1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

AN INTEGRATED MEASUREMENT SYSTEM FOR
DOCUMENTATION AND PROGRAMS

Timothy K. Shih, Wen C.Pai*, Yule C. Lin, Lawrence Y. Deng,- Chuan-Feng Chiu, and Wen-Hui Chang’

Dept. of Computer Science & Information Engineering, Tamkang University, Tamsui, Taipei 251, Taiwan
Dept. of Information Management, Kuang Wu Institute of Technology & Commerce, Taipei 112, Taiwan”
Chung-Shan Institute of Science & Technology, Lung-Tan, Taoyuan 325, Taiwan’

E-mail: tshih@cs.tku.edu.tw

ABSTRACT

Current program documentation has a number of
drawbacks, such as the incompleteness, inconsis-
tency, traceability problems, no quantitative methods
to measure the quality, and unfriendly to read and
write, which usually cannot achieve its goal success-
fully. In this paper, we propose an integrated meas-
urement system for documentation and programs,
which can force the documents and programs to be
tightly coupled. No modification of programs can be
proceeded outside this system, and all related docu-
ments must be updated along with a modified pro-
gram. The completeness, consistency, and traceabil-
ity of documentation can be assured. Multimedia can
be used to enrich the expressiveness of documents.
The statistical data about the documents, programs,
and all activities of the team members are recorded
into a database. Lots of valuable information can be
acquired through various queries. Configuration
management issues, especially the change control,
can be achieved easily and conveniently via the
Internet/Intranet.

Key Words: configuration management, documen-
tation, software metrics, hypertext, muitimedia.

1. INTRODUCTION

Software development and maintenance have long
been regarded as some kind of sophisticated, unreli-
able, and costly work. Software experts have pro-
posed many methods, such as structured program-
ming, object-oriented programming, computer-aided
software engineering (CASE), and re-engineering
etc., to improve this situation. We believe poor
documentation methodology and tools are one of the
dominated factors. Program documentation is used to
help maintenance or naive programmers, sometimes
even the original development programmers, (here-
after referred to as newcomers) to understand the
program. Well-engineered program documentation

can certainly increase the reliability of the software
and the productivity of a software company, and re-
duce the time and cost of development and mainte-
nance significantly. But current program documenta-
tion methods do have following drawbacks, and usu-
ally fails to achieve these goals.

® Documents are incomplete. Some parts are un-
written or lost.

® Documents and programs are inconsistent. Pro-
grammers often modified programs, but forget
to or unwilling to update the corresponding
documents.

® Traceability is lost. The correspondence be-
tween documents and programs is missed or
confused.

® Only monotonous text and plain charts can be
used to write the documents.

® Whether all requirements and designs have been
done is not clear?

® Whether programmers update the program and
corresponding documents simultaneously is also
unclear.

® Whether maintenance programmers have read
and understood all the necessary documents and
programs cannot be measured quantitatively.

® Once the programs or documents are updated,
there are no convenient ways to notify all the
related project managers and programmers.

These drawbacks result in serious problems in
project development and maintenance. Besides it
make projects error-prone and unreliable. Software
experts know that the maintenance of existing soft-
ware can account for over 60 percent of all effort
expended by a software company. And the percent-
age continues to rise as more software is produced
[9]. Based on our years of project management and
programming experience, we know current docu-
mentation methodology and Computer-Aided Soft-
ware Engineering systems (CASE) cannot solve the-

-252-

se problems. We often take great pains during devel-
opment and maintenance of large projects. Therefore
we decide to develop an easy-to-use but effective
project management system to overcome these
problems.

This system can tightly integrate the documen-
tation and the programs together. Programmers can
no longer modify the programs separately. It uses the
capability of a hypertext editor to edit the entire
documentation and programs. Programmer cannot
edit the program alone, all programs should be creat-
ed and modified within our system. The interaction
between documents and programs are bi-directional,
reviewers can trace from bottom-level programs to
top-level documents upwards, or downwards con-
versely. Our system then extracts all the programs,
builds them into project files, compiles, and links
them into an executable file. All associated docu-
ments also should be modified, the measurement
database can easily detect which related documents
are not updated along with the programs. With this
system, the traceability problem, the incomplete
problem and the inconsistent problem can be over-
come effectively.

