Proceédings of International Conference on Distributed
Systems, Software Engineering and Database Systems

An Efficient Query Processing Algorithm

on Object Databases with Multi-valued Attributes

Jou-Hui Lin and Arbee L.P. Chen
Institute of Computer Science, N’IHU Hsinchu, Taiwan, R.O.C.

Abstract

The signature-based indexing techniques support evaluating
complex queries against all attributes of arbitrary classes in
OODBs. However, the false drop is an intrinsic
characteristic of signature-based techniques. The
phenomenon becomes serious in OODBs with multi-valued
attributes. In this paper, we propose to partition the schema
graph for reducing false drop probability. Besides, we
analyze quantitatively our approach and the multiindex
technique (MX) in terms of storage cost and retrieval cost.
The results show that our approach requires less storage
overhead and achieves better performance in the average
case than MX.

1. Introduction

Object-oriented databases provide more semantic constructs
than relational ones. The domain of an attribute of an object
‘can be any class. A class and its aggregation relationships
form a hierarchy structure called class-composition
hierarchy. An attribute of which domain is a primitive class
(e.g., interger, string, etc.) is defined as the primitive
attribute; otherwise, it is defined as the complex attribute.
Attributes may be either multi-valued or single-valued. For a
class-composition hierarchy rooted at class C, all primitive
attributes of classes in this hierarchy are nested attributes of
class C.

A predicate in an object query is of the form <path-
expression operator value> where value is called the
predicate value. A path is expressed as C.A4,.4,..A, Where

class C, is the domain of attribute 4, ~ofclass C,_, for
any I<i<n. C| is called the starting class of the path, 4

is called the predicate attribute of the path. A single-valued
predicate is a predicate of which the. predicate attribute is
single-valued; likewise, a multi-valued predicate is a
predicate of which the predicate attribute is multi-valued.
Several indexing techniques have been proposed to
efficiently utilize OODBs [1][2][3][4]{8]. Whereas the
efforts are concentrated extensively on the single-valued
predicates [1][2}{4][8], the work concerning multi-valued
predicates is seldom mentioned [3].

60

Traditionally an index provides a direct association
between its predicate attribute and its starting class. In
general, the indices are maintained only for some specific
paths that are frequently specified in the predicates. The

_predicate is evaluated by a forward traversal if no index is

constructed for this path.

Signature files are originally applied in the field of text
retrieval [5][6][7]. Their capabilities in OODB environment
have gradually been discussed [3][4][8]. A signature-based
index is constructed for a specific class. Related information
of an object is involved in its signature, therefore, a
signature-based index can evaluate a query against arbitrary
nested attributes of the specific class. In contrast to the
traditional techniques, it maintains a single index for a
specific class. In addition, signature files are ‘generally
promising as set access facilities [3]. However, the study is
limited to one class. We extend the exploration to a class-
composition hierarchy. Moreover, complex attributes which
are multi-valued are allowed. To the best of our knowledge,
that has not been reported.

An atomic signature is a bit string generated by hashing
a data term. For an object, each nested attribute which is
single-valued derives its atomic signature. Similarly, each
element in a multi-valued nested attribute is hashed to get
its atomic signature. An object signature is then generated
by OR-ing, namely superimposing, all atomic signatures of
this object. Data collision can occur due to characteristics of
hashing and superimposing. More atomic signatures an
object signature derives from, more serious the phenomenon
becomes. Consequently, we propose to partition a given
schema graph into several components. A signature-based
index is constructed for each component; likewise, a
signature-based index is constructed for each multi-valued
primitive attribute. We can process arbitrary queries via
these indices. The detail is described later.

The remainder of this paper is organized as follows. An
overview of indexing techniques is given in Section 2. A
new signature-based scheme is proposed in Section 3.
Section 4 develops simulations based on models of storage
cost and retrieval cost. Performance analyses are done for
some query types. Finally, we conclude the paper in Section
5.

