
An Efficient Distributed Online Algorithm to Detect Strong
Conjunctive Predicates

Loon-Been Chen I-Chen Wu
Dept. Information Management Dept. Comp. Sci. and Info. Eng.

Chin-Min College National Chiao-Tung University
lbchen@mis.chinmin.edu.tw icwu@csie.nctu.edu.tw

Abstract

Detecting strong conjunctive predicates is a
fundamental problem in debugging and testing
distributed programs. A strong conjunctive
predicate is a logical statement to represent the
desirable event of the system. Therefore, if the
predicate is not true, an error may occur because
the desirable event do not happen. Recently
proposed detection algorithms have the problem
of unbounded state queue growth since the
system may generate a huge amount of execution
states in a very short time. In order to solve
this problem, this paper introduces the notion of
removable states that can be disregarded in the
sense that detection results still remain correct.
A fully distributed algorithm is developed in
this paper to perform the detection in an online
manner. Based on the notion of removable states,
the time complexity of the detection algorithm is
improved as the number of states to be evaluated
is reduced.

Keywords: Conjunctive predicate, distributed
debugging, distributed system, global predicate
detection.

1 Introduction

With the rapid development of networks and dis-
tributed systems, programming in distributed en-
vironments is becoming more common. How-
ever, the difficulty of distributed programming
is much higher than that of sequential program-
ming. This is because distributed debugging re-
quires the ability to analyze and control the execu-
tion of processors that run asynchronously. Also,
within a distributed environment, stopping a pro-
gram at a specific breakpoint is non-trivial.

It is well understood that distributed programs are

usually designed to obey certain conditions [6].
For example, a distributed mutual exclusion pro-
gram obeys the condition “at any time, the num-
ber of processes in the critical section is no more
than 1”. If it violates this condition, an error
(two or more processes are in the critical sec-
tion simultaneously) may occur. Typically, the
conditions are formulated as boolean expressions,
called global predicates [1, 5]. Detecting whether
a given global predicate is satisfied is essential for
debugging and testing distributed computations.

As the detection of general global predicate was
proved to be NP-complete [2], most researchers
restricted their research regarding a specific class
of global predicates to detect in polynomial time.
In this paper, the focus is on an important class
of global predicates, known as conjunctive pred-
icate [7, 8, 11, 12], which can be expressed as
a conjunctive form of local predicates. The lo-
cal predicate is a boolean expression defined by
the local variables of the process. At any time,
a process can evaluate its local predicate without
communication.

In this paper, the problem of detecting whether
a given conjunctive predicate

�
is definitely true

[5, 12] is considered.
�

is definitely true if for all
runs of the distributed program,

�
is true at some

time. Intuitively, detecting this sort of global
predicates is used to ensure that a certain desir-
able event occurs. For simplicity, we define pred-
icate DEFINITELY(

�
) is true if and only if

�
is

definitely-true. DEFINITELY(
�

) is called strong
conjunctive predicate in [8].

In [12], Venkatesan and Dathan proposed a dis-
tributed algorithm to detect DEFINITELY(

�
).

This algorithm performs an offline evaluation of
the predicates, i.e. predicates are evaluated after
the program execution is terminated. The analy-
sis shows that their algorithm uses ��� �����
	�� ad-

1

ditional control messages with the size of each
being only
������ , where � is the number of pro-
cesses and �
� is the total number of truth value
changes of the local predicates. In [8], Garg and
Waldecker proposed an algorithm that evaluates
the predicate in an online manner, i.e. predi-
cates are evaluated immediately following each
instruction execution. This algorithm employs
a central debugger that collects debug informa-
tion from application processes and then performs
the detection. The time complexity of the detec-
tion algorithm is
�� ������� , where � is the max-
imum number of states in one application pro-
cess. Compared with Venkatesan and Dathan’s
algorithm, this algorithm uses only
�������� addi-
tional control messages with the size of each be-
ing
�� ��� , where ��� is the total number of mes-
sages that all application processes receive.

One disadvantage of the above algorithms is that
the debugger evaluates execution states, which
are collected from application processes, in a cer-
tain order. Restated, before evaluating certain
states, all other states are queued. Since real sys-
tems can generate hundreds of states in a very
short time, the queues may grow unbounded. To
solve this problem, in this paper, the notion of re-
movable states is introduced. By discarding the
removable states, the space requirement for each
process can be minimized to
�� ��� , where � is
the number of processes. While minimizing the
memory space, time complexity is also improved
to
�� ����� , because the number of states to be
evaluated is reduced. Our algorithm does not re-
quire exchange of control messages during pro-
gram execution, because all the debug informa-
tion is piggybacked in normal application mes-
sages.

The remainder of this paper is organized as fol-
lows. In Section 2, we define model and nota-
tions. In Section 3, we introduce the notion of re-
movable states and derive the condition of identi-
fying removable states. Based on this result, Sec-
tion 4 presents an efficient way to maintain non-
removable states, and then discusses a new detec-
tion algorithm. Finally, a concluding remark is
made in Section 5.

