1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
Detember 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

A Petri Net Model for Object-Oriented Class Testing

Chun-Chia Wang, Wen C. Pai, and Jung D. Chiang

Department of Information Management
Kuang Wu Institute of Technology and Commerce
PeiTou, Taipei, Taiwan 112, R.O.C.
phone: Intl. (02) 28927154 ext. 852
Email: CCWang@mine.tku.edu.tw

Abstract

In an object-oriented model, a class is considered to
be a basic unit of testing. Methods (member functions)
of a class can have different types of inter-method re-
lationships. The causal relationships between methods
specify the sequence in which the methods can be exe-
cuted. In this paper, we propose a peiri net model for
specifying this causal relationship and present a test
case generation technique based on petri nets. In our
technique, petri neils are transformed into a reachabil-
ity tree from which we generale test cases using the
paths of the tree.

1 Introduction

Recently, the object-oriented paradigm is gaining
acceptance for developing software. However, most re-
search and practical experience in the object-oriented
field has been in the analysis, design, and implemen-
tation phases of a tipical software life cycle, little work
being carried out to examine the effects using object-
oriented techniques has on the rest parts of the soft-
ware life cycle such as testing and metrics. Although
many procedure-oriented software testing techniques
have been proposed [6, 7], these conventional meth-
ods, despite their efficiency, cannot be applied without
adaptation to object-oriented systems due to new data
and control abstractions such as inheritance, polymor-
phism, and message passing mechanisms introduced.
In order to analyze programs coded in object-oriented
programming languages, there is a need for developing
object-oriented software testing techniques.

In an object-oriented model, the fundamental en-
tities are objects, rather than procedures and func-
tions as in imperative programming languages. Ob-
jects with similar data and operations can be speci-
fied by their common class. A class describes all the
instance methods and attributes of these objects. It
is considered to be a basic unit of testing in object-
oriented testing literature. The majority of object-
oriented class testing techniques generate test cases
based on either algebraic specifications or model-based
specifications [4, 8, 9, 15]. In this paper, we illus-
trate the application of petri nets (PNs) for the class

testing of object-oriented designs. A major feature
of classes provides the desired behavior by interact-
ing with the data representation. The behavior of
methods is determined by the values of attributes
and in turn, methods manipulate attributes. This in-
teraction can be properly modeled with PNs. Each
PN can be implemented as a class; attributes repre-
sent the allowable places of a class and methods rep-
resent a change of places, i.e., a transitiobn of PNs.
Therefore, many object-oriented analysis and design
(OOA/OOD) methods using petri net diagrams as a
specification of classes have been proposed in recent
years. Although the main function of an OOD is a
state-transition diagram, PNs in OOD methods lack
formal semantics to enable automated test cases gen-
eration. In this paper, we propose a technique that
transforms the state-transition diagram of an OOD
into a PN model and construct a corresponding reach-
ability tree to the PN. Based on the paths (from the
root to the terminal nodes) of the tree, we generate
test cases for the class testing of object-oriented de-
signs.

This paper is organized as follows: Section 2 dis-
cusses definitions and basic properties of petri nets.
Section 3 introduces class specification based on finite-
state machine (FSMB, and then transforms the FSM
into an equivalent class petri net machine (CPNM).
Section 4 describes our testing technique based on
the CPNM. Section 5 compares our work with related
works. Conclusion and future works are given in sec-
tion 6.

2 Definitions and Basic Properties of
Petri Nets

Petri nets (PNs) [5, 10] are a graphical and math-
ematical modeling tool applicable to many systems.
As a graphical tool, Petri nets can be used as a vi-
sual communication aid similar to flow charts, block
diagrams, and networks. This section gives a formal
definition of PNs, and introduces a notation of state in
order to discuss behavioral analysis problems for PNs.

Definition 2.1. A Petri Net (PN) is a bipartite graph,

~224-

i.e., a graph whose set of nodes is partitioned into two
subsets, called the set of places V = P;...P,} and the
set of transitions T = {t1...tm}, each arc connecting
only nodes of different types. It is shown in figure 1.

P
t
PZ
PJ
t, 4
P;
t

Figure 1: Example of a marked PN

Definition 2.2. A marking (or state) of a PN is a
mapping M : V — N (numerical numbers); numeri-
cally it is represented by a vector with |V'| nonnegative
components and graphically by M(P;) tokens in the
place F;.