Person
name Address
address* = [zipcode | Location
hobby* {location [street |
no

Figure 2. 1': A schema graph
2. Survey of Indexing Techniques

An example schema graph of a simple database is shown in
Figure 2.1 for the discussion. The "™ symbol next to an
attribute name indicates that the attribute is multi-valued.
Such a representation is used throughout this paper.

2.1 Multiindex Technique

An entry in the nested index (NX) for a given path
C,.4,.4,..4, is of the form <v, oid>. It denotes that an

object in class ¢, with oid has v as the value of its nested
attribute A. . It is impossible to create an NX for each

possible path in a class-composition hierarchy due to high
storage overhead.

To support random queries, it must make indexing the
entire class-composition hierarchy possible. A simple index
is created for each possible path with unit length via the
concept of the multiindex (MX). There exists a set of n
simple indices for path C,.A4.4,..4,. Each simple index is
allocated to C,.4, (1<i<n). The last index is first used

for evaluating predicates. The results are used as keys for
the next search preceding the last one and so on until the
first one is reached. In contrast to NX, the storage overhead
is more regular and reasonable. MX organization reduces
the storage overhead while providing efficient retrieval.

2.2 Signature-based Technique

Each nested attribute of an object in class C derives its
signature. Subsequently, these signatures are superimposed
together to form the object signature [8]. These object
signatures are stored sequentially in the signature file.
Besides, there exists a corresponding OID file. When a
query of which all predicates originating from class C is
given, a query signature is formed from predicate values in
a similar way. Each entry in the signature file is examined.
For all bit positions set to "1"s in the query signature, if the
same bit positions in an entry are also set to "1"s, the
corresponding object becomes a candidate, namely a drop.
The candidates obtained may not be what we really want.
These false qualified objects are called false drops. The
objects which actually satisfy the predicates are called
actual drops. False drop probability is defined as

false drops
N - actual drops

61

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

where N is the number of objects in class C. The signature-
based indexing technique performs well when the false drop
probability is low. ’

2.2.1 Discussion of Single-valued Predicates
Let us consider the following query:

select Address

where Address.location.street is-equal "Central"

and Address.location.no is-equal "100"

For each object in class Address, its nested attributes
zipcode, street and no are hashed by function SIG(). They
are superimposed together to form an object signature. The
query signature is ,generated by superimposing
SIG("Central") on SIG("100"). The signature file for class
Address is examined, then the qualified objects are. verified.
2.2.2 Discussion of Multi-valued Predicates

Let us consider another query given as follows:

select Person

where Person.hobby has-subset {"Swimming'",
llHiking"}
Superimposing ~ SIG("Swimming") on SIG("Hiking")

generates the query signature. For each object in class
Person, each element in attribute hobby derives its atomic
signature. The set signature is formed by superimposing all
atomic signatures obtained above. The set signature is
assigned to the corresponding object signature if queries are
against attribute robby.

Otherwise, the - object signature is determined by
superimposing all the set signatures and atomic signatures of
the rest nested attributes. False drop probability increases
greatly as a result of the increment of atomic signatures from
which the object signature is derived. Higher false drop
probability requires more object verifications. That is
illustrated by the following query:

select P

from Person P, A is-in P.address

where A.zipcode is-equal 108"
and A.location.street is-equal " Central"
and A.location.no is-equal 100"

An object graph based on the schema in Figure 2.1 is shown
in Figure 2.2. The object signature of object P1 is formed by
OR-ing SIG("Austen"), SIG("108"), SIG ("Garden"),
SIG("27"), SIG("300"), SIG("Central"), SIG("100"),
SIG("Music") and SIG("Movie"). The query signature of the
above query is derived in a similar way. -The object
signature of P1 involves SIG("108"), SIG("Central") and
SIG("100") which determine the query signature. P1 is a
drop; however, P1 does not satisfy the above query in fact.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

The control of false drop probability is important to achieve
better performance. Consequently, such a schema is
partitioned for reducing the false drop probability in our
approach. The phenomenon described above can be avoided.