2 Model and Notations

A distributed system consists of � processes de-
noted by �! #"$� � "�%�%�%�"$�'& . These processes share
no global memory and no global clock. Message
passing is the only way for processes to commu-

P1
1,2e

2,1e

1,1e

3,1e

2P

P3

e2,4

1,3e

2,2e

e3,3 e3,5

[1,0,0] [2,0,0] [3,0,4]

[0,1,0] [0,2,2] [2,3,2] [2,4,2]

[0,0,1] [0,0,2] [0,0,3] [0,0,4] [2,4,5]

Figure 1: Events and their time vectors.

nicate. The transmission delay of the communi-
cation channel between each pair of processes is
random. However, we assume that no message in
any channel is lost, altered, or spuriously intro-
duced.

States and Events At a given time, the state of
a process is defined by its variable’s values. The
states of processes can change only when events
are executed. There are three kinds of events: an
internal event which does a local computation, a
send event which sends a message to another pro-
cess, and a receive event which receives a mes-
sage from another process via the channel.

The (�*) event occurring in process �,+ is referred
to as -�+/. 0 . The number (is called the sequence
number of -�+/. 0 . Figure 1 illustrates the events
of the execution of a distributed program. Event-�+/. 0 happens before event -�1$. 2 , denoted by -#+/. 043-51$. 2 , if and only if one of the following conditions
holds [9]:

1. 6!7�8 and (:9<; .
2. A message is sent from -#+/. 0 to -51$. 2 .
3. Another event ->=�. ? exists such that -#+/. 0<3-#=�. ? and -#=�. ?@3A-51$. 2 .

In this paper, the system is assumed to recog-
nize the happen-before relationships by using
vector clocks [10] (Figure 1). With this ap-
proach, each process �,+ maintains an integer
vector BC-�DFE�G�H�+$I �J% % �LK . Initially, each process �,+
sets BC-�DFE�G�H�+ to I ML"$ML"�%�%�%F"$M#K but BC-�DFE�G�H�+$I 6�KN7O� .
When a process �,+ executes an internal event,
it increases BC-�DFE�G�H�+$I 6�K by � . When process �,+
sends out a message, it increases BC-�DFE�G�H�+$I 6�K by

node (x,y)={ , }

Final node

Initial node

(1,1)

(3,3)

(2,3)

(2,2)

(3,2)

(3,1)

(2,1)

1

C1 2C

P2

(b)

(a)

P
1,2s 1,3s 1,4s

s2,2 2,3s2,1s

s1,1

s2,ys1,x

(4,3)

Figure 2: (a) Space-time diagram of a distributed program. (b)

The lattice of (a).

P
and then associates QCR�SFT�U�V�W within the mes-

sage. When process X,W receives a message asso-
ciated with a vector, say Q , it sets QCR�SFT�U�V�W$Y Z\[^]_a`\bdc QCR�SFT�U�V�W$Y Z\[fegQ�Y Z\[/hFe�ijZ , and then increasesQCR�SFT�U�V�W$Y k�[by

P
.

Let QCR�SFT�U�V c R�W/l mCh to represent the value of QCR�SFT�U�V�W
after executing R#W/l m and before executing R#W/l m�ndo .
The following properties can be seen from Fig-
ure 1: for event R#W/l m , QCR�SFT�U�V c R�W/l m\h5Y k�[p] b
represents the sequence number of R>W/l m , andQCR�SFT�U�V c R�W/l mCh5Y q>[r]ts , qvu]tk , represents the se-
quence number of event R�w$l x where R5w$l xzy{R�W/l m
and R5w$l x5ndo�uytR�W/l m . Therefore, the happen-before
relationships can be determined in time | c P h by
using vector clocks, as shown in Theorem 2.1.

Theorem 2.1 ([10]) For two events R#W/l m and R5w$l x ,R�W/l mpy}R5w$l x if and only if QCR�SFT�U�V c R�W/l mCh5Y k�[�~QCR�SFT�U�V c R5w$l x>h5Y k�[.
Global States and Global Predicates A
global state is a collection of states, one from
each process, in which no happen-before rela-
tionship occurs. (Note that the system can not
enter a state with happen-before relationship be-
cause messages can not be received before they

are sent.) For example, in Figure 2(a), ��o is a
global state but ��� is not. The set of all global
states within a distributed program forms a lat-
tice [5]. In the lattice, a node (global state) �,o is
linked to another node �j� if the system can pro-
ceed from ��o to �'� by executing only one event.
Figure 2 shows the space-time diagram of a dis-
tributed program and the corresponding lattice.
A possible run of a distributed program can be
viewed as a path in the lattice from the initial node
(initial global state) to the final node (final global
state). For example, the path depicted by bold
lines in Figure 2(b) represents a possible execu-
tion order of the events occurring in the program.

A local predicate is a boolean expression of the
process states. At any time, the process can
evaluate its local predicate without communica-
tion. A global predicate is a boolean expres-
sion, which involves the states of several pro-
cesses. In this paper, we consider an important
class of global predicates, known as conjunctive
predicate, which can be expressed in a conjunc-
tive form ��X!o��a��X!o��z�����#�a��X'� , where ��XdW is
the local predicate of process X,Wgegk�] P e���e�� � � e*� .
For simplicity, we use either � or ��X�o��:��X!o������������X'� to denote the conjunctive predicate.