Definition 2.3. A transition ¢; is firable for a given
marking M if, for every place P;, M(F;) > (Number
of arcs connecting P; to ¢;). A marking M’ is reached
from M by firing t; if t; is firable for M and, for every
P;,

’ M'(P;) = M(P;) - (Number of arcs connecting P;
to t;) + (Number of arcs connecting t; to P;).

Definition 2.4. A marking M’ is said to be immedi-
ately reachable from M if M’ can be obtained by firing
a transition enabled in M. The PN execution allows a
sequence of markings { Mo, M1, Ma, ...} and a sequence
of transitions {t1,%2,...} to be defined. The firing of
t1, enabled in My, changes the PN state from M to
M, and so on. A marking M” is said to be reachable
from M if there exists a sequence of transition firings
that moves the PN state from M to M”.

Definition 2.5. A reachability set R(My) of a PN as
the set of all markings that are reachable from M.
The reachability set of a PN can be represented by a
tree. It can be shown that the tree in figure 2 repre-
sents the reachability set of the PN in figure 1.

To represent a finite reachability tree, we stop to
expand the tree when we reach an already considered
marking. We shall call such markings duplicate nodes.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0O.C.

M, ={1,0,0,0,0

t1

'

M,={0,1,1,9,0}
t2

M, ={0,0, 1,1, 0} M, ={0,1,0,0, 1}

by t

M, M,=4{0,0,0,1, 1} M,
& %
M, M,

Figure 2: The reachability tree of the PN in figure 1

During the construction of the reachability tree, we
can also find dead markings, i.e., marking in which no
transition is enabled. Dead and duplicate markings
constitute the frontier markings (leaves) of the tree.

3 Class Petri Net Machine

3.1 A Finite State Machine for Class
Specification

Many OOD techniques propose FSMs for model-
ing the dynamic behavior of classes {12, 13, 14]. The
FSM model represents all possible states of the class,
the events that can cause state transitions, and the
actions that result from the state change.. Different
states of an object are due to different value combi-
nations of its attributes. The states are linked to one
another through state transitions. State transitions
are caused by events, which are the stimulus received
from the environment. At each state, all the events
are unique and events can be received in any state.
The state transition depends on the current state and
the message received. Thus, the class specification can
be derived automatically from the FSM of the class.
For the sake of deriving class specification, we use only
the events different from the FSM model of OOD. The
FSMs can be modeled as 5-tuple M = (Q,%,4,s, f),
where @ is a finite set of states, ¥ is the set of meth-
ods accessible from the outside environment, § is the
transition function mapping @ X L to Q, s € @ is an
initial state corresponding to the state after a class re-
ceives a constructor message, and f € @ is a final state
corresponding to a class recelving a destructor/delete
message.

3.2 Transforming FSM into CPNM

In the analysis of petri net models, there are two
subclasses of petri nets commonly considered, state
machines (FSMs) and marked graphs [1]. FSMs are

-225-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

n

@b/

Figure 3: A FSM model

&

petri nets which are restricted so that each transition
has exactly one input and one output. These nets are
obviously finite-state. In fact, they are exactly the
class of finite-state machines. This is clearly shown by
considering the state graph of a finite-state machine,
as in figure 3. The nodes of this graph represent the
states of the finite-state machine. An arc from state i
to state j labeled z indicates that there is a transition
from state i to state j with input z. The graph of
figure 3 can be converted to an equivalent petri net by
simply making each state a place, and making each arc
between two places a transition. This is illustrated in
figure 4.

As an example of a finite-state machine [10], con-
sider a vending machine which accepts either nickels
or dimes and sells 15¢ or 20¢ candy bars. For simplic-
ity, sppose the vending machine can hold up to 20ec.
Then, the state diagram of the machine can be repre-
sented by the petri net shown in figure 5, where the
five states are represented by the five places labeled
with Oc, 5¢, 10¢, 15¢, and 20¢, and transformations
from one state to another state are shown by transi-
tions labeled with input conditions, such as “deposit
5¢” The initial state is indicated by initially putting a
token in the place p;, with a Oc label in this example.
Note that each transition in this net has exactly one
incoming arc and exactly one outgoing arc.