Al L1
Pl "108" / "Garden”
"Austen” {L1 "7
{A1, A2} A2

{'Music", "Movie"} = 300°

L2 L2
"Central”
Fioo

Figure 2.2: An object graph of the schema in Fig. 2.1

3. New Signature-based Scheme

In this section, after describing how to partition a given
schema, we show how data are processed and organized.
Subsequently, predicates are classified for later discussion.
Query processing employing the developed structure is
introduced finally. In the following, a value_set attribute
means that a primitive attribute is multi-valued, while an
oid_set attribute means that a complex attribute is multi-
valued. Our approach is abbreviated to the SIG Scheme.

3.1 Partition Rule

A connection in a schema graph between an oid_set attribute
and its domain class is chosen and then removed. Such an
operation is continued until there is no such a connection.
Hence, the schema graph is partitioned into several
disconnected components. A signature-based index is
available for each value_set attribute in the schema. For
each object in class C which defines a value_set attribute 4,
a set signature SIGgg is generated. For a component, all
nested attributes except the value_set attributes of an object
in the root class of the component are hashed, and the
results obtained are superimposed together to get a
component signature SIGcomp- Set signatures and
component signatures are stored separately.

the 1-st component

Person ' the 2-nd component
name i Address
address* -7+ zipcode Location
{7 street

hobby* i [location
: no

igure 3.1: The partitioned schema based on that in Fig. 2.1

The schema in Figure 2.1 is partitioned into two
components, as . illustrated in Figure 3.1. The first
component exists- a signature file for attribute hobby.
Besides, each entry of the signature file for the first
component is from attribute name of the comesponding
object. As to the second component, attributes zipcode,
street and no of an object in class Address determine its
component signature.

62

It is inevitable to maintain as many indices as classes to
handle queries against arbitrary classes in a schema graph if
the signature-based indexing technique [8] is applied. An
atomic signature may be used more than once to generate
object signatures in that approach. However, each atomic
signature only contributes to a superimposing computation
according to the generation of the SIGg.; and the SIG comp
in our approach. Therefore, our approach achieves not only a
smaller storage overhead but also a lower false drop
probability than the scheme previously proposed.

3.2 Index Organization

There exists a simple index between any two adjacent
classes. The values of all primitive attributes derive set
signatures and component signatures, as described in
Section 3.1. They are stored separately and their
corresponding OID files are also maintained.

Each object in the root class of a component has its
SIG¢omp- Meanwhile, a SIGg is available if there exists a
value_set attribute in this class. These signatures are stored
separately. For each one of the rest classes in this
component, a SIGg, is available for each object of which
the corresponding class defines a value_set attribute.
Several signature file organizations have been’ proposed.
Sequential Signature File (SSF) is the simplest one in which
signatures are sequentially stored . A full scan is needed in
evaluating a query. Bit-Slice Signature File (BSSF) stores
signatures in a column-wise manner. A bit-slice file is for
each bit position of the signatures. Only a part of bit-slice
files have to be retrieved so that retrieval cost is lower.
Therefore, we employ BSSF. The detail is described later.
The organization is illustrated in Figure 3. 2.

Data Item Signature .
Austen 01000010

Movie 00100100\

Music 00001010 00101110
108 10000010,

Garden 01001000~ 11001011
27 00001001

300 01000001

Central 00010100~ 11010101
100 1000010

generation of signatures

OID file component signature set signature
Person | P1 |[o|xlofof ool 1lc] [ofol 1l
: HH BB HEHBERAE

Haaaas

Address | Al 1j1j0j0|1j0f1|1]
A2 1117041

Figure 3.2: BSSF based on Fig. 2.2
3.3 Types of Predicates

We classify the predicates in our discussion into two main
groups. One contains all simple path expressions in which

there are no oid_set attributes included. The other contains
complex path expressions which include at least one oid_set
attribute.

