Tunable Embedded Software Development Platform

(Win-Bin See)

68 111
winbinsee@ms.aidc.com.tw

(Pao-Ann Hsung)
160
pahs ung@cs.ccu.edu.tw
(TESDP) "
TEDSP
(ESS)
ESS
(SHF) TESDP
(MMDT) MMDT
TESDP
(PDA)

16-7

(Sao-Jie Chen)

c§ @cc.ee.ntu.edu.tw

(Trong-Yen Lee)

190
tylee@ccit.edu.tw

1. Introduction

Following the advances in the design and
fabrication techniques for semiconductor devices,
various micro-controllers and periphera control
chips are proliferating with decreasing price and
increasing performance. These technology
advancements have aso enabled the
development of inexpensive embedded systems
that provide dedicated and integrated services.
Mobile phones, digital camera and personal
digitd assistance (PDA) are examples of
emerging embedded system applications. On the
other hands, these kinds of embedded systems
are suffered from having short life cycle time
that have been caused by the changing appetite
of customers and the introduction of new
products from competitors. Hence, embedded
system providers have to keep on developing
new products based on new hardware
components and new user demands in
functionality and interface improvement, the
embedded software will be the glue to al
hardware components. To take advantage of cost
reduction from mass production, programmable
micro-controllers are used in embedded system
design. Embedded system software drives the
micro-controller and associated hardware
components to provide the system functionality
required. Embedded system software can
program the same micro-controller and
cooperate with proper periphera configuration
for various applications per requirement
specified. To cope with the demanding requests
for new embedded system products, the industry
needs good design methods and tools for
embedded system software devel opment.

In order to reduce the development time for
the embedded system software, various
techniques could be taken, such as adopting
software reuse technique, seeking for the
advancement in software synthesis and
verification [1, 3, 4, 6, 7].

Embedded system software is usualy
developed on a hardware platform that is
different from the find target environment.
Cross compilers are used in the software
development station to generate target code, and
then downloaded into the RAM or
programmable ROM resides in embedded
hardware platform for execution. Accordingly,
development methods that could enable the
paralelism in software and hardware
development will also be helpful for embedded
system development. Object-Oriented
programming is a paradigm that has been
pledged to enable better software re-use
object-oriented frameworks have been worked
prominently in this aspect [7, 13, 14]. In this
article, we propose a development method that
integrates the object-oriented paradigm to
support the paralle development in embedded
software and hardware. It aso provides
framework for execution information collection
to support the system verification and tuning.

This article is organized as follows.
Section 2 gives a brief overview about previous
work in object-oriented software framework and
tools that support embedded software
development. Section 3 describes the proposed
embedded software development method that
based on a Tunable Embedded Software
Development Platform (TESDP). Section 4
illustrates the feasibility of this development
platform through the design and implementation
of an embedded mobile data terminal for
intelligent transportation system application.
Section 5 concludes the article and gives
directions for future work.

2. Previous Work

Embedded system is a specia purpose
computer system that consists of controller and
peripherd devices. Most embedded system
needs to response to some externa events with
some timing constraints. To cope with
proliferating demands in embedded system
development, various methodologies and tools
are developed for embedded red-time system
development.

Object oriented frameworks [9] provide
reusable domain specific software that can be

applied with minor modification. Two recently
proposed frameworks, Object-Oriented
Real-Time System Framework (OORTSF) [13,
14] and RTFrame [5] are providing reusable
real-time system frameworks. VERTAF [7]
integrates verification capability into its
framework.

Execution time information of functionsin
the embedded system provides base data for
system design, anaysis and verification.
Classical scheduling policies [10, 11] use
execution time information for schedulability
check. Corteset al. [4] introduce Petri Net based
formal verification method that uses “ transition
delay” associated with transition to represent the
execution time of the function. In the timed
automata based forma verification method [7]
for embedded system, mode predicates represent
the information about execution time of function.
It is desirable to have actua execution time
collection mechanism as a basdine design for
embedded system development. We introduce
severa objects into a kerndl that is based on
OORTSF to provide the actual execution time
information collection.

Hardware development tool supports
gate-level abstraction, this model would be too
detailed to be suitable for the development of
embedded system. Some embedded system
development platform [16] provides higher level
of abstractions include microprocessor, cache,
memory, DMA, etc. Some embedded system
development tools abstract the system into graph
structure and use graph agorithm to explore the
properties required by system specification [1, 3,
7, 15]. The abstractions used in the above tools
are either too detailed or too high-level for the
development of embedded system that need to
address software and hardware at the sametime.