4 Test Cases Generation from
‘CPNMs

Software testing is used for ensuring the correctness
of a program against its specification by executing a
program on a test case and comparing the result with
the expected result [3]. The steps involved in testing
are as follows:
1. generation of test cases for an identified portion
of software

2. execution of the program using the test inputs,
and

Figure 4: A CPNM model corresponding to figure 3

Get 15 candy ()

)5 Deporit 1t ()

)15:(?‘)

peeee Deposit & (t)

Yo

“©®) CO

10c(P) Deposit 1¢ (t)

Get 20c candy (ty)

Figure 5: A petrl net representing the state diagram
of a vending machine, where coin return transitions
are omitted

-226-

M,={1,0,0,0,0}

M= ,1,0,0,0} M,={0,0,1,0,0;
t6

t, /

M=(0,0010 X

M, h
(Duplicate node) % % (Duplicate node)
' M, M

(Duplicate node) (Duplicate node)

(Eae

M ={0,0,0,0, 1)

3

M

(Duplicate node)

Figure 6: Reachability tree diagram of a class used for
generating test cases

3. evaluation of the test results

In our technique, we focus on test case generation
from the reachability tree of the CPNM of a class.

In an object-oriented program, testing a class cor-
responds to testing the methods supportd by the class.
Individual methods are similar to conventional proce-
dures. Therefore, methods can be tested similarly to
conventional procedures using black-box and white-
box testing. In an object-oriented paradigm, there is
extensive interaction between the methods of a class.
These method interactions must be tested for correct-
ness. In this section, we discuss generating test cases
for the method sequences of a class using coverage cri-
teria.

In figure 6, a reachability tree diagram correspond-
ing to the figure 5 is shown. Using different cover-
age criteria, different sequences can be constructed for
generating test cases. To satisfy the all-edge coverage
criteria, five sequences (paths of the tree, i.e., R(Mo))
Mg - My - My (ty -t3), Mo - My - M3 - Mg (t1 -t4 - 17),
Mo - M- Ms- My (t1-14 -tg), Mo-Mz-Ms (t2-ts), and
Mo - My - My - Mo (t -ts - ts) can be constructed and
test cases corresponding to them can be generated.

For each method in the sequence, data input of each
parameter and the expected output must be deter-
mined. If a method invokes methods of other classs,
then during testing test-stubs may be required to
supply the proper return values from those methods.
Sequence-based testing of a class can be performed
either during design as a walkthrough or implementa-
tion by actually executing the program with the test
cases. Because sequence-based testing depends on the
correctness of individual methods, the testing of in-

1998 Internationai Computer Symposium
Workshop on Software Engineering and Database Systemns
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

dividual methods must precede testing the sequences.
Those paths of the reachability tree helps determine
the interactions between methods of a class.

5 Related Works

In general, PN models of software are applied to
many areas of software engineering, such as test case
generation, software complexity measure, etc. In
object-oriented testing literature, several techniques
have been proposed for class testing. Most of them is
a specification-based technique using either algebraic
specifications or model-based specifications. An alge-
braic specification consists of signatures which define
the syntactic properties and axioms which define the
properties of member functions. A model-based speci-
fication specifies the pre-condition and post-condition
of each member functions using well-defined mathe-
matical models such as sets or sequences.

In [4, 8] test cases are generated as sequences of
member functions based on the axioms in algebraic
specifications. However, in algebraic specifications
member functions are treated as a mathematical map-
ping without side-effects. Therefore, data flows be-
tween data members and member functions cannot
be explicitly represented in these techniques. On the
other hand, in [9, 15] test cases are generated based
on the pre-condition and post-condition of each mem-
ber function. Though member functions are tested
whether or not they use and define data members cor-
rectly, data flows between member functions are not
considered in these testing techniques.

Harrold and Rothermel [16] proposed data flow
testing techniques for classes. They identity three lev-
els of class testing: (1) intra-method testing which
tests member functions individually, (2) inter-method
testing which tests a member function together with
other member functions that it calls, and (3) intra-
class testing which tests the interactions of member
functions when they are called in various sequences.
To support each data flow in the three levels, they
construct a flow graph which represents every possible
sequences of member functions from the class’s code.
Then they generate test cases using inter-procedural
data flow testing techniques.