In [12], Venkatesan and Dathan indicated that in
a typical software development environment, de-
velopers may have occasion to use the conjunc-
tive predicate � in one or more of the following
ways:

� DEFINITELY(�) is true iff � is definitely
true. � is definitely true if in every path from
the initial node to the final node in the lattice,� holds in some node. Detecting this kind
of global predicates is usually used to ensure
a certain desirable event occurs. For exam-
ple, we can consider a distributed two-phase
commit protocol (see Figure 3). When the
master decides to commit the transaction, it
must assure that all the slaves are prepared to
commit. Assume that there are two slaves,X!o and Xd� . Let ��]t��X!o�����Xd� , where��X!o�]���X!o is committable � and ��X,��]��Xd� is committable � . In Figure 3(b), a path
(depicted by bold lines) exists in which � is
not true in all nodes. Therefore, � is not def-
initely true. This implies that an error may
occur because at least one slave process is
not ready to commit during the program ex-
ecution which corresponds to this bold path.

Initial node

Final node

(1,1)

2

(a)

(b)

(2,1)

(3,1)

(3,2)

(4,3)

(2,2)

(3,3)

(2,3)

(1,2)

(4,2)

2,3s2,2s2,1s

1,4s1,3s1,2ss1,1
P1

P

Figure 3: An example of two-phase commit protocol. Let�
������ �¡^���L¢
, where

���� £�¥¤$��
is committable ¦ and���L¢��z¤$�L¢

is committable ¦ . (a) In process
��

(
�L¢

), a state

is shaded if the local predicate
����

(
���L¢

) holds within this

state. (b) A global state is shaded if
�

holds (i.e. both
�'

and�L¢
are prepared to commit) within this global state.

Figure 4: (a) Example of intervals. (b) A scenario that
�

is

not definitely true in intervals.

§ POSSIBLY(¨) is true iff ¨ is possibly true.¨ is possibly true if a path exists in the
lattice such that ¨ holds in some node.
Detecting this kind of predicates is usu-
ally used to ensure that certain undesirable
events do not occur. For example, consider
a mutual exclusive program, which runs on
a system with two processes ©�ª and ©d« .
Let ¨v¬®­C¯*©!ª is in the critical section °!±¯*©d« is in the critical section °�² . If ¨ is pos-
sible true, the undesirable event (both pro-
cesses are in the critical section) may occur
in some run of the program.

Intervals Researchers in [8, 12] proposed a
necessary and sufficient condition of whether
DEFINITELY(¨) holds. This condition uses the
notion of intervals. An interval ³ is a pair of
events in the same process, in which ³F´ µ*¶ and ³F´ ·L¸
are referred to as its beginning event and ending
event respectively. Furthermore, event ³F´ µ*¶ turns
the truth value of the local predicate from false to
true, events between ³F´ µ*¶ and ³F´ ·L¸ do not change
the truth value, and event ³F´ ·L¸ turns the truth value

from true to false. Two intervals ¹ and ¹gº are over-
lapped if ¹F» ¼*½r¾¿¹ º » ÀLÁ and ¹ º » ¼*½�¾¿¹F» ÀLÁ . For ex-
ample, in Figure 4(a), interval ¹gÂ and ¹�Ã are over-
lapped but ¹�Â and ¹�Ä are not. A set of overlap-
ping global interval (OGI-set) is a set of intervals,
one from each process, in which each pair of in-
tervals is overlapped. For example, interval setÅ ¹�Â>Æg¹�ÃJÆg¹�Ç#È in Figure 4(a) is an OGI-set.

To simplify, the following notations for two inter-
val sets É�Ê and É5Â are defined:

Ë É�Ê�ÌÍÉ5Â : For all ¹NÎÏÉ�Ê and ¹�º�Î�É5Â in the
same process, ¹F» ¼*½�Ì�¹gº*» ¼*½ .

Ë É�Ê�ÐÑÉ5Â : For all ¹NÎÏÉ�Ê and ¹�º�Î�É5Â in the
same process, ¹F» ¼*½
¾{¹gº*» ¼*½ or ¹F» ¼*½�ÌÒ¹�º*» ¼*½ .
For example, in Figure 4(a),

Å ¹�Ê�Æg¹�Ä>Æg¹�Ç#È<ÐÅ ¹�Â>Æg¹�ÃJÆg¹�Ç#È .
Ë É�Ê^¾ÓÉ5Â : For all ¹�Î
É�Ê and ¹�º,Î
É5Â , ¹F» ¼*½�¾¹�º*» ÀLÁ .

Figure 4(b) illustrates an interesting scenario that
DEFINITELY(Ô) does not hold. In this figure, ¹FÊ
and ¹�Â are not overlapped since no message exists
from ¹$Ê�» ¼*½ to ¹�Â>» ÀLÁ . Thus, a program execution
can be constructed such that Ô is true from global
states Õ�Ê to Õ'Ä but is false in Õ�Ã . Theorem 2.2
generalizes this scenario.
Theorem 2.2 ([8, 12]) For a distributed pro-
gram, DEFINITELY(Ô) holds if and only if there
exists an OGI-set.

