
Workshop on Artificial Intelligence

Title: Competitive Neural Network to Solve Real-Time Scheduling

Abstract: The Hopfield neural network is widely applied to obtain an optimal

solution in a variety of different scheduling applications. A competitive
learning rule provides a highly effective means of attaining a sound solution
and is capable of reducing the time-consuming effort of obtaining
coefficients. Restated, the competitive mechanism simplifies the network
complexity. This important feature is applied to Hopfield neural network to
derive a new technique, i.e. competitive Hopfield neural network. This
investigation utilizes the competitive Hopfield neural network to resolve a
multiprocessor real-time scheduling problem with constrained times
(execution time and deadline). Simulation results demonstrate that the
competitive Hopfield neural network imposed on the proposed energy
function ensures an appropriate approach of solving this class of real-time
scheduling problems.

Authors: Ruey-Maw Chen* and Yueh-Min Huang**
Affiliation: * Department of Electronic Engineering
 National Chin-Yi Institute of Technology, Taichung, Taiwan

**Department of Engineering Science
 National Cheng Kung University, Tainan, Taiwan

Address: Department of Electronic Engineering,
National Chin-Yi Institute of Technology
No. 35, Lane 215, Section 1, Chung-Shan Rd., Taiping City,
Taichung County, 411 Taiwan, ROC

Tel: 886-4-23924505 ext 2232
Fax: 886-4-23920892
Email: raymond@chinyi.ncit.edu.tw

Keywords: Scheduling, Winner-take-all, Competitive learning rule, Hopfield neural
network.

1

Competitive Neural Network to Solve Real-time Scheduling

Ruey-Maw Chen* and Yueh-Min Huang**

*Computer Center, National Chin-yi Institute of Technology

Taichung 411, Taiwan, ROC

**Department of Engineering Science, National Cheng-Kung University

Tainan 701, Taiwan, ROC

Scheduling, winner-take all, Competitive learning, Hopfield neural network

Abstract

Most scheduling problems have been demonstrated to be NP-complete problems.

Many schemes have been presented to solve the optimization problems. Among which,

the Hopfield neural network is commonly applied to obtain an optimal solution in

various different scheduling applications, such as the Traveling Salesman Problem

(TSP), a typical discrete combinatorial problem. Instead of using deterministic rule, a

competitive rule provides a highly effective means of attaining a sound solution, can

reduce the effort of obtaining coefficients. Restated, the competitive mechanism

reduces the network complexity. This important feature is applied to the Hopfield

neural network to derive a new technique, i.e. the competitive Hopfield neural

network technique. This investigation employs the competitive Hopfield neural

network to resolve a multiprocessor real-time scheduling problem with no process

migration, time constraints (execution time and deadline). Simulation results

demonstrate that the competitive Hopfield neural network imposed on the proposed

energy function ensures an appropriate approach to solving this class of scheduling

2

problems.

1. Introduction

Various applications, such as communications, routing, industrial control,

operations research, and production planning employ scheduling concepts. Most

problems in these applications are confirmed to be NP complete or combinatorial

problems. The traveling salesman problem (TSP) is a typical NP-complete problem,

which seeks a tour that has a minimum cost; obtaining the optimal solution is very

time consuming.

Various schemes have been developed for solving the scheduling problem. Linear

programming is a widely used scheme for determining the cost function based on the

specific scheduling problem. Willems and Rooda translated the job-shop scheduling

problem into a linear programming format, and then mapped it into an appropriate

neural network structure to obtain a solution [1]. Furthermore, Foo and Takefuji

employed integer linear programming neural networks to solve the scheduling

problem by minimizing the total starting times of all jobs with a precedence constraint

[2]. Meanwhile, Zhang, Yan, and Chang proposed a neural network method derived

from linear programming, in which preemptive jobs are scheduled based on their

priorities and deadline [3]. Additionally, Cardeira and Mammeri investigated the

multi-processor real-time scheduling by applying the k-out-of-N rule to a neural

network [4]. Above investigations concentrated on the preemptive jobs (processes)

executed on multiple machines (multiprocessor) with job transfer permitted by

applying a neural network. Meanwhile, Hanada and Ohnishi [5] developed a parallel

algorithm based on a neural network for preemptive task scheduling problems by

allowing for a task transfer among machines. Park [6] embedded a classical local

3

search heuristic algorithm into the TSP optimization neural network. Most

investigations have constructed the energy functions for scheduling problems in terms

of timing constraint, preemption, and migration features associated with the process.

