
1

Tunable Embedded Software Development Platform

施文彬 (Win-Bin See)
經濟部漢翔航空工業公司
台中市福星北路 68巷 111號 16-7

winbinsee@ms.aidc.com.tw

陳少傑 (Sao-Jie Chen)
 國立台灣大學電機系
 台北市羅斯福路四段一號

csj@cc.ee.ntu.edu.tw

熊博安 (Pao-Ann Hsiung)

 國立中正大學資訊工程系
 嘉義縣民雄鄉三興村 160號

pahsiung@cs.ccu.edu.tw

李宗演 (Trong-Yen Lee)
 國防大學中正理工學院電機系
 桃園縣大溪鎮員樹林三元一街 190號

 tylee@ccit.edu.tw

摘要

 由於新的功能需求以及新硬體的加入使
得嵌入式系統的需求快速增加。軟、硬體並行
開發可以縮短系統開發時間並降低嵌入式系
統開發成本。我們提出一個"可調整的嵌入式
系統軟體發展平台 (TESDP) "來協助分離
軟、硬體開發，同時維持開發平台以及嵌入式
系統平台間的相似性。TEDSP 在嵌入式軟體
發展用的電腦上，提供一個讓嵌入式系統軟體
可以執行的環境。我們為嵌入式系統軟體
(ESS) 的即時控制核心提供一套監視以及驗
證資訊蒐集機制。ESS 與可調適的模擬硬體
框架 (SHF) 在 TESDP 上合作以達成伴隨嵌
入式系統軟硬體更新與演進的系統開發工
作。此一方法，讓嵌入式系統軟、硬體開發可
以同步進行。 我們展示將此一方法應用於一
個車用嵌入式系統：模組式行動通信終端機
(MMDT) 的開發。MMDT應用於智慧型運輸
系統領域，提供資料通訊及全球定位功能，提
供行控中心對於所屬車隊車輛的追蹤、派遣管
理及協助。 TESDP 協助我們在硬體構型演進
的同時進行軟體開發。 嵌入式系統市場產品
如行動電話、個人數位助理 (PDA)、數位相機
等等，需求非常旺盛。我們相信此一方法對於
盼望在旺盛的嵌入式系統市場擷取商機的電
子產業會有很大的助益。

關鍵詞：嵌入式系統軟體，物件導向式框架，

即時系統，軟體驗證。

1. Introduction

Following the advances in the design and
fabrication techniques for semiconductor devices,
various micro-controllers and peripheral control
chips are proliferating with decreasing price and
increasing performance. These technology
advancements have also enabled the
development of inexpensive embedded systems
that provide dedicated and integrated services.
Mobile phones, digital camera and personal
digital assistance (PDA) are examples of
emerging embedded system applications. On the
other hands, these kinds of embedded systems
are suffered from having short life cycle time
that have been caused by the changing appetite
of customers and the introduction of new
products from competitors. Hence, embedded
system providers have to keep on developing
new products based on new hardware
components and new user demands in
functionality and interface improvement, the
embedded software will be the glue to all
hardware components. To take advantage of cost
reduction from mass production, programmable
micro-controllers are used in embedded system
design. Embedded system software drives the
micro-controller and associated hardware
components to provide the system functionality
required. Embedded system software can
program the same micro-controller and
cooperate with proper peripheral configuration
for various applications per requirement
specified. To cope with the demanding requests
for new embedded system products, the industry
needs good design methods and tools for
embedded system software development.

2

In order to reduce the development time for
the embedded system software, various
techniques could be taken, such as adopting
software reuse technique, seeking for the
advancement in software synthesis and
verification [1, 3, 4, 6, 7].

Embedded system software is usually
developed on a hardware platform that is
different from the final target environment.
Cross compilers are used in the software
development station to generate target code, and
then downloaded into the RAM or
programmable ROM resides in embedded
hardware platform for execution. Accordingly,
development methods that could enable the
parallelism in software and hardware
development will also be helpful for embedded
system development. Object-Oriented
programming is a paradigm that has been
pledged to enable better software re-use,
object-oriented frameworks have been worked
prominently in this aspect [7, 13, 14]. In this
article, we propose a development method that
integrates the object-oriented paradigm to
support the parallel development in embedded
software and hardware. It also provides
framework for execution information collection
to support the system verification and tuning.

