SOR algorithm is to compute a better
approximation to the true solution in accordance
with the solution in previous iteration. The
function adopted in our testing program. is the
average of its neighbors (above, below, left and
right). N-Body is a force calculation problem in
the field of astrophysics. It calculates the
interacting force among particles in the rule of
the Newton theorem. The following shows the
execution time of our testing programs and its
speedup with or without our centralized dynamic
load balance mechanism applied.

-141-

1998 International Computer Symposium
Workshop on Software Engineering and Datapase Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

execution time(ms)

SOR(1024x1024)

500000 (Tl

400000

300000

200000

100000

0 3341 33

xl 33x3 337
P90x1 P90x] P90x]1 P90x2 configuration

execution time(ms) SOR(2048x1024)

task equally. However, as shown in our
experimental results, it results in load imbalance
phenomenon in our experimental programs since
the computing power of the Pentium series
processor is more powerful than that of the 486
processor. The computing power of Pentium
processor is wasted waiting for the 486
processor without our centralized dynamic load
balance. But when the dynamic load balance
mechanism is integrated into the multithreaded
software DSM system, the improvement on
performance with our centralized dynamic load
balance is better than that without load balance.

2000000 = Next figure show the speedup of our testing
programs with or without our centralized
1500000 dynamic load balance mechanism.
(|
N B
1000000 ?IZL
I Speedup SOR(1024x1024)
500000]] 3
: . 7 B 6 7 TN
Load
U331 331 33x3 337 33x6 system : A" Batance
P90x1 P90x1 P90x1 P90x2 configuration 3 YA ——y.
2 ' Load
execution time(ms) N-Body(8K) 0 Balance
33xl 33x1 33x3 33x7 33x6 system
1200000 90x1 90xl1 90xl1 90x2 configuration
1000000
800000 i O NoLB Speedup SOR(2048x1024)
600000 B, 101
400000 ; 8 e ||t
1 - 6 - i Load
200000 | || mm_ . /“ - > Bwail;ncc
033 33 333 337 336 system 2 =Y Load
P90x1 pPoox1 P90x1 P90Ox2 configuration 0 ! : : : Balance
' 33kl 33xl 333 33x7 33x6 system

execution time(ms)

N-Body(16K)

90x1 90x1 90x1 90x2 configuration

5000000(1T
1 Speedup N-Body(8K)
4000000 10 :
4 — =
3000000 ONoLB 8 R o
6 Val oad
2000000 il DI R // Balance
4 /l = With
1000000{]| ATy Load
: . 0 Balance
033,10 3% 3333 33x7 33x6 system Bl 3l 333 3T 36 system

P90x1 P90x1 POOx1 P90x2 configuration
Fig. 6 Execution time of SOR and N-Body

When writing programs, we are not aware of the

system configuration at all times. As a rule, we
partition the workload of the program into every

-142-

90x1 90x1 90x1 90x2

configuration

Speedup N-Body(16K)

© o B o
|
\

33x1 33x1 33x3 33x7 33x6
90x1 90xI 90xI 90x2

system
configuration

Fig. 7 Speedup of SOR and N-Body

5. Conclusions

In this thesis, we have presented a centralized
dynamic load balance mechanism for a
multithreaded software DSM system. The
purpose of our dynamic load balance is to
achieve load balancing efficiently and
transparently. Since communication plays an
important role in the system performance, our
dynamic load balance also aims at minimizing
the communication overhead incurred after the
task transferring. According to the experimental
results, it is clear that there is a significant
system performance improvement over no load
balancing effort. With the help of the centralized
dynamic load balance, we can make full use of
the computing power of all processors available
when running a parallel program without
introducing too much overhead.

6. References

[1] An-Chow Lai, Ce-Kuen Shieh, Jyh-Chang
Ueng, Yih-Tzye Kok, and Ling-Yang Kung.
“Load balance in Software Distributed

Shared Memory Systems”. IEEE
International Performance, Computing, and
Communications Conference, Arizona,

U.S.A. Feb. 5-7, 1997.

(2] Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. “PRESTO: A System for
Object-Oriented Parallel Programming.”
Software Practice and Experience, vol. 18,
no. 8, pp. 713-732, Aug. 1988.

[3] Derek L. Eager, Edward D. Laxowska and
John Zahorjan. “A Comparison of Receiver-
Initiated and Sender-Initiated Adaptive Load
Sharing.” ACM SIGMETRICS Conference

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.Q.C.

on Measurement and Modeling of Computer
Systems, Aug. 1985.

[4] D. L. Eager, E. D. Lazowska and J. Zahorjan.
“Adaptive Load Sharing in Homogeneous
Distributed Systems.” IEEE Transaction on
Software Engineering, 1986.

[5] John B. Carter. “Efficient Distributed Shared
Memory Based on Multi-protocol Release
Consistency.” Ph.D. dissertation, Rice
University, Sept. 1993.

[6] Ce-kuen Shieh, An-Chow Lai, Jyh-Chang
Ueng, Tyng-Yeu Liang, Tzu-Chiang Chang,
and Su-Cheong Mac. “Cohesion: An
Efficient Distributed Shared Memory System
Supporting Multiple Memory Consistency
Models.” AIZU International Symposium on
Parallel Algorithms/Architecture Synthesis,
March 1995.

[7] Jyh-Chang Ueng. “Cohesion: A Distributed
Shared Memory System for Multi-computer
Network.” Master Thesis, Department of
Electrical Engineering, National Cheng-
Kung Univ., 1993.

[8] Kai Li. “Shared Virtual Memory on Loosely
Coupled Multiprocessors.” Ph. D.
Dissertation, Yale University, October 1986.

[9] Lionel M. Ni, Chong-Wei Xu, and Thomas B.
Gendreau. “A Distributed Drafting
Algorithm for Load Balancing.” IEEE
Transactions on Software Engineering, vol.
SE-11, no. 11, Oct. 1985.

[10] Phillip Krueger and Niranjan G. Shivaratri.
“Adaptive Location Policies for Global
Scheduling.” IEEE Transactions on Software
Engineering, vol. 20, no. 6, June 1994.

[11] Shivaritri N. S., Krueger P. and Singhal M.
“Load Distributing for Locally Distributed
Systems.” IEEE Computer, vol. 25, pp. 33-
44, Dec. 1992.

[12] Thomas Kunz. “The Influence of Different
Workload Descriptions on a Heuristic Load
Balancing Scheme”. IEEE Transactions on
Software Engineering, vol. 17, no. 7, July
1991.

~143-

	
	137
	138
	139
	140
	141
	142
	143