Besides our system allows programmers to use
the richer multimedia to enhance the readability and
expressiveness of our documentation. Multimedia
data, such as video, sound, pictures, text, animation,
and virtual reality (animation and virtual reality can
be represented in video form), can be recorded as
project documents. We know speaking is much easier
and faster than writing, a picture is worth a thousand
words, and video is certainly better than pictures.
They can carry far more information than traditional
text documents. Imagine a scene, when certain
document or program segment confuses a newcomer,
the original programmer appears in the video to ex-
plain why and how after a simple click. The new-
comer can know not only the meaning of this pro-
gram, but also many characters of this programmer.

From the viewpoint of software engineering,
the manager or customer can know lots of important
information in software quality control if they ask the
project team to use sound or video to explain their
programs. Such as programmers who ever join this
project? How about their quality and working atti-
tude? Are the code review meetings really held?
Who ever attend these meetings? Are their reviews
very serious? Does this project team really follow the
steps of software development standards etc.? These
are all missing in conventional written documents.
Video and sound records are much harder to counter-
feit.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Projects in this integrated system can easily and
seamlessly transferred into the Internet or a com-
pany’s Intranet. Project team members can easily
cooperate together via Internet or Intranet. All ac-
tivities are collected, analyzed, and put into the sta-
tistical database for further quantitative measurement.
Such measurement serves as another kind of soft-
ware metrics [6, 19]. The feature of multimedia
documents will be especially useful in a high-speed
Intranet. Video and sound discussions will be much
better than traditional text documents.

Maintenance of a large project is undoubtedly a
headache problem for all managers, because they
know nothing about the maintenance programmers.
Whether they have read all necessary documents and
programs? Whether they have paid much attention in
some critical issues? With this integrated and meas-
urement system, project managers can easily grasp
whether all necessary items (including documents
and programs) are visited by maintenance program-
mers, whether critical issues are browsed patiently
and carefully, and whether they have responded any
questions and comments. Besides the maintenance
programmers can send E-mails to the original devel-
opment programmers and manager to ask, report,
even complain something about the documentation
or programs. If some document or program is up-
dated, programmers responsible for modification can
send E-mails to notify all the related people that ever
visited this program about why and how they modify
this program. We consider this system might be very
helpful in software maintenance and configuration
management.

This paper is organized as follows. Section 2
discusses how to integrate the documentation and
code, and the benefits from this integration. Section 3
presents how to extract the programs from an inte-
gration set, and collect various data during the ex-
traction process. A database management system is
used to store these data and query them. In section 4,
we address some problems of configuration man-
agement and maintenance of large projects, and how
to use this integrated system to improve this situation.
We also discuss previous researchers’ related work
and a couple of CASE-like systems in section 5.
Section 6 concludes this work and discusses some
interesting issues can be studied in the future.

2. DOCUMENTS AND PROGRAMS IN-
TEGRATION

Our system utilize a hyp_ertextfditor to edit all the
documents (including requirement design and testing

-253-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

documents etc.) and programs. Although there are
numerous hypertext editors around, such as the Mi-
crosoft’s FrontPage, Netscape's Composer, or Sau-
sage Software’s HotDog etc., they cannot meet our
specifications more or less. Therefore, we decide to
design our proprietary hypertext editor. However this
editor still adopts the HyperText Markup Language
(HTML) format in order to be portable with other
hypertext systems.

Fig. 1 shows how we use a hypertext editor to
create project development documents and programs.
The major requirement document hyperlinks to des-
ign documents, then hyperlinks to corresponding
programs. If any documents, that is hyperlinks, are
missed or lost, a simple hypertext utility can easily
find out which are absent. This feature can facilitate
project managers to control the incompleteness of
documentation.

If a project adopts the bottom-up development
methodology, many component programs will be
coded first to test the feasibility of some bottleneck
or technical problems. The project manager can put
all verified components into the hypertext editor,
then connect upwardly to corresponding documents.

With this system, reviewers can read any interesting -

documents first, then trace upwards to the parent
documents or downwards to the programs conven-
iently. Or they can watch the programs first, then
trace the related documents bi-directionally.

Fig. 2 illustrates that our system can also use a
data flow diagram (DFD) to describe the actual flows
of input data. All external entities, processes, data
objects, and data stores can also hyperlink to deeper
level DFDs. Traditional software component block
diagrams can also be represented as hypertext struc-
ture.