 This article is organized as follows.
Section 2 gives a brief overview about previous
work in object-oriented software framework and
tools that support embedded software
development. Section 3 describes the proposed
embedded software development method that
based on a Tunable Embedded Software
Development Platform (TESDP). Section 4
illustrates the feasibility of this development
platform through the design and implementation
of an embedded mobile data terminal for
intelligent transportation system application.
Section 5 concludes the article and gives
directions for future work.

2. Previous Work

Embedded system is a special purpose
computer system that consists of controller and
peripheral devices. Most embedded system
needs to response to some external events with
some timing constraints. To cope with
proliferating demands in embedded system
development, various methodologies and tools
are developed for embedded real-time system
development.

Object oriented frameworks [9] provide
reusable domain specific software that can be

applied with minor modification. Two recently
proposed frameworks, Object-Oriented
Real-Time System Framework (OORTSF) [13,
14] and RTFrame [5] are providing reusable
real-time system frameworks. VERTAF [7]
integrates verification capability into its
framework.

Execution time information of functions in
the embedded system provides base data for
system design, analysis and verification.
Classical scheduling policies [10, 11] use
execution time information for schedulability
check. Cortes et al. [4] introduce Petri Net based
formal verification method that uses “transition
delay” associated with transition to represent the
execution time of the function. In the timed
automata based formal verification method [7]
for embedded system, mode predicates represent
the information about execution time of function.
It is desirable to have actual execution time
collection mechanism as a baseline design for
embedded system development. We introduce
several objects into a kernel that is based on
OORTSF to provide the actual execution time
information collection.

Hardware development tool supports
gate-level abstraction, this model would be too
detailed to be suitable for the development of
embedded system. Some embedded system
development platform [16] provides higher level
of abstractions include microprocessor, cache,
memory, DMA, etc. Some embedded system
development tools abstract the system into graph
structure and use graph algorithm to explore the
properties required by system specification [1, 3,
7, 15]. The abstractions used in the above tools
are either too detailed or too high-level for the
development of embedded system that need to
address software and hardware at the same time.

It is suggesting in providing a
development platform to support the abstractions
of both the hardware and software that are
manageable to the embedded system application
designer. We propose a Tunable Embedded
Software Development Platform (TESDP) that
addresses this issue to support the parallel
development of embedded software and
hardware.

3. Tunable Embedded Software
Development Platform

Typical embedded system consists of
programmable micro-controller, memory, and
peripherals. Embedded system reacts to its
environment and needs to satisfy some kind of

3

execution sequence and timing constraints.
Accordingly, most embedded software is also
real-time software. Embedded system exhibits
its functionality through its input/output
interconnections, and peripherals with respect to
the environment. Software on micro-controller
does the data computation and senses the
environment data to generate the system output.
Embedded system synchronizes and
communicates with its environment via
mechanisms such as hardware interrupts, port
based input/output and memory mapped
input/output.

Since C/C++ programming language is a
very popular programming language used by
most of the micro-controllers and the systems
running under a Windows or a Unix OS platform.
Most of the micro-controller uses Windows and
Unix OS platform as its cross development
platform. From the C/C++ programming point of
view, target platform and the cross development
platform provide the same abstraction in using
the same high-level language. From system
behavior point of view, the major difference
between target platform and the development
platform will be the differences in hardware
interrupts, input/output port, the peripherals that
exhibit system functionality. After keen
arrangement, we can make up an illusion of the
target embedded system that can execute the
C/C++ programs of the target systems, and

exhibits the behavior of the peripherals of the
target system on the development platform. We
call this embedded software development system
as Tunable Embedded Software Development
Platform (TESDP). Figure 1 shows the software
architecture of TESDP, which consists of two
major parts: Embedded System Software (ESS)
and Simulated Hardware Framework (SHF). The
task scheduling and control of ESS is based on
the design of OORTSF [13, 14] to integrate the
required application functionality. TESDP
further adaptes an ESS from an original
embedded system by compiling and linking it

to the SHF for execution on the
development platform.