Distributed Online DEFINITELY(Ô) Detect-
ing Problem In a distributed environment, pro-
cesses collect the execution states of other pro-
cesses by exchanging messages. In other words,
when a process Ö,× executes an event Ø#×/Ù Ú , all
the events (and the associated states) that it
can observe are those that happen before Ø>×/Ù Ú .
These events are denoted by Û�×/Ù Ú , i.e. ÛÜ×/Ù ÚÝÌÅ Ø5Þ$Ù ß�à Ø5Þ$Ù ßá¾OØ�×/Ù Ú or Ø5Þ$Ù ßáÌâØ�×/Ù Ú�È . ÛÜ×/Ù Ú is called
the E-set of Ø�×/Ù Ú . If ÛÜ×/Ù ÚäãtÛ�Þ$Ù ß then Û�Þ$Ù ß is
called a future E-set of Û�×/Ù Ú . The following prop-
erty can be verified easily:

P1 Event Ø�×/Ù Úå¾pØ5Þ$Ù ß if and only if ÛÜ×/Ù Ú�ã¥Û�Þ$Ù ß .

In this paper, the distributed online
DEFINITELY(Ô�æ detecting problem is that
whenever process Ö,× executes an event, say Ø#×/Ù Ú ,

Figure 5: Volatile intervals in E-set çdè$é ê .

it tests whether DEFINITELY(Ô) holds for the
debug information associated with E-set Û@×/Ù Ú .

3 Identifying Removable Intervals

According to Theorem 2.2, DEFINITELY(Ô)
holds if and only if at least one OGI-set exists. To
detect DEFINITELY(Ô) efficiently, the main idea
of this paper is to derive only the minimum OGI-
set and treat the others as removable. An OGI-setÉ in E-set ÛÜ×/Ù Ú is minimum if ÉNÐ¥É º for all OGI-
sets É\º in ÛÜ×/Ù Ú . The minimum OGI-set in Û�×/Ù Ú is
given by ëNì*ÛÜ×/Ù ÚCæ .
To simplify our presentation, pseudo event and
volatile interval are defined in Definition 3.1.

Definition 3.1 For an E-set Û�×/Ù Ú , de-
fine the volatile interval í ¹ for each pro-
cess Ö'Þ as follows:

1. If an interval ¹ exists in ÖjÞ , it
satisfies ¹F» ¼*½äÎîÛÜ×/Ù Ú but ¹F» ÀLÁÏïÎÛÜ×/Ù Ú (e.g. interval ¹ in Figure 5),
then í ¹F» ¼*½ÍÌð¹F» ¼*½ , and í ¹F» ÀLÁ is a
pseudo event with ñCØ�òF¹�½�ó�ì í ¹5» ÀLÁ�æ�Ìô õ Æ õ Æ�»�»�»�Æ õ
ö .

2. Otherwise, let Ø�Þ$Ù ß¿Î{ÛÜ×/Ù Ú be
the last event from ÖjÞ (e.g.
event with vector clock

ô ÷ Æ$øLÆ$ø ö
in Figure 5), both í ¹F» ¼*½ and

ù ú�û üLý
are pseudo events whereþCÿ�� ú������ ù ú5û ���
	�� þCÿ�� ú������ ÿ�
�� � 	

but þCÿ�� ú������ ù ú5û ���
	�� �
� �
þCÿ�� ú������ ÿ�
�� � 	�� �
��� �

, andþCÿ�� ú������ ù ú5û üLý�	���� ��������û�û�û������ .
The interval without pseudo events is
called nonvolatile. This E-set contains
all events in "! � # and its pseudo events
are denoted by

ù "! � # . Notably, "! � #%$ù "! � # . The vector of volatile intervals inù "! � # is denoted by & � ù "! � # 	 .

An E-set "! � # may not contain an OGI-set. How-
ever,

ù "! � # always contains an OGI-set because in-
tervals in & � ù "! � # 	 are pairwisely overlapped. This
is due to þCÿ�� ú������ þ û üLý�	"�'� ��������û�û�û������ for any
interval þ)(& � ù "! � # 	 . Intuitively, & � ù "! � # 	 is a can-
didate of OGI-sets within future E-sets. The fol-
lowing property is useful in the remainder of this
paper:

P2 Let E-set "! � # �
�� �+* +, � - . The events in "! � # is from either
�� � or +, � - . Hence, the
interval

ú
is nonvolatile in +! � # if and only ifú

is nonvolatile in either
�� � or +, � - .

Given an E-set +! � # , intervals are said to be re-
movable if they do not belong to the minimum
OGI-sets of all the future E-sets of +! � # , be-
cause deriving the minimum is our only con-
cern. Specifically, an interval

ú (+! � # is "! � # -
removable if

ú/.(10 �
�� � 	 for all
�� � , where "! � #2$
�� � . Otherwise
ú

is "! � # -nonremovable.
Note that a removable interval must be non-
volatile. By this definition, the following property
holds:

P3 If interval
ú

is "! � # -removable then
ú

is
�� � -
removable for all
�� � where "! � #3$
�� � .

Next, the necessary and sufficient condition to
identify removable intervals is derived in Theo-
rem 3.1.

Theorem 3.1 In an E-set +! � # , a nonvolatile in-
terval

ú
is "! � # -removable if and only if

ú4.(
0 � ù "! � # 	 .
Proof. (5) If

ú
is "! � # -removable, since

ù "! � # is a
future E-set of "! � # , ú3.(60 � ù "! � # 	 can be derived
(Property P3).

Figure 6: Illustration of the minimum OGI-sets of E-set
ù798;: <

and
ù7>=?: @

, where
798;: <)A67>=?: @

. Note that the messages are

not drawn for clarity in this figure.

