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Abstract

In fuzzy logic, the weight problem is
very important. Some models have
been established for solving the prob-
lem. However, the acquisition of
weights in fuzzy logic is still a prob-
lem yet to be solved. Based on a class
of relative weighted models, this paper
provides a method to acquire weights
from incomplete data. '

1 Introduction

Recently, many publications have addressed the
problem of learning rough set rules (or rough
functions) and the learning of fuzzy functions{l;
2; 6; 7; 8]. Learning of weights is an important
issue in both learning of rough set rules and the
learning of fuzzy functions. When a proposition
is composed of multiple sub-propositions, dif-
ferent sub-propositions are usually assumed to
carry equal importance in traditional intelligent
systems. However, this is not true when experts
are interviewed, or the decision process is an-
alyzed. In fact, different sub-propositions may
have different (even quite different) influences
on this composing proposition. Such a case is
often encountered in practical applications. In
order to capture different effects, people assign
a weight to each sub-proposition. The more a
sub-proposition has an effect on the composing
proposition, the larger the weight is assigned to
" the sub-proposition. The question here is how

to calculate the truth value of the composing
proposition from the truth value of every sub-
proposition and the corresponding weight. Some
authors [5; 9; 10] have developed some models
to cope with the problem. However, weights
are difficulty to acquire or extract from domain
experts [10]. In the present paper, we discuss
this issue in the context of the relative weighted
fuzzy logic [5].

The rest of this paper is organized as follows.
Section 2 recaptures the basic notions of the rel-
ative weighted fuzzy logic {5]. In Section 3, we
present a method to learn weights from incom-
plete data. Finally, conclusions are outlined in
Section 4.

2 Background

In this section, we review the basic notions of
the relative weighted fuzzy logic [5] for the con-
venience. These models are novel in three as-
pects: (1) they include non-weighted models as
their special cases, (2) the weighted conjunction
and weighted disjunction can be distinguished
from each other, and (3) the information from
all sub-propositions can be sufficiently consid-
ered.

2.1 T-norms and T-conorms

Dubois and Prade [3] have shown that T-norms
and T-conorms are the most general families of
binary functions, which respectively satisfy the
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requirements of the conjunction and disjunction
operators, which are as follows:

Definition 2.1 If the operator o [0,1] x
[0,1] —> [0, 1] satisfies the following conditions:

1) commutativity: aob=boa;
2) associativity: (aob)oc=ao(boc);

3) monotonicity: if a < band c < d thenao
c<bod

4) boundary: aol = a,

where a,b,c,d € [0,1], theﬁ o 1s said to be a T—
norm on [0,1], denoted as A. If o satisfies 1),
2), 8) and

{') boundary: ao0 = a,

then o 15 said to be a T-conorm on [0,1], denoted

as 7.

For example:

a A b = min{a, b}

Zadeh operators (A, V) a Vb = max{a, §}

aeb=axb

. . A
Probability operators (e, +) . _/*\_ b—atb—axb

[
- b
¢ Eb= =y

+
— atb
a Eb=5

¢ +
Einstein operators (E, E)

a@b:max{O,a+b¥-1}
a®b=min{l,a + b}

Boundary operators (Q, &)

Although defined as two-place functions, the T-
norms and T-conorms can be used respectively
to process more than two sub-propositions in a
composite proposition. Due to the associativity
of the T-norms and T-conorms, it is possible to
define recursively

A(l‘l, sy Tny, xn-}-l)

ATy, Ty Trg1) = A(A(z1,. .-, Tn), Tnt1)
V(xl,"',zml‘n“) = V(V(xly"‘,zn),xn+l)

For the negation operation N(z) = 1 — z, T-
norm /A and T-conorm 7 are duals in the sense
of the following DeMorgan’s Law:

A(a,b) = N(T(N(a), N(b)))
(a,b) = N(A(N(a), N(b))

Therefore, T-norms and T-conorms should be
given in the form of pairs which satisfy DeMor-
gan’s Law.