Some sample queries illustrating above situations are
given below.

Queryl: select Address '
where Address.zipcode is-equal "100"

Query2: select Address
where Address. hobby has-subset/is-subset
{"Swimming", "Hiking", “Jogging™}

The above queries are simple path expressions. An example
of complex path expressions is described as follows:

Query3: select P
from Person P, Addr is-in P.address
where Addr.location.street is-equal "Central"

The keyword exists (each) preceding an oid_set
attribute 4 indicates that the predicate must hold for at least
one object (for each object) in the set specified by 4. We
only consider exists due to easier estimation of the number
of objects satisfying predicates. For the purpose of
generalization, Query3 is simplified as follows.

Query3": select Person
where Person.exists
address.location.street is-equal "Central"

When the number of predicates in which "exists
address"s appear in Query3' is more than ome, all "exists
address"s.are bound to the same object in class address. The
prior works [1][2]{3] only take a single path query into
consideration. In fact, queries may contain predicates on
several paths originatinig from the same class and having
overlapping subpaths.

3.4 Query Processing

A component is a unit of processing; hence, for all
predicates in a given query, they are initially grouped by the
components in which their predicate attributes locate.
Predicates locating in the same component are classified into
two types. One is for those against the multi-valued
attributes. A set predicate signature PSIGgey is derived by
superimposing all atomic signatures from the predicate
value in a multi-valued predicate. The other is for those
against the single-valued attributes. These predicates are
called a component predicate. For each component which
includes a component predicate, a component predicate
signature PSIG . is generated by superimposing all
atomic signature from the predicate values in these single-
valued predicates.

Maulti-valued predicates are first processed. The PSIGget

checkes the corresponding bit-slice files. If a SIGget

63

Joint Conference of 1996 International Computer Symposium -
December 19~21, Kaohsiung, Taiwan, R.0.C.

qualifies the condition implied by the PSIGge, the
corresponding object must be accessed and verified. Let us
first consider the has-subset case. The checking procedure is
specified as follows:

For each bit position which is set to "1" in the
PSIGget, the corresponding bit-slice file is retrieved.
These bit-slice files are bit-wise AND-ed together.
For a SIGge of which AND-yed result is "1", the
corresponding object becomes.a drop.

Next, let us consider the is-subset case. The checking
procedure is specified as follows:

For each bit position which is set to "Q" in the
PSIGgyy, the corresponding bit-slice file is retrieved.
These bit-slice are bit-wise OR-ed together. For a
SIGget of which OR-ed result is "0", the
corresponding object becomes a drop.

The objects satisfying a multi-valued predicate form an
OID set. Take the intersection of the OID sets if the class
currently processed is the nearest common class of some
multi-valued predicates. The elements in the resulting OID
set serve as keys for the next search on the simple index
associating the current class with the preceding class. The
above procedure is repeated until objects, satisfying all
multi-valued predicates in the current component, in the root
class of the component are determined.
Next, we focus on the single-valued predicates. The
SIGomp ©of the object available is compared with the
PSIG o to filter out impossible objects. Such a procedure
is similar to the checking procedure applied in the has-
subset case. The forward traversal is applied along all the
single-valued predicates. The traversal of these predicates is —
preorder. Logically, all the single-valued and the multi-
valued predicates in the class-compositon hierarchy rooted.at
the root class of the current component have been processed.
The query processing is finished until all the components
have been processed.