(B) Let
�� � be a future E-set of +! � # . We
will prove this direction by showing that if

ú (0 � ù
�� � 	 then
ú (C0 � ù "! � # 	 . As illustrated in

Figure 6, partition 0 � ù
�� � 	 into D9E * DGF , where
DGF $ ù "! � # and D9E � 0 � ù
�� � 	IH DGF (note thatDGF .�KJML since N (DGF). Since D9EPO ú

, we can
derive that there exists a set of volatile intervals inù "! � # , say D�QE , such that the set of beginning events
of D9E and D�QE are identical.

The set D9E Q * DGF is an OGI-set in
ù "! � # sinceD9E Q ORDGF and DGF+OSD9E Q (because the intervals inD�QE are volatile). Next, we show that DTE Q * DGF is the

minimum OGI-set of
ù "! � # i.e. D�QE * DGF � 0 � ù "! � # 	 .

By contradiction, assume that DTE Q * DGFVU 0 � ù "! � # 	
and D9E Q * DGF .� 0 � ù "! � # 	 . As shown in Figure 6,
partition 0 � ù "! � # 	 into W9E Q * WGF , where W9E Q and WGF
are sets with volatile and nonvolatile intervals, re-
spectively. Through Figure 6, we can derive thatW9E Q $ D9E Q because

J W9E Q * WGF L U J D9E Q * DGF L
and a volatile interval must be the last interval in
the process. Let WTE represent the set containing
nonvolatile intervals in DTE , as shown in Figure 6.
(Note that the set of beginning events of WXE andW+QE are identical.) Then, WTE * WGF is an OGI-set in
�� � because

1. W9EIOYWGF in
�� � since W9E Q OYWGF in 0 � ù "! � # 	 .
2. WGFZOCW9E in
�� � since WGFZO[DGF , DGF\O[D9E ,

and W9E $ D9E .
Therefore, W9E * WGF is an OGI-set in
�� � andJ W9E * WGF L U J D9E * DGF L . This derivation con-

i,x−1 e

jP

P i

E i,x−1 F(E)j,yF()
i,xF(E)Construct

Ufrom set

E i,xF()

j,yF(E)piggyback only
in this message

F(E)j,yj,ye

ei,x

F(E)i,x i,xE

EE E j,y= U i,x−1i,x

iP

piggyback whole
in this message

(nonremovable states in)

1.

2. Construct from

Let

(all events happen before)

E j,y

E i,x−1

P j

(b)

(a)

j,yE

j,yej,ye Ej,y

Figure 7: (a) Illustration of the detection without the notion of

removable states. (b) Illustration of the detection that discards

the removable states.

tradicts that]9^`_a]Gb is the minimum OGI-set inced�f g
. Therefore, the theorem holds.

The following corollary extended from this theo-
rem is useful for the later parts of this paper.

Corollary 3.1 If E-set
c`d�f gih c"jkf l

thenmPn
oced�f g
p`q%mPn
oc"jkf lrp
.

Proof. Based on Theorem 3.1, this corollary is
accurate because removable intervals in the E-setced�f g

must be also removable in its future E-sets.

4 Distributed Online Algorithm to
Detect DEFINITELY(s)

4.1 Using the Notion of Removable
States

This subsection shows the difference between the
detection algorithms with and without using the
notion of removable states. Figure 7 illustrates
the detection scenarios. In part (a) of this figure,

when process t j receives a message by executing
event u jkf l , it first constructs the new E-set

c+jkf l
from its old E-set

c+jkf l
v ^ and the new received E-
set
ced�f g

, i.e.
c"jkf lxw�c"jkf l
v ^G_ ced�f g . Then, it com-

putes set
mPnMoc"jkf lrp

from set
c"jkf l

. Unfortunately,
this simple approach is intractable, since the E-
sets grow each time whenever an instruction is
executed. Part (b) of Figure 7 illustrates how the
notion of removables can be applied to improve
the detection. It employs only the minimum OGI-
set rather than employing whole E-set, based on
the concept depicted in Corollary 4.1. Clearly,
this approach incurs a very low overhead to the
distributed system, because an OGI-set contains
only y n z{p members.
Corollary 4.1 Assume that process t d sends a
message, say | , to process t d , where the send
and receive event of | are u d�f g and u jkf l , respec-
tively. The intervals in

mPnMoc"jkf l}p
must be from ei-

ther
mPn
oc"jkf l
v ^ p or

mPn
oced�f gMp
.

Proof. E-set
c"jkf l

is a future E-set of
c+jkf l
v ^ andced�f g

since
c"jkf l~w�c"jkf l
v ^`_ ced�f g . According to

Theorem 3.1, the intervals in
mPnMoc"jkf l}p

must be
from either

mPn
oc"jkf l
v ^ p or
mPn
oced�f gMp

.