Due to the inherent capability of hypertext, the
traceability problem can be easily tackled. Any non-
traceable node (a document or a program) can be
picked out easily. The inconsistency problem can
also be handled elegantly. Any modified node will be
recorded with a timestamp, our system can soon de-
tect it and display a different color on all related hy-
perlinks. The inconsistent node will also be receded
into the statistical database for further inspection
during code extraction.

Because most commercial hypertext editors
adopt the HTML format. Programs created by these
kinds of editors cannot be fed into ordinary compil-
ers directly. This is one of our design aims to prevent
casual programmers to modify the programs outside
the system. All programs reside in our system can

only be compiled through the code extraction proc-
ess.

3. CODE EXTRACTION

The integration of documents and programs forms a
bi-directional graph (See Fig. 3), because more than
one document might hyperlinks to a frequently used
function, such as a sorting routine, or a window util-
ity. Our system utilizes a graph search algorithm to
visit each node, picks out the program nodes to form
build files. These build files are temporary files and
are invisible to programmers, which cannot be
copied and edited outside the system. Our system
will also collect and put related statistical data into a
database during the graph traversal process.

3.1 Search and Extraction

We utilize the compiler-generator tools /ex and yacc
[1,13,15] to pick out the programs from this system.
Our scanner has to tell whether a node is a document
file or a program file.

If a program node is encountered, all HTML
control words are skimmed to make it a standalone
file, then fed into the compiler and linker to produce
a executable file. The number of files might be more
than that of ordinary projects, however this com-
plexity is completely handled by our system and
irrelevant to programmers. Currently this system can
only process source files, that is included header files

-and program files, precompiled header files, object

files and library routines are not permitted in this
version.

If a document node is found, the connectivity to
all hyperlinked files is checked first to ensure the
completeness of the documentation. Then it will be
analyzed and counted, all statistical data are put into
a database. Fig. 4 illustrates a sample relation in the
statistical database of a project using military docu-
mentation standards MIL-STD-498. Although these
statistical data are rather preliminary, experienced
software quality assurance specialists still can per-
ceive some valuable information from this database.

3.2 Quantitative Analysis

Through this statistical database, we can know much
information about this project. For instance, if a pro-
gram node is modified, but its parent document no-
des are not updated, then the consistency is destroyed.
If a document node is updated, but its parent docu-
ment nodes, or child program node is not updated,

-254-

the consistency corrupts too. Besides the consistency
checks, this database can also answer following
questions:)

o The amount of multimedia used to annotate the
entire project.

e The average of multimedia used to annotate
each document.

e Programmers willing to write documents, and
those unwilling.

e The media most programmers prefer, and the
media some programmers never use.

e Documents with few multimedia data.

e The quantities of documents are above or lower
than others.

Project managers can also perceive some hid-
den messages from this summary. For example, if the
percentage of inconsistent program nodes is high,
these program nodes might be modified frequently.
Programmers are tired to update the corresponding
documents every time. If excessive programmers are
unwilling to write documents, it might indicate the
project schedule is somewhat rush. Programs with
few documents might reveal that the programmers
know little about what they wrote. If few program-
mers use sound or video to annotate their programs,
it might point out their office is unsuitable for re-
cording (too small or noisy).

Based on this table, the manager can prepare a
list for all programmers from the one with the most
documents down to with the least, and reward those
above the average, and encourage those below. Of
course, programmers can examine these results be-
fore the manager. The primary purpose of this statis-
tical database is to encourage programmers to write
documents and programs more completely.

4. CONFIGURATION MANAGEMENT

Configuration management is the art of identifying,
organizing, and controlling modifications to software.
The goal is to maximize productivity by minimizing
mistakes {2].

Changes are inevitable in the software life cycle,
most project managers admits change control and
maintenance are their heavy burden. According to
our practical experience, configuration management
is hard to be tackled well, which results in serious
project delay, customers’ complaints, and some dan-
gerous bugs.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

4.1 Management in the Internet/Intranet

Projects developed with our system can be put into
the Internet or a company’s Intranet smoothly, many
configuration management tasks during development
and maintenance can be achieved through lots of
utility programs. Project tearn members can conven-
iently communicate one another via the network
during every phase. Documents and programs can be
browsed by anyone that connected the network.
Multimedia data will be very helpful especially in the
Intranet. Voice and video can truly reflect the realis-
tic aspects of miscellaneous problems.