We add three object classes
into the Embedded System
Software (ESS) to support
verification data extraction and
provide monitoring function of
TESDP. We use Timing Guard
object to collect the execution
time information of function. The
Assertion Guard object is used to
provide run-time status
information to the ESS Monitor in
SHF.

u SHF Hook: This is an
object-oriented class that
supports the insertion and
replacement of the
operations in ESS operations
for SHF. SHF Hook
provides systematic and
documented insertion of the
mechanism to match ESS
into the environment of our
TESDP platform.

u Timing Guard: The
execution time of a task

depends on the speed of the processor used.
We introduce a timing guard object to
gauge the elapsed time of a function and to
introduce the execution time offset as
required for different platforms. Using
Timing Guard , a user can mitigate the
timing gap between TESDP and actual
embedded system operation. Timing Guard
supports the extraction of actual execution
time information for a function. This
information can be collected and refurbish
to the system tuning process.

u Assertion Guard : System properties have to
be formulated for formal verification[7].
Some programming paradigms focused on
introducing pre-condition/post-conditions
and invariants into the to-be-verified

Internal
Behavior

Embedded
System

Software
(ESS)

Event
Simulator

IO/Device
Simulator

Figure 1. Tunable Embedded Software
Development Platform (TESDP).

Simulated Hardware
Framework (SHF)

IO/Device
Bridge

IP/IC
Simulator

Timing
Guard

ESS
Monitor

External
Device

Assertion
Guard

:ESS monitoring support objects

SHF
Hook

4

software in a structured manner[12].
System requirement compliance check can
also be built into the software. For example,
we can present condition of interest and its
run-time verification using Assert Guard
objects. Embedded system operation does
not have rich user interface with outside
world as general-purpose computer system
does. Cooperating an Assertion Guard
with the ESS Monitor in SHF can provide
report to the system developer.

We choose C/C++ language to write
programs executed in both the target
micro-controller and development platform. To
let the embedded software program executes on
the TESDP, we need to find out a layer of
separation that can derive an efficient SHF
design. We categorized the hardware
abstractions first and provide mechanisms to
support the hardware abstraction using
combinations of the software and hardware on
the development platform and from the external
devices connected to the TESDP software
development platform. The layer of separation
we choose for the micro-controller core and
peripherals consists of three major abstractions
described as follows.

u Internal behavior: It represents CPU
interrupts, memory mapped I/O and special
internal Integrated Circuit (IC) and/or
Intellectual Proprietary (IP) components
like programmable logic arrays. The Event
Simulator and IC/IP Simulator are used to
simulate the internal behavior of
components.

u IO/Device Bridge: It represents external
communication interfaces like RS232 and
parallel port. IO/Device Bridge simulates
those IO interconnections. IO/Device
Bridge uses physical interface to connect
the external devices.

u IO/Device Simulator: It represents IO
devices, such as LCM display and
keyboard/keypads. IO/Device Simulator
simulates the IO/Device inside or
externally connected to the embedded
system.

u ESS Monitor: It reads ESS execution status
data from ESS Assert Guard Object. ESS
Monitor provides a means for the report of
system and application function execution
status to the system developer. Execution
status information is very useful for system
verification and tuning.

Using these abstraction techniques, the

SHF can be tuned to adapt to the changes in the
target embedded configuration. SHF is an
object-oriented software framework that
provides an execution support environment for
the ESS. We use the Windows-98 platform on a
Personal Computer for this TESDP design and
implementation. Table 1 shows the SHF classes,
SHF implementation and associated example
embedded components. The object-oriented
framework is a software reuse technique that
provides half-done software to facilitate the
reuse in both design and code. The SHF classes
can be instantiated and composed to simulate the
hardware configuration of an embedded system.
During the evolution, if the embedded system is
adapted to new hardware technology, the system
developer can readjust the SHF according to the
changes.