A naive approach to compute
mPnMoc"jkf l}p

in Fig-
ure 7(b) is to apply the algorithms that were pro-
posed in [8, 12] and let

mPnMoc"jkf l
v ^ p and
mPn
oced�f gMp

be the inputs of the algorithms. Their algorithms
work by testing overlap between intervals and re-
move useless intervals systematically. However,
in worst case, in each run it performs y n z b p test-
ing to ensure that all the

z
intervals (one from

each process) are pairwisely overlapped. The to-
tal time is y n z b | p if the maximum number of
events in one process is | . In this section, a
more efficient detection algorithm that runs in
time y n z | p is proposed. In Subsection 4.2 we
present an efficient approach to maintain the min-
imum OGI-sets. Based on this result, Subsec-
tion 4.3 presents our new detection algorithm and
analysis its complexity and correctness.
4.2 Maintain Minimum OGI-sets

Efficiently

Let � , � , and � be the E-sets satisfy the condi-
tion � w �K_2� . This section describes how to
derive the minimum OGI-set of � by given the
minimum OGI-sets of subsets � and � . Before
describing our approach, some notations used in
this section are defined as follows. To identify
one interval � in different E-sets, let ��� �G� refer �
in E-set � (i.e. ��� ��� w ��� �G��� ���). An interval ��� �G�
is said � -removable if ��� �T� exists in � and is � -

t.lo

v.lo v.hi v’.hi

t.hi

v’.lo
kP

Figure 8: A volatile interval � becomes removable implies that

all the nonvolatile intervals become removable.

removable.

The minimum OGI-set of � is derived by find-
ing those intervals not removable in � or � , but
becomes removable in � (�����Z�). The follow-
ing Lemma demonstrates that the nonvolatile in-
tervals remain nonremovable until some volatile
interval becomes removable.

Lemma 4.1 Let �����R�6� be the E-sets as
described above. All the nonvolatile intervals in�P����a� become � -removable if and only if some
volatile interval in

�P����~� becomes � -removable.

Proof. (�) Consider a nonvolatile interval ��� �`
and a volatile interval ¡>� �` in

�P����~� . Assume that¡�� �` is in process ¢X£ . Figure 8(a) illustrates that¡ is the last interval in ¢�£ that can overlap with� . (Otherwise, an interval ¡�¤ exists in ¢X£ such
that ¡>¥ ¦�§x¨©¡r¤�¥ ª�«~¨©��¥ ¦�§ , contradicts with ¡ is
volatile in � .) This implies that if ¡ becomes � -
removable then � also becomes � -removable.

(¬) By contradiction, assume that all volatiles
in
�P����~� are � -nonremovable whereas the non-

volatile � is � -removable.
�P����~�­� �P�®��+� is

proved as follows. For each ordered pair of
��¯�°?��±\² �P����~� (note that � � �` ¯ ¨R� � �` ±), the prop-

erty � �´³> ¯ ¨Y� �´³> ± holds because:

µ If � � �` ± is nonvolatile (Figure 9(a)) then

� � �` ¯ ¨Y� � �` ± implies � �´³> ¯ ¨Y� �´³> ± .

µ If � � �` ± is volatile and � �´³> ± remains volatile

(Figure 9(b)), clearly, � �´³> ¯ ¨R� �´³> ± (see Def-
inition 3.1).

µ If � � �` ± is volatile but � �´³> ± becomes non-

volatile (Figure 9(c)), the property � �´³> ¯ ¨
� �´³> ± is satisfied because: � � �` ¯ ² �P����~� ,
� �´³> ± ² �P�®��+� (this is because � � �` ± is volatile
in
�P����~� and thus is � -nonremovable by as-

F(X)

F(X) F(Z)

X Z

F(X)

X Z

X Z

2t

1t

t1

t2

2t

1t’1t

(a)

(c)

(b)

Figure 9: Illustration of proof of Lemma 4.1.

sumption), and
�P����a�)¶ �P����"� (see Corol-

lary 3.1).

Therefore,
�P����~�)� �P����+� , contradicts with the

fact that �`² �P����+� is � -removable.

Next, Lemma 4.2 and 4.3 demonstrate the condi-
tion for volatile intervals.
Lemma 4.2 Let �����R�6� be the E-sets as
described above. If neither

�P����a�·¶ �P����¸� nor�P����x�e¶ �P����a� , then,
�P�®��+�¹�­º ����+� .

Proof. If
�P����a�~»¶ �P����¸� and

�P����x�~»¶ �P����~� ,
there exist intervals ��¯®°?��±·² �P����~� and ¼½¯�°?¼{±)²�P����x� such that ¾¿��¯¿À2ÁÂ¾¿¼{±�À and ¾¿¼½¯�À2ÁÂ¾¿��±®À .
Therefore, ��¯ and ¼½¯ are nonvolatile in � and is� -removable. From Lemma 4.1, all nonvolatile
intervals in

�P����a� and
�P����x� are � -removable.

Thus,
�P�®��+�¹�­º ����+� .

Lemma 4.3 Let Ã�ÄÆÅÈÇ/É be the E-sets
as described above. Furthermore, assume thatÊPË�ÌÉxÍ`Î ÊPË�ÌÅaÍ . A volatile interval Ï�Ð Ñ`ÒeÓ ÊPË�ÌÅ~Í
becomes Ã -removable if and only if Ï�Ð´Ô9Ò is non-
volatile and the following properties are satisfied:

1. Ï�Ð´Ô9Ò is É -removable, or

2. Ï�Ð´Ô9Ò is É -nonremovable and some volatile
interval Õ2Ó ÊPË�ÌÉxÍ is Å -removable.

Proof. In this proof, only the second case, i.e.Ï is É -nonremovable, is considered. (In the first
case, clearly, Ï is É -removable implies that Ï isÃ -removable.)