Our technique is specification-based, i.e., we specify
the behavior of classes using PNs and a reachability
tree is constructed from PNs. There exist some of
feasible paths are determined by PNs. Therefore, the
works in [16] and our work are complementary each
other.

6 Conclusion

In this paper, we have proposed a class testing tech-
nique for specifying the causal relation that exists be-
tween methods of a class in object-oriented designs.
In our technique, we illustrated a finite-state machine
model of a class, then transformed the FSM into an
equivalent class petri net machine (CPNM). In order
to test the behavior of classes effectively, we have gen-
erated test cases by transforming CPNM into a reach-
ability tree of the model and applying all-edge testing

-221-

1998 International Computer Symposium’
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

technique upon the paths of the tree. We are cur-
rently working on integrating class specification with
an object-oriented CASE tool. We are also working on
verifying the class testing application and usefulness.

References

[1] A.W. Holt, and F. Commoner, Events and condi-
tion, Applied Data Research N.Y., 1970; also in
Record Project MAC Conference Concurrent Sys-
tems and Parallel Computation, (Chapters I, II,
IV, and VI) ACM, pp. 3-52, N.Y., 1970.

[2] T. Chow, “Testing Software Design Modeled by
Finite-State Machines,” IEEE Trans. on Software
Eng., Vol. SE-4, No. 3, pp. 178-187, May 1978.

[3] G. Myers, The Art of Software Testing, Prentice
Hall, Englewood Cliffs, NJ, 1979.

[4] J. Gannon, P. McMullin, and R. Hamlet, “Data
Abstraction Implementation, Specification, and
Testing,” ACM Trans. on Programming Languages
and Systems, Vol. 31, No. 3, pp. 211-223, 1981.

[5] J.L. Peterson, Petri Net Theory and The Modeling
of Systems, Prentice Hall, Englewood Cliffs, NJ,
1981.

[6] S.C. Ntafos, “On Required Element Testing,”
IEEE Trans. on Software Eng., Vol. SE-10, No.
6, pp. 795-803, November 1984.

[7] S. Rapps and E. J. Weyuker, “Selecting Software
Test Data Using Data Flow Information,” IEEE
Trans. on Software Eng., Vol. SE-11, No. 4, pp.
367-375, April 1985.

(8] L. Bouge, N. Choquet, L. Fribourg, and M.C.
Gaudel, “Test Sets Generation from Algebraic
Specifications Using Logic Programs,” Journal of
Systems and Soflware, Vol. 6, pp. 343-360, 1986.

[9] 1. Hayes, “Specifiaction Directed Module Testing,”
IEEE Trans. on Software Engineering, Vol. SE-12,
No. 1, pp. 124-133, January 1986.

[10] Tadao Murata, “Petri Nets: Properties, Analysis,
and Applications,” Proceedings of the IEEE, Vol.
77, No. 4, pp. 541-580, April 1989.

[11] B. Beizer, Sofiware Testing Techniques, Van Non-
strand Reinhold, 1990.

[12] G. Booch, Object Oriented Design with Applica-
tions, Benjamin Cummings, 1991.

[13] B. Bosik and M.U. Uyar, ”Finite State Machine
Based Formal Methods in Protocol Conformance
Testin: from Theory to Implementation,” Com-
puter Networks and ISDN Systems, Vol. 22, pp.
7-33, 1991.

(14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object Oriented Modeling and
Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

[15] S. Zweben, W. Heym, and J. Kimich, “Systematic
Testing of Data Abstraction Based on Software
Specifications,” Journal of Software Testing, Ver-
ification, and Reliability, Vol. 1, pp. 39-55, 1992.

[16] M.J. Harrold and G. Rothermel, “Performing
Data Flow Testing on Classes,” in Proceedings of
the second ACM SIGSOFT Symposium on Foun-
dations of Sofitware Engineering, pp. 154-163, De-
cember 1994.

{17] S. Kirani and W.T. Tsai, “Method Sequence
Specification and Verification of Classes,” J. Object
Oriented Programmang, pp. 28-38, October 1994.

-228-

	
	224
	225
	226
	227
	228