Table 1. Major SHF object-oriented classes.

SHF Class SHF
Implement.

Example
Embedded
Component

Event Simulator Thread Scheduler Timer
IC/IP Simulator Software API Programmable

Logic Device
IO/Device
Bridge

Thread RS232
connection

IO/Device
Simulator

Thread LCM Display

Timing Guard Thread LCM Display

The main advantage of this approach is to
provide a simulated hardware environment
associated with the stages of hardware
architecture evolution in embedded system
development. Some of the modular device
control and/or inter-connections can be tested in
the TESDP first, instead of building a total
design to test the target system. In our
experience, this saves a lot of time, because the
TESDP is more stable and convenient in access.
With confirmed protocol between controller and
the device interactions, most of the code can be
execute directly after re-compilation. Some of
the devices are controlled via general interface,
such as: RS232, the mismatch between the two
platforms has been harmonized by the baud rate
setting for the RS232 interface.

We are also aware of some mismatches
between the embedded platform and the TESDP
approach. These mismatches are timing
mismatch, compiler mismatch and abstraction
mismatch as follows. (1) Timing mismatch:
Real-time system scheduling is done based on
the clock of a platform. Running TESDP on a
general purpose Personal Computer has the

5

positive side of higher clock rate than on the
target embedded system. Yet it also introduces
additional system overhead posed by the
underlying operating system. (2) Compiler
mismatch: Specific compiler and linker might
have specific flaws inside. However, TESDP
could have more matured compiler than target
micro-controller. Earlier ESS software
development on TESDP turns out to be an
efficient approach. (3) Abstraction mismatch: It
depends on the availability of the hardware and
software capability on the TESDP with respect
to the embedded system. TEDSP user adjusts the
configuration of SHF for target embedded
system configuration, this also introduces
deviation between them. However, the standard
interface mechanism, like RS232, eases the
abstraction deviation between SHF and the real
target.

4. Application Example

Modular Mobile Data Terminal (MMDT),
an embedded system to be installed in a
commercial or private car, provides various
remote management/support functionalities via
the mobile data communication capability and
global positioning system (GPS) built into the
MMDT. MMDT also provides to the car driver a
user interface that includes a large size LCM
display module, a set of control buttons, and
optional PS2 keyboard. MMDT handles two
types of data communication protocols, MAP27
protocol stack software for trunking radio[8] and
AT command interface software for Global
System for Mobile communications (GSM)
module[2]. Figure 2 shows the hardware
architecture of MMDT.

In Figure 2, PLD is a filed programmable
logic device that has been programmed with
VHDL to handle the PS2 keyboard bit-level
interrupts, pack the data bits into bytes of data,
and send it to Micro-controller with another
byte-level interrupts and associated
memory-mapped data bytes for further
processing. The keypad inputs are also encoded
by this PLD, which interrupts the
Micro-controller to notify the occurrences of the
keypad depression with associated keypad code.
The LCM module is a display panel with back
light control that is capable to display large
traditional Chinese font for easy reading by the
car driver. However, the LCM module has
relatively low duty cycle as compared to the
speed of Micro-controller, and it needs polling
based access to confirm the availability for
updating further display data. The LCM module
display duty-cycle will also be a parameter that
varies when the replacement of LCM in different
design becomes necessary.

In this system, RS232 interfaces are used
to connect external devices that include GPS,
Trunking Radio, GSM module and a remote host
computer. Simulated Hardware Framework
(SHF) on TESDP uses actual RS232 interface to
control external hardware modules. We use
Windows-98 platform for this TESDP design
and implementation. Table 2 shows the SHF
classes and objects instantiated for the MMDT
execution on our TESDP environment.

Table 2. MMDT components to SHF classes
mapping.

Embedded
components

SHF object SHF class SHF
implement.