It is suggesting in providing a
development platform to support the abstractions
of both the hardware and software that are
manageabl e to the embedded system application
designer. We propose a Tunable Embedded
Software Development Platform (TESDP) that
addresses this issue to support the paralld
development of embedded software and
hardware.

3. Tunable Embedded Software
Development Platform

Typica embedded system consists of
programmable micro-controller, memory, and
peripherals. Embedded system reacts to its
environment and needs to satisfy some kind of

execution sequence and timing constraints.
Accordingly, most embedded software is aso
real-time software. Embedded system exhibits
its functionality through its input/output
interconnections, and peripheras with respect to
the environment. Software on micro-controller
does the data computation and senses the
environment data to generate the system outpuit.
Embedded system synchronizes and
communicates with its environment via
mechanisms such as hardware interrupts, port

based input/output and memory mapped
input/output.
Smulated Hardware
Framework (SHF)
Internal
Behavior
Event
Embedded ()ZZ"\ Smulator
System
Software
| | IP/IC
(ESS) ¢_:> Smulator

exhibits the behavior of the peripherals of the
target system on the development platform. We
call thisembedded software devel opment system
as Tunable Embedded Software Development
Platform (TESDP). Figure 1 shows the software
architecture of TESDP, which consists of two
major parts: Embedded System Software (ESS)
and Smulated Hardware Framework (SHF). The
task scheduling and control of ESSis based on
the design of OORTSF [13, 14] to integrate the
required application functionality. TESDP
further adaptes an ESS from an origina
embedded system by compiling and linking it

to the SHF for execution on the

development platform.

We add three object classes
into the Embedded System
Software (ESS) to support

verification data extraction and
provide monitoring function of
TESDP. We use Timing Guard
object to collect the execution
time information of function. The
Assertion Guard object is used to

SHF |O/Device
Hook ¢:> <

Bridge
Timing |O/Device
Guard < : Simulator
Assertion ESS
Guard K— Monitor

[] ‘ESS monitoring support objects
Figure 1. Tunable Embedded Software

Development Platform (TESDP).

Since C/C++ programming language is a
very popular programming language used by
most of the micro-controllers and the systems
running under aWindows or aUnix OS platform.
Most of the micro-controller uses Windows and
Unix OS platform as its cross development
platform. From the C/C++ programming point of
view, target platform and the cross development
platform provide the same abstraction in using
the same high-level language. From system
behavior point of view, the major difference
between target platform and the development
platform will be the differences in hardware
interrupts, input/output port, the peripheras that
exhibit system functionality. After keen
arrangement, we can make up an illusion of the
target embedded system that can execute the
C/C++ programs of the target systems, and

provide run-time status
information to the ESSMonitor in
HF.

External

Device & SHF Hook: This is an

object-oriented class that
supports the insertion and
replacement of the
operations in ESS operations
for SHF. SHF Hook
provides systematic and
documented insertion of the
mechanism to match ESS
into the environment of our
TESDP platform.

¢ Timing Guard: The
execution time of a task
depends on the speed of the processor used.
We introduce a timing guard object to
gauge the elapsed time of a function and to
introduce the execution time offset as
required for different platforms. Using
Timing Guard, a user can mitigate the
timing gap between TESDP and actud
embedded system operation. Timing Guard
supports the extraction of actual execution
time information for a function. This
information can be collected and refurbish
to the system tuning process.

& Assertion Guard: System properties have to
be formulated for formal verification7].
Some programming paradigms focused on
introducing pre-condition/post-conditions
and invariants into the to-be-verified

software in a structured manner[12].
System requirement compliance check can
also be built into the software. For example,
we can present condition of interest and its
run-time verification using Assert Guard
objects. Embedded system operation does
not have rich user interface with outside
world as general-purpose computer system
does. Cooperating an Assertion Guard
with the ESS Monitor in SHF can provide
report to the system devel oper.

We choose C/C++ language to write
programs executed in both the target
micro-controller and development platform. To
let the embedded software program executes on
the TESDP, we need to find out a layer of
separation that can derive an efficient SHF
design. We categorized the hardware
abstractions first and provide mechanisms to
support the hardware abstraction using
combinations of the software and hardware on
the development platform and from the external
devices connected to the TESDP software
development platform. The layer of separation
we choose for the micro-controller core and
peripheras consists of three major abstractions
described asfollows.