3.5 Illustrative Example

To illustrate the scheme we described thus far, a query is
given as follows:

select Person
where Person.hobby is-subset
{"Swimming", "Movie", "Music"}
and Person.exists address.zipcode is-equal "300"
and Person.eXists address.location.street is-equal
"Central”

The second and the third predicates belong to the second
component. The first predicate is in the first component.
PSIG; gy for the second component is generated- by
superimposing ~ SIG("300") on SIG("Central"). The

Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

corresponding bit-slice files are examined. Object A2 is a
qualified object, as observed in Figure 3.2. A2 is retrieved to
check attribute zipcode. Through attribute location, object
L2 is verified. It is confirmed that A2 satisfies the predicates.

P1 is obtained via the MX connecting class Address to
class Person. Next, we start to process the first component.
PSIGge for the first predicate is generated by.OR-ing
SIG("Swimming"), SIG("Movie") and SIG("Music"). P1 is
what we want to retrieve because Pl.hobby is actually a
subset of {"Swimming", "Movie", "Music"}.

4. Simulations

The goal of the simulations is to confirm that the SIG
scheme performs better than the MX technique in general.
We compare the retrieval cost of the two approaches for
queries which are boolean combinations of any kinds of
predicates discussed in Section 3.3. Then, we investigate the

influence of some parameters.
the 2-nd component

the 1-st component

the 3-rd component
Figure 4.1: The schema graph used in simulations

The schema graph employed in the simulations is shown
in Figure 4.1. Queries are randomly generated. First, the
starting class of a query is randomly selected from classes in
the schema graph. The number of classes involved in a
query is also randomly determined. The query graph is
generated by randomly forming branches. Meanwhile, we
randomly determine whether there exists a predicate against
a class in the query graph. The type and the cardinality of
the predicate value for a predicate is also randomly
determined. For some parameters, we adopt typical values
[1].. We also assume that the size of a key is equal to the
length of an OID. They are given in Table 4.1.

kl | oidl noid f P
8 8 2 218 4096

Table 4.1: Values of some parameters

We first discuss false drop probability which determines
the number of objects which need to be verified. Next,
parameters used and assumptions made in cost models are
listed. Then, the models of storage cost and retrieval cost are
formulated. Simulations and their results are finally shown.

4.1 False Drop Probability

A false drop is an intrinsic characteristic of signature-based
techniques. It directly affects the performance of query
processing. False drop probability greatly depends on the
signature size. If a larger signature size is applied, false drop
probability is smaller. However, it increases the storage

64

overhead. There exists a trade-off between storage cost and
retrieval cost. Factors affecting false drop probability are
listed as follows:

M number of "1"s in an atomic signature
m, number of "I"s in a set predicate signature or a

component predicate signature
D, , cardinality of the target set of attribute 4,

D,, 4 cardinality of the predicate set on attribute 4,

D,, number of primitive attributes which are single-

6.4,
valued in the i-th component

D,, number of single-valued predicates against the i-th
component

F signature size in bits

F, , false drop probability for a multi-valued predicate
against attribute 4,

F,, false drop probability for a component predicate

against the i-th component

Let us consider the example in Section 3.5.
D, ossy = 3’ D,=1.D,, =0, D,, =3 and
D op =2 D, is determined by the system and can be

varied during simulations.
For the predicate against primitive attribute 4 , and

D,,Ai >D o, > Fa 4 »as developed in [3], approximates

mD
P4y
(l e_%DM‘ j

Similarly, for the predicate against primitive attribute 4,

and D,\ <D approximates

PA; Fd,A,

mD,
—e

Next, let us consider F, , - Each object in the root class

of the i-th component has a SIG. ., determined from all
single-valued attributes of this component. A PSIGomp 18
determined from all single-valued predicates of which
predicate attributes locate in this component. Such a

situation is logically considered as the D,, 2 D, , case

Therefore, the number of single-valued attributes, D,,., in
the i-th component substitutes for D, , ; likewise, the

number of single-valued predicates, . D in the same

P,Ix' 2
component substitutes for DP . F m becomes

mD
pdi
(1 .‘%Dr.ll J
—e .