2.2 Constraints on Weighted Fuzzy Logic
Consider the weighted conjunction
A=Ai(wi) A A An(wn) ¢y
and the weighted disjunction |
B=Ai(w1) V-V An(wn) - (2)

Obviously, the fuzzy truth values of A and B
should be determined by functions which com-
bine the fuzzy truth value with the correspond-
ing weight, of each sub-proposition. Formally,
we have

T(A) = fa(g(T(A1),w1), -+, g(T(An), wn))
T(B) = fv(g(T(A1),w1),- -, 9(T(An), wn))

where fn and fy are functions from [0,1]" to
[0,1], and g is a function from [0,1]? to [0,1].
For the negation of a weighted sub-proposition
A; with weight w;, its truth value should also be
determined by a function from [0,1]? to [0, 1]:

T(mA1) = f-(T(A1),w1)

Now two questions arise: (i) What are the con-
straints on fa, fv, f- and g7 (ii) How do we
construct fa, fv, f- and g? In the following, we

and will answer the first question. The second ques-
tion will be answered in the next subsection.
D21, > Try Tt Constraint 1 Whenw; =--- = w, = 1,
fAg(T(Ar),w1),- -, 9(T(An),wn)) = T(A1)A--- AT(An)
for z,,-++,Znp € 10,1], as f(g(T(Ar), w1), -+, 9(T(An),wn)) = T(A1)V--- 7 T(An)
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This constraint reveals that a weighted model
degenerates into a non-weighted model in fuzzy
logic when each sub-proposition takes an equal
weight, i.e. carries equal importance. In other
words, their corresponding boundary conditions
should fulfill the AND and OR operations in
fuzzy logic without weights.

Constraint 2 Theredre
T(A1)7 Wy, - - aT(An)7 Wn in [O’ 1]
such that

Fa(g(T(Ar), wn), -+,
# fo(9(T(A), w), -

9(T(An), wn))
yg(T(A")r 'wn))

This constraint reveals that the function f. is
not equivalent to the function f, since thereis a
difference between conjunction and disjunction.

Constraint 3 Let w; = max{wy, -, w,}, then

T(As) =0 = fa(g(T(Ar),wr),---,
T(A) = 1= fo(g(T(41), w), -

9(T(An),wn)) =0
rg(T(Aﬂ)vw")) =1

This constraint means that, in a weighted con-
junction, if the most important sub-proposition
is false, the conjunction proposition should be
false; in a weighted disjunction, if the most im-
portant sub-proposition is true, the disjunction
proposition should be true. This constraint is a
direct extension of the corresponding properties
in a non-weighted model in fuzzy logic.

Constraint 4

f/\(g(T(Al)»wl)r”'
=1— fo{f~(T(A1),w1), -, f~-(T(An), wn))
fv(g(T(A1), w1}, -+, 9(T(An), wn))
=1~ fa(f~(T(A1),w1), -, f~(T(An), wn))

19(T(An), wn))

This constraint states that the weighted con-
junction and weighted disjunction should satisfy
DeMorgan’s law.

Constraint 5 f(T(A:),w;)+g(T(A:), w;) =1
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In the above constraint, f.(T(A;),w;) can
be viewed as the truth value of —A;, and
9(T(A;),w;) can be viewed as the truth value
of the sub-proposition A; with the weight w;.
So this constraint is an extension of the corre-
sponding property in fuzzy logic as well as in
classical logic.

2.3 Relative Weighted Models

We define the relative weighted model as follows:

Definition 2.2 Let (A,v) be a pair of T-
norms and T-conorms which satisfy DeMorgan’s
Low. And let w = max{w;,ws, -, w,}.

1. The truth value, T(A), of weighted conjunc-
tion (1) is given by

T(4) = (2 x T(4) &+ B (22 xT(4n))  (3)
2. The truth value, T'(B), of weighted disjunc-
tion (5) is given by

T(B) =(2+ x T(A)) V- v (22 x T(4n))  (4)

3. The truth value, T(~A;), of the negation of
weighted sub- propos1t10n A; is given by

T(=A)=1- %- x T(A:) (5)

The idea behind this definition is that after

weighting w; on A;, its truth value is updated
to 2t x T(A;) from T(A;).