Team members can send multimedia E-mails to
the authors of documents and programs. All com-
ments and opinions are collected and browsed by
related members. Our system will record whoever
browsed which kind of documents and programs. If
the documents or programs are updated, the members
responsible for modification can send the update
message E-mails to all the people that ever visit this
node. Besides this, all activities in the network are
collected and put into previous statistical database.
Fig. 5 illustrates a relation recorded with the detailed
statistical data of visiting members. Upon querying
this database, project managers or customers can
know lots about the interior issues of this project

Maintenance programmers can also use the
editor to read the documentation and programs. All
their browsing activities, suggestions, questions, and
complaints are recorded. Project managers can use
any kind of web site servers to monitor their behav-
ior, and collect miscellaneous data.

4.2 Quantifative analysis

When newcomers report that they have "finished"
reading the program, the project manager usually
doesn't have any method to evaluate the status of
their understanding, let alone do any quantitative
analysis. And the manager often cannot obtain re-
sponses from them systematically. Our system
provides a statistical database to record and analyze
their learning status and responses. This database can
report following information.

® Whoever browsed the documents and programs?

® How long does certain visitor stay at each
document or program?

e The number of documents and programs have
been traversed and the percentage.

e Total and average time expended in traversing
documents and programs.

-255-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

e Total and average quantities of muitimedia re-
sponses (suggestions, complaints, and ques-
tions).

According to these queries, the manager can
grasp the learning status and the efforts devote of a
newcomer, and the quality of documents and pro-
grams. The manager can perceive somewhat about
the quality of the project, and compare this result to
other newcomers' or projects’ responses to obtain a
more accurate evaluation. Similarly, the manager can
know which member performs best (who has most
good comments), and which has least etc. The sum-
mary of suggestions, complaints, and questions re-
ports not only the quality of the project, but also the
effort the newcomer devotes. In comparison with
other projects, the manager can realize the quality of
documents, programs, development programmers,
newcomers and the program itself in further detail.

We consider the most important meaning of this
database is not to monitor the learning behavior of
newcomers, but to understand the quality of docu-
ments and programs. If they are clear, complete and
easy to understand, newcomers must be willing to
traverse the entire program and documents thor-
oughly, and can finish the tour quickly with few
complaints.

5. RELATED WORK

Hypertext is a special kind of active text, and has
been widely used in computer on-line documents
since the 80's [4,16]. There are numerous hypertext
systems around. Due to hypertext's special charac-
teristics, it has also been used in Computer-Aided
Software Engineering (CASE) [3]. But conventional
HyperCASE systems often don’t provide statistical
database to measure documents and programs quan-
titatively, most of all, they cannot prevent the casual
programmers modify the programs outside the sys-
tem. Besides most activities via the network are not
collected and analyzed. Project managers often can-
not acquire useful information about the project itself
and the team members.

HTML is the most popular hypertext language
now. There are many HTML editors and browsers,
such as Netscape Composer and Navigator, Mi-
crosoft FrontPage and Explorer, and Sausage Soft-
ware HotDog etc.

Multimedia presentation and authoring tools [7],
have been used as a computer training tools for years,
the effect is deeply impressed. Trainees can commu-
nicate with the system interactively, and their learn-

ing status can be measured quantitatively. The idea of
the tour of a program comes from these multimedia
systems.

Knuth noted that program documentation is in-
complete in the early 80's, which leads to his
pioneering work on literate programming {14]. His
approach embeds documents into the program, which
allows designing and describing a program from top
to bottom according to the stepwise refinement
methodology. This method can be represented as
hypertext naturally, several researchers have imple-
mented systems using hypertext for literate pro-
gramming [17]. Knuth's method can also be applied
to our system due to the hypertext nature, embedded
documents can be represented not only with text, but
richer multimedia. However, because our system is
not designed for literate programming, the resulting
literate programs cannot be compiled directly. We
consider the literate programming approach still
needs a quantitative method to measure the com-
pleteness of embedded documents.