(Ö) If Õ is Å -removable, from Lemma 4.1, all
the nonvolatile intervals in

ÊPË ÌÉxÍ , including Ï�Ð´Ô9Ò ,
are Ã -removable.

(×) First, Ï�Ð´Ô9Ò must be nonvolatile from Prop-
erty P2. By contradiction, assume that Ï is Ã -
removable but Ï Ð´Ô9Ò is É -nonremovable and all the
volatile intervals ÕØÓ ÊPË�ÌÉxÍ are Å -nonremovable.
This assumption implies that

ÊPË�ÌÅaÍ¹Ä ÊPË�ÌÉxÍ (the
detail is ignored since the proof is very similar to
Lemma 4.1). Since Ã�Ä­Å�ÇÙÉ ,

ÊPË�ÌÅaÍ`Ä ÊPË�ÌÉxÍ
is an OGI-set in Ã . This implies that

ÊPË
ÌÃ+Í2ÄÊPË�ÌÅaÍÚÄ ÊPË�ÌÉxÍ , contradict with the fact that
ÏeÓ ÊPË�ÌÅ~ÍÛÄ ÊPË�ÌÃ+Í is Ã -removable.
4.3 The New Detection Algorithm

In our new detection algorithm, each process
keeps only two Ü -tuple vectors

Ê
and Ý to rep-

resent the minimum OGI-set and the volatile in-
terval set of this process, respectively. This al-
gorithm consists of the following procedures that
are executed at each process ÞXß :
à Procedure InternalEvent (to be called whenÞTß executes an internal event, say á®ßkâ ã):

1. After execution of event á®ßkâ ã , the truth
value of ä¹ÞTß may change, as follows:

(a) The truth value of ä¹ÞXß is un-
changed: Both

Ê
and Ý are remain

unchanged.
(b) The truth value of ä¹ÞXß is in a

false-to-true transition: ModifyÝXå æèç to the new volatile interval
whose beginning event is á®ßkâ ã .

(c) The truth value of ä¹ÞXß is in a true-
to-false transition: In this case, the

current volatile interval of processÞTß is ended at event á®ßkâ ã . Mod-
ify ÝXå æèç to the new volatile interval
in which both beginning and end
events are pseudo.

à Procedure SendEvent (to be called when Þ�ß
executes a send event, say á®ßkâ ã):

1. Since the truth value of ä¹ÞXß is un-
changed, both

Ê
and Ý are also un-

changed.

2. Piggyback
Ê

and Ý in the message and
then send it.

à Procedure ReceiveEvent (to be called whenÞTß executes a receive event, say á®ßkâ ã):
1. Assume that the sent event of this mes-

sage is á�é�â ê . Receive the message and
extract data

ÊZë
(represent

ÊPË
Ìì é�â ê
Í) and
Ý ë (represent Ý Ë
Ìì é�â ê
Í).

2. Let ÝXå í}ç­ÄïîPð®ñ Ë ÝXå í}çóò�Ý ë å í}çkÍ , íSÄô ò�õ�ò�ö�ö�ö�ò�Ü .

3. (Based on Lemma 4.2) If
ÊPË}Ìì ßkâ ã
÷½ø�Í+ùÎÊPËMÌì é�â êMÍ or

ÊPË
Ìì é�â êMÍ+ùÎ ÊPË
Ìì ßkâ ã
÷½ø�Í thenÊ ÄúÝ . Go to Step 7.

4. If
ÊPË
Ìì é�â ê
Í­Î ÊPË
Ìì ßkâ ã
÷½ø�Í , determine

whether an interval Ï is
ì ßkâ ã -removable

as follows:

(a) (Based on Property P3) If ÏÂûÊPË
Ìì ßkâ ã
÷½ø�Í then Ï is removable.
(b) (Based on Lemma 4.3) If ÏYÓÊPË
Ìì ßkâ ã
÷½ø�Í and Ï is volatile:

i. If the following properties are
satisfied, mark Ï as remov-
able:

A. Ï is
ì é�â ê -removable, or

B. Ï is
ì é�â ê -nonremovable

and some volatile intervalÕüÓ ÊPËMÌì é�â êMÍ is
ì ßkâ ã
÷½ø -

removable. For example,
consider an interval Ï?ý
illustrated in Figure 10.
The interval Ï�ý is

ì é�â ê -
nonremovable and volatile
interval Ï�øÈÓ ÊPË
Ìì é�â ê
Í isì ßkâ ã
÷½ø -removable (Figure
10(a) and (b)). Hence, Ï?ý
is
ì ßkâ ã -removable (Figure

10(c)).

(c) (Based on Lemma 4.1) If ÏYÓÊPË
Ìì ßkâ ã
÷½ø�Í and Ï is nonvolatile:

i. If any volatile interval is
marked as removable in Step
4(b), mark þ as removable.

5. If ÿ��������� 	�

����� ÿ��������� ��� , repeat Step 4
except that the roles of ÿ��������� 	�

��� and
ÿ��������� ��� are swapped.

6. Let ÿ��������� 	�� be the set of intervals that
not have been marked as removable in
previous steps.

7. If ÿ��������� 	�� contains no volatile then
DEFINITELY(�) is true. Otherwise,
DEFINITELY(�) is false.

In this algorithm, a process cannot evaluate the
global predicate if there are no messages sent
from other processes to carry the debug informa-
tion. To solve this problem, if DEFINITELY(�)
is still false at the end of the program execution,� extra messages are sent among all � processes
in a circular way to pass the debug information.
However, as compared with the cost of the entire
distributed computation, these � messages incur a
very low overhead.