¢ Internal behavior: It represents CPU
interrupts, memory mapped 1/0 and special
internal Integrated Circuit (IC) and/or
Intellectual Proprietary (IP) components
like programmable logic arrays. The Event
Smulator and IC/IP Smulator are used to
smulate the internal behavior of
components.

¢ |O/Device Bridge It represents externa
communication interfaces like RS232 and
paralel port. 10/Device Bridge simulates
those 10 interconnections. 10/Device
Bridge uses physical interface to connect
the external devices.

¢ |O/Device Smulator: It represents 10
devices, such as LCM display and
keyboard/keypads. 10/Device Smulator
simulates the 10/Device inside or
externally connected to the embedded
system.

¢ ESSMonitor: It reads ESS execution status
data from ESS Assert Guard Object. ESS
Monitor provides a means for the report of
system and application function execution
status to the system developer. Execution
status information is very useful for system
verification and tuning.

Using these abstraction techniques, the

SHF can be tuned to adapt to the changes in the
target embedded configuration. SHF is an
object-oriented software framework that
provides an execution support environment for
the ESS. We use the Windows-98 platform on a
Personal Computer for this TESDP design and
implementation. Table 1 shows the SHF classes,
SHF implementation and associated example
embedded components. The object-oriented
framework is a software reuse technique that
provides half-done software to facilitate the
reuse in both design and code. The SHF classes
can be instantiated and composed to simulate the
hardware configuration of an embedded system.
During the evolution, if the embedded system is
adapted to new hardware technology, the system
developer can readjust the SHF according to the
changes.

Table 1. Major SHF object-oriented classes.

HF Class HF Example
Implement. Embedded
Component
Event Smulator| Thread Scheduler Timer

IC/IP Smulator |Software API |Programmable

Logic Device
|O/Device Thread RS232
Bridge connection
|O/Device Thread LCM Display
Smulator
Timing Guard |Thread LCM Display

The main advantage of this approach isto
provide a smulated hardware environment
associated with the stages of hardware
architecture evolution in embedded system
development. Some of the modular device
control and/or inter-connections can be tested in
the TESDP first, instead of building a tota
design to test the target system. In our
experience, this saves a lot of time, because the
TESDP is more stable and convenient in access.
With confirmed protocol between controller and
the device interactions, most of the code can be
execute directly after re-compilation. Some of
the devices are controlled via general interface,
such as; RS232, the mismatch between the two
platforms has been harmonized by the baud rate
setting for the RS232 interface.

We are also aware of some mismatches
between the embedded platform and the TESDP
approach. These mismatches are timing
mismatch, compiler mismatch and abstraction
mismatch as follows. (1) Timing mismatch:
Resdl -time system scheduling is done based on
the clock of a platform. Running TESDP on a
genera purpose Personal Computer has the

positive side of hgher clock rate than on the
target embedded system. Yet it aso introduces
additional system overhead posed by the
underlying operating system. (2) Compiler
mismatch: Specific compiler and linker might
have specific flaws inside. However, TESDP
could have more matured compiler than target
micro-controller. Earlier ESS software
development on TESDP turns out to be an
efficient approach. (3) Abstraction mismatch: It
depends on the availability of the hardware and
software capability on the TESDP with respect
to the embedded system. TEDSP user adjuststhe
configuration of SHF for target embedded
system configuration, this aso introduces
deviation between them. However, the standard
interface mechanism, like RS232, eases the
abstraction deviation between SHF and the real
target.

4. Application Example

Modular Mobile Data Terminal (MMDT),
an embedded system to be ingtaled in a
commercia or private car, provides various
remote management/support functionalities via
the mobile data communication capability and
global positioning system (GPS) built into the
MMDT. MMDT also provides to the car driver a
user interface that includes a large size LCM
display module, a set of control buttons, and
optiona PS2 keyboard. MMDT handles two
types of data communication protocols, MAP27
protocol stack software for trunking radio[8] and
AT command interface software for Global

In Figure 2, PLD is afiled programmable
logic device that has been programmed with
VHDL to handle the PS2 keyboard bit-level
interrupts, pack the data bits into bytes of data,
and send it to Micro-controller with another
byte-level interrupts and associated
memory-mapped data bytes for further
processing. The keypad inputs are aso encoded
by this PLD, which interrupts the
Micro-controller to notify the occurrences of the
keypad depression with associated keypad code.
The LCM module is a display panel with back
light control that is capable to display large
traditional Chinese font for easy reading by the
car driver. However, the LCM module has
relatively low duty cycle as compared to the
speed of Micro-controller, and it needs polling
based access to confirm the availability for
updating further display data. The LCM module
display duty-cycle will aso be a parameter that
varies when the replacement of LCM in different
design becomes necessary.