4.2 Notations and Assumptions

Parameter notations used to measure the performance are
given in the following:

N, number of objects in class C,

K, number of objects in class C, which have the same
OID(s) in complex attribute 4,

v, cardinality of the domain of a single-valued attribute
of class C, '

MV, cardinality of the domain of a value_set attribute of
class C,

OID! length of an OID in bytes

P page size in bytes

LC, look-up cost for OID file of class C,
MXC, cost for evaluating a single-valued predicate

against attribute 4, using multiindex structure
SIGC, cost for evaluating a component predicate against

the i-th component using the SIG scheme
SIGC, cost for evaluating a multi-valued predicate

against attribute 4, using the SIG scheme

To simplify cost models, we make assumptions as
follows:
* A specific schema graph is given.
* - Each object of C ; is referenced by some objects of

C, where class C ; is the domain of an attribute of

class C,.

* Distribution of attribute values of a class is uniform.

. All attributes of a class are independent; hence, the
value of an attribute does not affect the value of any
other attribute.

®* All objects in a class have the same D, for each

multi-valued attribute 4,

4.3 Cost Model

Actual dropé are investigated after formulating the storage
costs and retrieval costs of the MX technique and the SIG
scheme.

4.3.1 Storage Cost

MX and SIG organizations are similar except information
involved in the primitive attributes. Only the difference is
considered.

MX Technique: An MX structure is based on a B-tree. A
leaf entry is composed of a key value and the list of OIDs for
objects which hold the key value in the corresponding
attribute. Parameters for MX are shown as follows:

ki size of a key value in bytes

k, number of objects in classC,, which share the same

value in primitive attribute 4,
noid size of a field which records the number of OIDs

65

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

I, size of a leaf entry for primitive attribute 4,

Ip, number of leaf pages for primitive attribute 4,

L p}"‘, number of leaf pages for complex attribute A, of
which domain classis C ;

nlp, number of nonleaf pages for primitive attribute 4,
[average fanout of a nonleaf node

The size of a leaf entry /] ; 1s

kl + k *OIDI + noid

where k, = N,/V, for a single-valued attribute and
k;=D,,*N, / MV, for a multi-valued attribute. The

number of leaf pages is

Ip = {fV/LP/II. Il o u<p

Co e /P] i 1P

where 7 =V, for. a single-valued attribute and
V' = MV, for a multi-valued attribute. Then, the number
of nonleaf pages is

nlp, = [lp,/f N+ [Tlp, /£ 1) f ot X

where the last term X is less than f. [f X isnot 1, 1 is added
to nlp, . The number of terms is /4, .

The total storage cost of MX is the sum of the number of
leaf and nonleaf pages of all primitive attributes in the
hierarchy.

SIG Scheme: The SIG organization consists of two kinds of
files: OID files and bit-slice files. For the root class of each
component, there exists an OID file. In addition, there exists
an OID file for each class defining value_set attributes. The
size of OID file for such a class C, in pages is

[~./lP/oIDL]]-

Then, there exists two kinds of bit-slice files: for SIGget and
for SIG.ymp- Only component root classes and classes
which define value set attributes maintain bit-slice files.
The storage cost of bit-slice files for such a class C, is

[N /8P F .

The total storage cost of SIG is the sum of storage costs of
all OID files and bit-slice files.

4.3.2 Retrieval Cost

Queries we investigate include predicates on several paths
originating from the same class and having qverlapping
subpaths. Therefore, we do not process a unit until all units
which succeed the class have been evaluated. A unit means

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

a class for MX technique. However, a unit denotes a
component for SIG scheme. The number of satisfactions of
the current class can be estimated easily due to
independence of attributes in a class.

Since the I/O cost determines mainly the performance,
we only consider the number of disk page accesses during
query processing. To clarify the presentation of the
formulations, we conduct the cost models based on a schema
and query graph in Figure 4.2 which is a link list structure
rather than a tree structure. Class Cii (1 < i(n)is the
domain of complex attribute 4, of class C ;- There exists a
predicate Pred; (1 < i < n) against primitive attribute A,
of class C,. The schema is partitioned into m components.