The correctness of this algorithm can be verified
easily based on the theorems presented in Sub-
section 4.2. Before analyzing the complexity of
the algorithm, the implementation has to be ex-
plained. First, vectors ÿ and � are implemented
by using vectors of integers: when process � � ex-
ecutes the event � ��� 	 , the value ÿ�� ��� (resp. � � ���)
equals the sequence number of the beginning
event of interval ÿ��������� 	�� � ��� (resp. � �������� 	�� � ���).
The operations of the algorithm is implemented
as follows:

! ÿ��������� ���"� ÿ��������� 	�

��� iff ÿ$#%� &��('úÿ�� &�� , for
all & (assume that ÿ)# refers to ÿ��������� ��� and
ÿ refers to ÿ��������� 	�

���). This operation takes* � � � time.

! Interval ÿ�� &�� is volatile iff ÿ�� &��,+-� � &�� .
This operation takes

* �/. � time.

! Interval þ with þ10 243$+5�76 � 8 is
����� 	

-removable
if þ is nonvolatile and ÿ�� &��:9+<; , (assume that
ÿ refers to ÿ��������� 	��). This operation takes* �/. � time.

Based on the above implementation, each invoke
of the procedures (InternalEvent, SendEvent, and
ReceiveEvent) requires

* � � � time. Assume that

i,xF(E)

i,x−1e

F(E)

t

t1Pi

e j,y

(c)

jP

i,xe

2t

t1

j,yF(E)

iP

j,ye

(b)

jP

t2

1t
iP

e i,x−1

(a)

jP

i,x−1

2

Figure 10: Illustration of (a) =�> �?A@CB DFEHGJI , (b) =�> �?HKJB LFI , and

(c) =�> �?A@CB D7I .

there are MON events for process P N , the total time
complexity for the process is QSR TUMVN%W .

5 Discussion

This paper investigates the problem of detec-
tion of definitely true conjunctive predicates
(DEFINITELY(X)). To solve the problem of un-
bounded queue growth of previous detection al-
gorithms, in this paper, the notion of removable
states is introduced. By discarding the removable
states, the space requirement for each process can
be minimized to QSR TYW , where T is the number of
processes. While bounding the memory space,
this analysis shows that the time complexity of
the proposed algorithm is only QSR TUMVW , faster than
previous algorithms are, by a factor of T .

Another related detection problem regarding to
the distributed debugging is to detect what possi-
bly true conjunctive predicates (POSSIBLY(X))
[7, 11, 12]. To enhance the performance of
POSSIBLY(X) detection algorithms, Chiou and
Korfhage [3] presented two algorithms to remove
some useless states for the detection. However,
their algorithms run in a centralized environment
and identify only partial useless states. For the
distributed detection of POSSIBLY(X), finding
an efficient approach to identify the removable
states is still a research topic.

References

[1] K.M. Chandy and L. Lamport. Distributed
snapshots: Determining global states of dis-
tributed systems. ACM Trans. Comput.
Syst., 3(1):63–75, February 1985.

[2] C.M. Chase and V.K. Garg. Efficient de-
tection of restricted classes of global predi-
cates. In The 9th International Workshop on
Distributed Algorithms, September 1995.

[3] H.K. Chiou and W. Korfhage. Enhancing
distributed event predicate detection algo-
rithms. IEEE Tran. Parallel and Distributed
Systems, 7(7):673–676, July 1996.

[4] Y.M. Wang P.Y. Chung and I.J. Lin. Check-
point space reclamation for uncoordinated
checkpointing in message-passing systems.
IEEE Tran. Parallel and Distributed Sys-
tems, 8(6):165–169, June 1997.

[5] R. Cooper and K. Marzullo. Consistent de-
tection of global predicates. Sigplan No-
tices, pages 167–174, 1991.

[6] R. Copper and K. Marzullo. Consistent de-
tection of global predicates. Sigplan No-
tices, pages 167–174, 1991.

[7] V.K. Garg and B. Waldecker. Detection of
weak unstable predicates in distributed pro-
grams. IEEE Tran. Parallel and Distributed
Systems, 5(3):299–307, March 1994.

[8] V.K. Garg and B. Waldecker. Detection
of strong unstable predicates in distributed
programs. IEEE Tran. Parallel and Dis-
tributed Systems, 7(12):1323–1333, Decem-
ber 1996.

[9] L. Lamport. Time, clocks and the ordering
of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, July
1978.

[10] F. Mattern. Virtual time and global states
of distributed systems. In Parallel and Dis-
tributed Algorithms: Proceedings of the In-
ternational Workshop on Parallel and Dis-
tributed Algorithms, pages 215–226. New
York: Elsevier, 1988.

[11] M.Raynal M.Hurfin, M.Mizuno and
M.Singhal. Efficient distributed detection
of conjunctions of local predicates. IEEE
Tran. Software Engineering, 24(8):664–
677, February 1998.

[12] S. Venkatesan and B. Dathan. Testing
and debugging distributed programs using
global predicates. IEEE Tran. Software En-
gineering, 21(2):163–177, February 1995.