The Naval Research Laboratory (NRL) has
proposed a project entitled Software Cost Reduction
(SCR) [10], which specifies the requirements of real-
time, and safety-critical systems precisely. This pro-
ject has a profound impact on follow-up systems
about formal documentation. Recently, some re-
searchers have designed a suite of automated tools
for constructing and analyzing formal requirement
specification [10]. This tool set acts as an unambigu-
ous and concise front-end of software development.
It can form a complete and useful CASE environ-
ment if these tools for requirements and designs can
be combined with ours.

Parnas, Madey and Iglewski's work on precise
documentation of well-structured programs [18]
serves as another approach to program documenta-
tion. Their method can document a program ex-
tremely precisely, and most suitable for safety-
critical systems. In fact, their method has been suc-
cessfully applied to a project in Darling nuclear plant
in Canada. If their work can equip with a tool to an-
notate the formal specifications and programs, it will
help general programmers to accept this precise and
elegant methodology.

ISO [12], DOD [5], and 1EEE [11] have pro-
duced various software development standards. Our
system can be regarded as a tool set of these stan-
dards. Its hypertext functionality can help to create
documents, its multimedia capability can help im-
prove the monotonous text with various pictures,
charts, diagrams, sound, and video. Meetings, dis-
cussions and reviews can be recorded in more truth-

-256-

ful aspects. The automatic checking and analyzing
utilities in our system can fulfill previous drawbacks
of these standards.

6. CONCLUSIONS

The CPU performance and storage device capacity
have made tremendous progress recently. Why don't
we use them to improve the software documentation?
Based on years of programming experience, we
know programmers are unwilling to write documents.
More convenient tools must be provided to facilitate
them to write the documents and programs. The ad-
vantages of our system can be summarized as fol-
lows:

e It integrates the documentation and programs as
a tightly coupled object. Team members can no
longer modify the program separately. This
feature can prevent the occurrence of incom-
plete and inconsistent documents.

e Muitimedia can enrich the expressiveness of
conventional monotonous documents. All dis-
cussions, meetings, seminars related to this
project can be recorded with sound, or video,
which can pass the ideas much more truthfully.

e Project managers can measure many aspects of a
project quantitatively through the statistical da-
tabase. They can know not only the status of
documents and programs, but also the team
members and newcomers.

e Configuration management will become more
easy and convenient via various networks. All
activities are collected, analyzed and put into the
statistical database for further queries.

e Changes can be handled much more easily. All
modifications to programs or documents will
not only be recorded into the statistical database,
but also notify all the people that ever visit them
automatically.

Our future work will focus on how to make this
system become a more complete CASE system. It
will be much more convenient and useful if a com-
piler/linker environment can combine with us [8].
Any compiler/linker errors can directly jump to the
program node, not the generated build files. We also
hope to implement various software standards, such
as 1SO 12207 or MIL-STD 498, into a set of tem-
plates. If different project teams adopt different stan-
dards, they need only to change a new template. Be-
sides many defense and aerospace projects are
safety-critical, we hope to embed the precise docu-

1998 Internationat Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C."

mentation methodology into our system to ensure the
reliability and robustness of projects developed and
maintained with this system.

REFERENCE

[11 A. V. Aho, R. Sethi and]. D. Ullman, Compilers:
Principles, Technigues, and Tools, Addison-Wesley,
Reading, MA, 1986.

{2] W. A. Babich, Software Configuration Management,
Addison-Wesley, 1986.

[3] J. Bigelow, ‘Hypertext and CASE’, IEEE Software,
Mar. 1988.

(4] J. Conklin, ‘Hypertext: an introduction and survey’,
IEEE Computer, Sep. 1987.

[S] DOD, Software Development and Documentation,
DOD MIL-STD-498, Dec. 1994.

[6] N. Fenton, ‘Software measurement: A necessary

scientific basis’, IEEE Trans. on Software Engi-
neering, Mar. 1994,

[71 A. Ginige and D. B. Lowe, ‘Hypermedia authoring’,
IEEE Multimedia, May 1995.

[8] A.N. Habermann and D. Notkin, ‘Gandalf : software
development environments’, [EEE Trans. on Soft-
ware Engineering, Dec. 1986.

[9] M. Hanna, ‘Maintenance burden begging for a rem-
edy’, Datamation, Apr. 1993.