In this system, RS232 interfaces are used
to connect externa devices that include GPS,
Trunking Radio, GSM module and a remote host
computer. Smulated Hardware Framework
(SHF) on TESDP uses actual RS232 interface to
control external hardware modules. We use
Windows-98 platform for this TESDP design
and implementation. Table 2 shows the SHF
classes and objects instantiated for the MMDT
execution on our TESDP environment.

Table 2. MMDT components to SHF classes
mapping.

System for Mobile communications (GSM) Embedded | SHF object | SHF class| SHF
module[2]. Figure 2 shows the hardware components implement.
architecture of MMDT. Scheduler [Timer Event Timer
Timer Thread Smulator |Thread
Keypad Keypad IP/IC Software
MMDT Thread Smulator |API
PS2 Keyb Thread|IP/IC Software
LCM Module Keyboard Smulator |API
| GSM GSM Bridge|lO/Device |RS232
Keybaord connection Bridge Thread
Micro- PLD : Trunking Trunking 10/Device |RS232
Controller RS-237 Trunking Radio Radio Bridge |Thread
Radio connection |Bridge
RAM GPS GPS Bridge {IO/Device |RS232
ROM (battery- RS-232 GV connection Bridge |Thread
backu] LCM module|LCM 10/Device |Software
P) |liRs-23 TEDSP display Simulator |API
Host Simulator
[| RS-232 -
TEDSP Host |0/Device |RS232
Keypad || GPS Host Computer |Bridge | Thread
Connection |Bridge

Figure2. MMDT hardwar ear chitecture.

LCM Control | / ——] “i
f—— J[_________ / MAP27 Protocol !
: Processin : -
}f e{)pad/d | Display Page 2 Rs232 Trunking
gyboard 11 ~ontrol MAP27 Net Layer ||| ! Radio
processing | ! :
\ MAP27 DL Layer ||| !
NavCruRpt R'8232 oS
| GSM Comm !
GPS Driver R:823_. GPS
Real-Time Timing Assertion | Rispzp| TESDP
Kernel Guard Guard ; HOST
Figure 3. MMDT softwar e ar chitecture.
MMDT embedded software consists of a 5. Conclusion

baseline OORTS [13, 14] framework as its
Real-Time Kernd to control application tasks.
Figure 3 shows the embedded software
architecture of MMDT. The MAP27 Protocol
Processing consists data link layer processing
MAP27 DL Layer, and network layer processing
MAP27 Net Layer. An externa radio set is
connected to the MMDT for trunking radio
communication. NavCruRpt does system
navigation and cruise function based on the GPS
data from GPS Driver, it reports the current
vehicle position data to control center through
mobile communication. GPS is a module built
inside the MMDT box. Display Page Control
manages the page displayed on the LCM module
through LCM Control. Keypad sdlects the
display menu page for user controls. Keyboard
inputs data to the data field on LCM display
page. GSM Comm controls the externd GSM
communication module using AT commands[2].
In Figure 3, the box with dashed-line delineates
the implementation boundary between ESS and
SHF.

During the development of MMDT, some
hardware modules were added into the system
follows the evolution of system requirements.
The GSM communication module control has
been integrated on the TESDP environment first
and integrated into the real target platform after
the control and operation scenario confirmed.
Many of the devices are connected via R232
interface and the SHF uses actual R232 to drive
the devices on TESDP. Therefore, there are little
differences in the operational scenarios between
actua embedded platform and TESDP, this
further proves the feasibility of our TESDP
approach.

The TESDP approach for embedded
software development provides the possibility of
parallel development in embedded hardware and
software. Using the proposed development
platform, the development of embedded system
software can be de-coupled from the hardware
platform while maintaining very close semantic
similarity for the function operates on both
platforms. This kind of development platform
will be very desirable for electronic industry that
is seeking for the grasp of booming embedded
system market, such cell phone, digital camera,
personal digital assistance (PDA), etc. We have
used this approach in an evolutionary
development of embedded Modular Mobile Data

Terminal (MMDT) system for intelligent
transportation system applications. With
comprehensve communication and user

interface, this MMDT can aso be adapted to
support other domain of application. With the
support of TESDP approach, the cost of future
adaptation of MMDT could be reduced. Thisalso
provides evidence for the value of TESDP
approach in the development of other embedded
systems.