C

reesy denotes the root class of the i-th component.

Cy C; Coi C.
Ay Ay Ang

Pred Pred , Pred , ; Pred
Figure 4.2: A schema and query graph’

n

/
MX Technique: For a single-valued predicate, retrieve the
OIDs corresponding to the predicate value. Otherwise, each
element in the predicate set derives the corresponding OIDs.
Take the intersection of the OID sets if D a2 D or

P4,
take the union of the OID sets. However, the results of the
latter must be retrieved to verify whether they actually
satisfy the Pred;. '

Pred; does not be processed until all Predj (i(j<n)

have been processed. I, objects of class C ; are available

to be considered before evaluating Pred;. After evaluating
Pred;, S objects of class C, satisfy predicates which have

been processed. 7 is initially equal to y . - For 1<i<n,

s S.*K, if A, is singlevalued
"N, -C(N,, =S..,,D,, *K, if A is multivalued

The total retrieval cost consists of the evaluation of
predicates and the mapping from C, (2 < i< n)to C e

To estimate the number of page accesses for the latter, we
utilize a formula developed in [9]. This formula H(k,m,n)
determines the number of page hits when accessing k
records randomly selected from a file containing n records
grouped into m pages. .S, objects are served as keys to

H(S,,LP,,,N)+h,,
, is the height of the tree for
C,.,-A,, where attribute 4, is primitive. The cost for

obtain [_ objects. It costs

=12

page accesses where h

evaluating Pred;, which is single-valued is equal to

h, +1 if
h,+[1,/P]

<P

MXC, = { v Usp

66

The cost for evaluating Pred;, which is multi-valued is

MXC,*D,, +a(Actual, +

D,y 4, - J)
Y oD, , k(MY - D,,.D,, - k))
C(MV,,D,,)

1,

where o is 1 if D,, SD,,A , or is 0. We know that the
retrieval cost for the m-th component is

3 (e e, + I H(S, LP

n fi-12

N)+h,.)

SIG scheme: For a component, multi-valued predicates are
first evaluated and then single-valued ones. As for the m-th
component, the ;G ¢, is

(-a)N,/8Pm, +a[N,/8P|(F -m,)+LC, +
Actual, + F, , (I, - Actual))

where @ is 1if p, , <D ,oris0.The SIGC, is

[N./8P7m, + LC, + Actual, + F,, (S, - Actual))
where 1 is r(2,) Similarly, the retrieval cost also

includes the mapping between two adjacent classes.
Therefore, the cost for processing the m-th component is

SIGC, + X1, SIGC, + T (H(S LB, ,N)+ h,,.)

417

4.3.3 Actual Drop

For a multi-valued predicate against primitive attribute A,
>D 18

the expected number of objects satisfying D,, 2 o ;f

C(MV. - Dp,A, ’Du\, - .Dp.A,)
| C(M7V,,D,,) '

As for the condition of D, , < D, , ,the expected
number 4 ctual, 18

I C(D,,.D,.)

' C(MY,,D,,)

For a single-valued predicate against primitive attribute 4 s
the expected number is y V..

Since all attributes of a class are independent, the
estimation of intermediate results for class C, is derived by

multiplying selectivities of its all attributes by ¥ i

4.4 Performance Analysis

4.4.1 Storage Overhead

Using the formulations in Section 4.3.1, we evaluate storage
overheads for the two organizations. For D,, =10, SIG

scheme requires less storage than MX techmque as.

observed in Figure 4.3.

1600 7

1200 J

BOO

storags cost

400 1

SIG(F= 2509 SIGIF =500}

Figure 4.3: Storage cost

The ratios of the storage costs of SIG scheme to those of
MX technique are about 49.7% (for F=250) and 87.3% (for
F=500).