Scheduler
Timer

Timer
Thread

Event
Simulator

Timer
Thread

Keypad Keypad
Thread

IP/IC
Simulator

Software
API

PS2
Keyboard

Keyb Thread IP/IC
Simulator

Software
API

GSM
connection

GSM Bridge IO/Device
Bridge

RS232
Thread

Trunking
Radio
connection

Trunking
Radio
Bridge

IO/Device
Bridge

RS232
Thread

GPS
connection

GPS Bridge IO/Device
Bridge

RS232
Thread

LCM module LCM
display
Simulator

IO/Device
Simulator

Software
API

TEDSP
Host
Connection

Host
Computer
Bridge

IO/Device
Bridge

RS232
Thread

Figure 2. MMDT hardware architecture.

RAM
(battery-
backup)

ROM

Micro-
Controller

Keypad

LCM Module

Keybaord

GPS

RS-232

RS-232 Trunking
Radio

MMDT

PLD

TEDSP
Host

RS-232

GSM RS-232

6

MMDT embedded software consists of a
baseline OORTSF [13, 14] framework as its
Real-Time Kernel to control application tasks.
Figure 3 shows the embedded software
architecture of MMDT. The MAP27 Protocol
Processing consists data link layer processing
MAP27 DL Layer, and network layer processing
MAP27 Net Layer. An external radio set is
connected to the MMDT for trunking radio
communication. NavCruRpt does system
navigation and cruise function based on the GPS
data from GPS Driver, it reports the current
vehicle position data to control center through
mobile communication. GPS is a module built
inside the MMDT box. Display Page Control
manages the page displayed on the LCM module
through LCM Control. Keypad selects the
display menu page for user controls. Keyboard
inputs data to the data field on LCM display
page. GSM Comm controls the external GSM
communication module using AT commands[2].
In Figure 3, the box with dashed-line delineates
the implementation boundary between ESS and
SHF.

During the development of MMDT, some
hardware modules were added into the system
follows the evolution of system requirements.
The GSM communication module control has
been integrated on the TESDP environment first
and integrated into the real target platform after
the control and operation scenario confirmed.
Many of the devices are connected via RS232
interface and the SHF uses actual RS232 to drive
the devices on TESDP. Therefore, there are little
differences in the operational scenarios between
actual embedded platform and TESDP, this
further proves the feasibility of our TESDP
approach.

5. Conclusion

The TESDP approach for embedded
software development provides the possibility of
parallel development in embedded hardware and
software. Using the proposed development
platform, the development of embedded system
software can be de-coupled from the hardware
platform while maintaining very close semantic
similarity for the function operates on both
platforms. This kind of development platform
will be very desirable for electronic industry that
is seeking for the grasp of booming embedded
system market, such cell phone, digital camera,
personal digital assistance (PDA), etc. We have
used this approach in an evolutionary
development of embedded Modular Mobile Data
Terminal (MMDT) system for intelligent
transportation system applications. With
comprehensive communication and user
interface, this MMDT can also be adapted to
support other domain of application. With the
support of TESDP approach, the cost of future
adaptation of MMDT could be reduced. This also
provides evidence for the value of TESDP
approach in the development of other embedded
systems.

Our TESDP approach supports the
development of software for embedded system
that consists of micro-controller and peripheral
integrated circuits (ICs). From hardware aspect,
some hardware component providers provide
their intellectual property (IP) cores of
micro-controllers and peripherals in the form of
electronic files. System designer integrates
various IP cores as required and turn them into a
System On a Chip (SOC). This SOC approach

Figure 3. MMDT software architecture.

Real-Time
Kernel

NavCruRpt

Keypad/
Keyboard
processing

Display Page
Control

GSM Comm

LCM Control
MAP27 Protocol

Processing

MAP27 DL Layer

MAP27 Net Layer
RS232

RS232

GPS Driver GPS

Trunking
Radio

TESDP
HOST

GSM

RS232 Assertion
Guard

Timing
Guard

RS232

7

further provides embedded system hardware
with even more cost competitiveness. However,
SOC needs embedded software that executes on
the micro-controller and elaborates the
peripheral to fulfill the system functionality. We
believe that our approach can also be applied to
the SOC type of embedded system development.