In (5], it is proved that this relative weighted
model satisfies Constraints 1-5.
3 Learning Weight

For the formula (3) for calculating the truth
value of weighted conjunction, suppose that we
get m (< n) instances

T (A) = (2 x TV (A1) A+ A (2a x TV (A,))
T (4) = (£ x TO(A)) A - A (52 x TP (4,))

T (4) = (% x TV (A1) & A (2 x T (4,))
(©)

_27_



1998 International Computer Symposium
Workshop on Astificial Intelligence
December 17-19, 1898, N.C.K.U., Tainan, Taiwan, R.0.C.

Additionally, we have the following equations

{ iwi=1 (7

w= max{wl, <, Wa}

Thus, if m=n-1, principally we can solve wy, - - -,
w,, from the equation arrays (6) and (7). This is
because the number of equations is equal to the
number of variables. If the number of equations
is less than the number of variables, we cannot.
However, we might give a reasonable approxi-
mate solution. In this section, we will discuss
this problem.

For any instance (T®)(A), T(*)(Al), e,
T®(A,)), and the solution (wy, - - -, wn), clearly
by (3) the following equation should be satisfied:

TO(4) - (52 x T9(A40)) &+ & (T x TV (4n)) =0

If our approximate solution (wy, - -, w,) cannot
make the above equation satisfied, at least we
should wish the left side of the above equation

is minimum. Or, the function

.,wn)

f(wlv"

=S )

should take the minimum. In other words, the
problem of finding weight values turns to be a
problem to find the minimum of the function.

Now we will solve the minimum problem.
Firstly, because (6) and (7) we can use

W1, -+, Wn to represent wy,- - -, wm, that is,

vl SJS m,w,; =gi(w"‘+1:"'awn)

where g; denotes a real function. Substitute

these functions into (8), we obtain

, Wn)

f(wl""

oA A A (%’_‘_ x T (4,)))

91 (wm+1 y ’ wn)

2"": T(')(A) ______u_,___

A(-""‘(“’"‘*; 20 n) T (A)) A -

A X TO(Amyr)) Ao 4 (22

xTOAN) A---

x T (A,)))?

Clearly, it is a function with the variables

Wma1,* ", Wn. S0, for the convenience, we de-

note it as

g(wm+1, T ,wn)

= >0 - (2l ) 704 A
1

gm{Wm, - -, wn)

w

x TO(Ams1)) B B (2

A( x TV (Am))

A= < TO(A)7 (9)

Thus, the minimum problem of the function f
turns to be that of the function g.

Secondly, we will find the critical points of the
function g(wWm+1, ***, Wn). That is to solve the
following equation array:

- B =0
Bwymi

=22 _
Swmia

(10)

2 _

Swy

@ ssume the set of all solution to this equation
array is SW = {(w} m+l7 o wi )

Finally, we select a critical point

(wf,?il, .-, w®) from the solution set SW so
that the function ¢ has a minimum at the criti-

cal point. According to mathematical theory of
calculus [4], if the the following form satisfies

8w. u‘uJ >0 (11)

m<i,j<n

where (Um+1, -+, Un) is a unit vector, i.e. ufn+1+

.-+ u2 =1, and all derivatives are evaluated
at the critical point, then g has a minimum at
the critical point.

The learning weight problem of only weighted
conjunction is involved in the discussion above
for the sake of space. For weighted disjunction,
the discussion is similar.
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4 Conclusion

The relative weighted models presented in [5] are
novel approaches capable of coping with weights
in fuzzy logic in a sound and efficient manner.
This paper, further, proposes a method to ac-
quire weights from an incomplete date set. The
key idea behind this approach is establishing a
function related to all data, and then the prob-
lem to find a reasonable approximate solution is
turn into the problem to find the minimum point
of the function. Future work on this method will
focus on the acceptance test to this function in
various practical applications. We are going to
apply it to some intelligent systems for finding
the optimization form of this function.
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