[10] C. L. Heitmeyer, R. D. Jeffords and B. G. Labaw,
‘Automated consistency checking of requirements
specifications’, ACM Trans. on Software Engineer-
ing and Methodology, Jul. 1996.

[11] IEEE Computer Society, Software Engineering Stan-
dards, IEEE, 1994.

[12] ISO and IEC, Software Life Cycle Processes,
ISO/IEC 12207, Aug. 1995.

[13] B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, 2™ ed., Prentice Hall, 1988.

[14] D. E. Knuth, ‘Literate programming’, The Computer
Journal, Feb. 1984.

[15] J. R. Levine, T. Mason and D. Brown, Lex & Yacc,
O'Reilly & Associates, Inc., 1992.

[16] J. Nielsen, ‘The art of navigating through hypertext’,
CACM, ACM, Mar. 1990.

[17] K. Osterbye, ‘Literate Smalltatk programming using
hypertext’, JEEE Trans. on Software Engineering,

“Feb. 1995.

[18] D. L. Parnas, J. Madey and M. [glewski, ‘Precise
documentation of well-structured programs’, JEEE
Trans. on Software Engineering, Dec. 1994.

[19] J. M. Roche, ‘Software metrics and measurement
principles’, Software Engineering Notes, ACM, Jan.
1997.

-257-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

1.3.5 The Altitude Processing Subunit

This subunit is responsible for receiving a sea-level altitude sensor, then

processed by a_conversion routine (See Reference [11, 17T} to acquire

real altitude above = IMDPS—CODE (Alnmﬂe Code)

nessary in thiscon’l #include <stdio.h>
| #include <stdlib.h>

1.3.6 The Temper:| #include "system.par”

float AltitudeProcessing(float altitude)

{
float %, y, z:

b4
Y

MaxHeight * altitude * sin(angle);
MaxHeight * altitude * cos (angle);

Fig. 1. Using a hypertext editor to create development documents and programs.

@, IMDPS-DFDTL [-JoIx}
B Cif View ol Desbess Heho | o0t Ui omns Tl T gmfx
NG w, IMDPS-DFD 2 [-[oT]
\Q@@ B Bl View BuMd Dembess Help " sloix
e =
Tem \ Alnfude @
Pe;-amn_e
Embeded Teuperaturre

Computer

Wind Speed

Target

/
5 &
. Radar Stznal Detecting
ggs Unut
Engane Stgnal
2 PR - - EPU
~—

3]

Fig. 2. Data flow diagrams (DFD) can also be represented as hypertext.

-258-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.Q.C.

/

{ Altiude © / Moisture ! Windspd\
. code ;o code ;0 TV . code
\\/ AN — \\\,7 »_/,/

Fig. 3. The integration of documents and programs forms a bi-directional graph.

ID- Hyperlinks - Linked Video * Sound Charts - Text Date :
DP= 38 35 01:10:17 10:26:18 38 31,937 11-Nov-97 09:03

17 10 00:18:23 07:00:26 11 7,321 22-Nov-97 11:57
22 20 00:25:07 03:11:20 16 8,816 9-Dec-97 15:08
19 10 00:10:39 05:08:49 8 6,215 26-Dec-97 10:05
23 20 01:10:11 17:56:32 37 46,265 17-Jan-98 16:36
35 27 03:08:05 18:10:29 59 58,498 29-Jan-98 10:27
41 29 02:37:25 11:08:51 67 81,654 9-Mar-98 11:08

Fig. 4. A relation in the statistical database for a project using MIL-STD-498.

Visited Sound - Text Duration = Date. Time
SDP 00:17:08 1,932 01:02:57 12-Apr-98 09:00
SRS 00:38:25 2,312 00:58:32 17-Apr-98 11:18
SSS 00:25:39 1,817 01:57:36 28-Apr-98 17:30

SSDD 00:51:48 3,762 02:32:49 5-May-98 14:09
=~ Altitude.code 00:04:16 213 00:35:21 11-May-98 10:05
Engine.code (00:06:52 317 00:42:55 12-May-98 08:58
Moisture.code 00:05:25 178 00:36:19 13-May-98 17:34

Fig. 5. A relation of visiting members’ statistical data.

-259-

	
	252
	253
	254
	255
	256
	257
	258
	259