We are working on the integration of more
comprehensive software frameworks and code
synthesis capability [1, 3, 4, 6, 15] to support the
development of different types of embedded
systems. We are also integrating software
verification capability into this development
platform [7] and make it both tunable and
verifiable development environments for
embedded system development environment.

6. Reference

[1] K. Altisen, G. Gobler, A. Pneuli, J. Sifakis, S.
Tripakis, and S. Yovine, “A Framework for
Scheduler Synthesis,” In Proceedings of the
Real-Time System Symposium (RTSS’99),
IEEE Computer Society Press, 1999.

[2] AT command set for GSM Mobile
Equipment (ME) (GSM 07.07 version
4.4.1), Digital cellular telecommunications
system (Phase 2), European
Telecommunications Standards Institute,
France, March 1999.

[3] F. Balarin and M. Chiodo. Software
synthesis for complex reactive embedded
systems. In Proceedings of International
Conference on Computer Design
(ICCD’99), pp. 634 – 639. IEEE CS Press,
October 1999.

[4] L. A. Cortes, P. Eles, and Z.Peng, ”Formal
Co-verification of Embedded Systems using
Model Checking,” In Proceedings of
EUROMICRO, pp. 106-113, 2000.

[5] P. -A. Hsiung, “RTFrame: An
object-oriented application framework for
real-time applications,” In Proceedings of
the 27th International Conference on
Technology of Object-Oriented Languages
and Systems (TOOLS’98), pp. 138-147,
IEEE Computer Society Press, September
1998.

[6] P. -A. Hsiung, “Formal synthesis and code
generation of embedded real-time
software,” In International Symposium on
Hard-ware/Software Codesign (CODES'01,

Copenhagen, Denmark), pp. 208–213.
ACM Press, New York, USA, April 2001.

[7] P. -A. Hsiung, W.-B. See, T.-Y. Lee, J.-M Fu
and S.-J. Chen, “Formal verification of
Embedded Real-Time Software in
Component-Based Application
Frameworks,” to appear in The 8th
Asia-Pacific Software Engineering
Conference (APSEC 2001).

[8] Introduction to MAP27 protocol, Web Site:
“http://www.condor-cci.com/trunking.new/
map27.htm”.

[9] R. E. Johnson, “Frameworks =
(Components + Patterns),” In
Communications of the ACM, Vol. 40, No.
10, pp. 39-42, October 1997.

[10] C. L. Liu and J. W. Layland, "Scheduling
Algorithms for Multiprogramming in a
Hard Real-Time Environment," Journal of
ACM, Vol. 20, No. 1, pp. 46-61,1973.

[11] J. -F. Lin, W. -B. See, and S.-J. Chen,
"Performance Bounds on Scheduling
Parallel Tasks with Communication Cost,"
IEICE Trans. Information & Systems, Vol.
E78-D, No. 3, pp. 263-268, March 1995.

[12] M. Lippert and C. V. Lopes, "A Study on
Exception Detection and Handling Using
Aspect-Oriented Programming", In
Proceedings of ICSE'2000, ACM Press.

[13] W. –B. See and S. -J. Chen, “High-level
reuse in the design of an object-oriented
real-time system framework.” In
Proceedings of the International Computer
Symposium, pp. 363-370, December 1996.

[14] W. –B. See and S. –J. Chen,
“Object-oriented real-time system
framework.” Domain-Specific Application
Frameworks, pages 327-338, Ed. M.E.
Fayad and R.E. Johnson, Wiley, 2000.

[15] M. Sgroi and L. Lavagno, “Synthesis of
Embedded Software Using Free-Choice
Petri Nets,” In Proceedings of IEEE/ACM
Design Automation Conference (DAC’99),
ACM Press, June 1999.

[16] F. Vahid and T. Givargis, “Platform Tuning
for Embedded Systems Design,” IEEE
Computer, No. 34, Vol. 3, pp. 112-114,
March 2001.