4.4.2 Retrieval Time

Object retrieval cost is influential using SIG; therefore, a
low false drop probability is required. Figure 4.4 shows that
the performance, for SIG, gets better due to lower false drop
probability if a larger F (signature size) is applied. We vary
the m value. The total retrieval cost is larger under a smaller
m, as observed in Figure 4.4. With a larger m value, the
retrieval cost becomes lower. However, the retrieval cost is
less variable when m is larger than 16. When m
approximates F/2, the false drop probability increases.
Therefore, the retrieval cost becomes larger again.

3500

3400 777

3300

%
8 3200 —o— F=250
']
]
£ 3100 —s— Fa500
%
3000
2900 M
2800 ~ ’
) 2 4 8 16

Figure 4.4: retrieval cost -

Besides, SIG is superior to MX which is irrelevant to m,
as indicated in Figure 4.4, :

5. Conclusion and Future Work

In this paper, we present a new indexing scheme based on
signature files to support query processing in OODBs with
multi-valued attributes, A query can be a boolean
combination of predicates on several paths having

67

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

overlapping subpaths. A signature-based scheme is a good
alternative since signature files support indexing retrievals

for all attributes of arbitrary classes. However, false drops

come with such a scheme. We propose to partition the class-
composition hierarchy for decreasing false drops caused by
multi-valued attributes while providing efficient retrieval.
According to the generation of signatures [8], we know the
multi-valued attributes directly influence the number of false
drops. Therefore, we eliminate the connections between
complex multi-valued attributes and “their domain classes.
Each component is allocated a signature-based index.
Besides, each primitive multi-valued attribute also
maintains a signature-based index.

We compare our approach, denoted as SIG, with the
multiindex (MX). The quantitative analysis is performed in
terms of storage overhead and retrieval time. From the
viewpoint of the storage cost, SIG is certainly less costly.
Therefore; a small available space for indices benefits from
this approach. A random query is a boolean combination of
the is-equal, has-subset and is-subset cases. For the retrieval
cost, SIG outperforms MX.

The cost analysis is mainly based on the assumption that
all the objects in a class which defines multi-valued
attributes have the same cardinality. Our future work is to
release this con-traint. Besides, other partition rules,
different indexing techniques in different components, and
update cost analysis deserve further study.

Bibliography

[1JE. Bertino and W. Kim, "Indexing Techniques for
Queries on Nested Objects", IEEE TKDE, Vol.1, No.2,
pp. 196-214, Jun. 1989

[2]E. Bertino, "Index Configuration in Object-Oriented
Databases", VLDB, Vol.3, No.3, pp. 355-399, Jul. 1994

[3]Y. Ishikawa, H. Kitagawa and N. Ohbo, "Evaluation of
Signature Files as Set Access Facilities in OODBs”,
ACM SIGMOD, pp. 247-256, 1993

[4JH. 8. Yong, S. Lee and H. J. Kim, "Applying Signatures
for Forward Traversal Query Processing in Object-
Oriented Databases”, [EEE Data Engineering, pp. 518-
525, 1994

[S]C. Faloutsos, "Access Methods for Text", ACM
Computing Surveys, Vol.17, No.1, pp. 49-74, Mar. 1985

[6]C. Faloutsos, "Signature files: Design and performance
comparison of some signature extraction methods", ACM
SIGMOD, pp. 63-82, 1985

[7ID. L. Lee and C. W. Leng, "A Partitioned Signature File
Structure for Multiattribute and Text Retrieval", IEEE
Data Engineering, pp.389-397, 1990

[8]W. C. Lee and D. L. Lee, "Signature File Methods for
Indexing Object-Oriented Database Systems", ICSC, pp.
612-622, 1992

[91S. B. Yao, "Approximating Block Accesses in Database
Organizations", ACM Communications, Vol.20, No.4, pp.
260-261, Apr. 1977