Our TESDP approach supports the
development of software for embedded system
that consists of micro-controller and periphera
integrated circuits (ICs). From hardware aspect,
some hardware component providers provide
their intellectual property (IP) cores of
micro-controllers and peripherals in the form of
electronic files. System designer integrates
various IP cores as required and turn them into a
System On a Chip (SOC). This SOC approach

further provides embedded system hardware
with even more cost competitiveness. However,
SOC needs embedded software that executes on
the micro-controller and elaborates the
peripheral to fulfill the system functionality. We
believe that our approach can also be applied to
the SOC type of embedded system development.

We are working on the integration of more
comprehensive software frameworks and code
synthesis capability [1, 3, 4, 6, 15] to support the
development of different types of embedded
systems. We ae dso integrating software
verification capability into this development
platform [7] and make it both tunable and
verifiable development environments for
embedded system devel opment environment.

6. Reference

[1] K.Altisen, G. Gobler, A. Preuli, J. Sifekis, S.
Tripakis, and S. Yovine, “A Framework for
Scheduler Synthesis,” In Proceedings of the
Real-Time System Symposium (RTSS 99),
|EEE Computer Society Press, 1999.

[2] AT command set for GSM Mobile
Equipment (ME) (GSM 07.07 version
4.4.1), Digita cellular telecommunications
system (Phase 2), European
Telecommunications Standards Institute,
France, March 1999.

[3] F. Bdain and M. Chiodo. Software
synthesis for complex reactive embedded
systems. In Proceedings of International
Conference on Computer Design
(ICCD’ 99), pp. 634 — 639. |IEEE CS Press,
October 1999.

[4] L. A. Cortes, P. Eles, and Z.Peng, "Formal
Co-verification of Embedded Systems using
Modd Checking,” In Proceedings of
EUROMICRO, pp. 106-113, 2000.

[5] P. -A. Hsung, “RTFrame An
object-oriented application framework for
real-time applications,” In Proceedings of
the 27" International Conference on
Technology of Object-Oriented Languages
and Systems (TOOLS 98), pp. 138147,
IEEE Computer Society Press, September
1998.

[6] P. -A. Hsiung, “Forma synthesis and code
generation of embedded real-time
software,” In International Symposium on
Hard-ware/Software Codesign (CODESO1,

Copenhagen, Denmark), pp. 208— 213.
ACM Press, New York, USA, April 2001.

[7] P.-A.HsSung, W.-B. See, T.-Y. Lee, J-M Fu
and S-J. Chen, “Forma verification of
Embedded Real-Time Software in
Component-Based Application
Frameworks,” to appear in The 8th
Asia-Pacific Software Engineering
Conference (APSEC 2001).

[8] Introduction to MAP27 protocol, Web Site:
“http://www.condor-cci.com/trunking.new/

map27.htm”.

[99 R. E. Johnson, “Frameworks =
(Components + Patterns),” In
Communications of the ACM, Val. 40, No.
10, pp. 39-42, October 1997.

[10]C. L. Liu and J. W. Layland, "Scheduling
Algorithms for Multiprogramming in a
Hard Red - Time Environment,” Journal of
ACM, Voal. 20, No. 1, pp. 46-61,1973.

[11]J. -F. Lin, W. -B. See, and S-J. Chen,
"Performance Bounds on Scheduling
Parallel Tasks with Communication Cogt,"
IEICE Trans. Information & Systems, Val.
E78-D, No. 3, pp. 263-268, March 1995.

[12]M. Lippert and C. V. Lopes, "A Study on
Exception Detection and Handling Using
Aspect-Oriented Programming”, In
Proceedings of ICSE'2000, ACM Press.

[13]W. —B. See and S. -J. Chen, “High-level
reuse in the design of an object-oriented
real-time system framework.” In
Proceedings of the International Computer
Symposium, pp. 363-370, December 1996.

[14W. -B. See and S -J Chen,
“ Object-oriented real-time system
framework.” Domain-Specific Application
Frameworks, pages 327-338, Ed. M.E.
Fayad and R.E. Johnson, Wiley, 2000.

[15]M. Sgroi and L. Lavagno, “Synthesis of
Embedded Software Using Free-Choice
Petri Nets,” In Proceedings of IEEE/ACM
Design Automation Conference (DAC 99),
ACM Press, June 1999.

[16]F. Vahid and T. Givargis, “Platform Tuning
for Embedded Systems Design,” |EEE
Computer, No. 34, Vol. 3, pp. 112-114,
March 2001.