In our previous work [7], the display system on an advanced avionics system, which is

a real-time system, may consist of two or more display processors. Each processor is

responsible for different tasks involving timing constraints, but must not allow task

migration between processors. To facilitate the control of the pilot, all tasks must be

properly scheduled to provide the pilot with useful and timely information. Otherwise,

danger is inevitable. This study focuses mainly on resolving generic problems

resembling the above situation. Restated, this study investigates a multiprocessor

scheduling problem involving preemptive multitasking with timing constraints, but

not allowing migration.

Hopfield and Tank led the way in using the neural network to solve optimization

problems. The basic operation of the Hopfield neural networks [8] cooperatively

decides neuron output state information based on the state input information from a

community of neurons. Each neuron exchanges information with other neurons in the

network. The neurons apply this information to drive the network to achieve

convergence. The energy function used in the Hopfield neural network is an

appropriate Lyapunov function. Many researchers have recently applied this method

to various applications. Furthermore, [9] employed the Hopfield neural network with

mean field annealing to solve the shortest path problem in a communication network.

Similarly, our previous work [7] also solved a multi-constraint schedule problem for a

multiprocessor system using the Hopfield neural network. Neural networks seldom

include competitive architecture into the network for solving the most scheduling

problems.

4

Imposing a competitive learning mechanism to update the neuron states in the

Hopfield neural network is referred to as a competitive Hopfield neural network

(CHNN). A competitive learning rule can not only reduce the time consumed in

obtaining coefficients but also obtains an effective and sound solution. CHNN has

been applied to various fields, such as image clustering processes and specific image

segmentation. Chung, Tsai, Chen, and Sun [10] proposed a competitive Hopfield

neural network for polygonal approximation. Similarly, Lin, Cheng, and Mao [11]

also applied a competitive Hopfield neural network to demonstrate the promising

results in medical image segmentation. Furthermore, Uchiyama and Arbib [12] used

competitive learning as an efficient method in color image segmentation application.

The winner-take-all rule employed by the competitive learning mechanism ensures

that only one job is executed on a dedicated processor at a certain time, enforcing the

1-out-of-N constraint to be held. The maximum neuron of the Hopfield neural

network is the activated neuron. The monotonicity of the maximum neuron follows

from the fact that the maximum neuron is equivalent to a MacCulloch-Pitts neuron

with a dynamic threshold [13]. One advantage of real-time task scheduling is that we

are interesting on meeting task timing constraints rather than optimizing a given target.

Therefore, we are more interested on solving a constraints satisfaction problem.

In light of above developments, this work investigates the job schedule problem of

a multiprocess on a real-time multiprocessor that includes timing constraints, via

CHNN. An energy function designed to illustrate the timing constraints is proposed as

in [7]. According to the CHNN, the scheduling problem is considered a minimization

of an energy function. Our results demonstrate that the energy change is invariably

negative when using formal mathematical derivations. Therefore, HNN can be

employed to obtain the weighting and threshold matrices, and the competition process

5

can be applied to obtain the solution.

 The rest of this paper is organized as follows. Section 2 derives the corresponding

energy function according to the intrinsic constraints of the scheduling problem. After

this, Section 3 reviews the CHNN, and translates the derived energy functions to the

CHNN algorithm. Section 4 then gives mathematical proof of the convergence of the

simplified energy function of CHNN. Next, Section 5 presents the simulation

examples. Finally, Section 6 includes discussion and conclusions.

2. Energy function of the scheduling problem

Job-shop scheduling problems markedly differ among cases. Our scheduling

problem domain considers N jobs (or processes) and M machines (or processors). The

following assumptions are made regarding the problem domain. First, a job can be

segmented and the execution of each segment is preemptive. Second, different

segments of a job cannot be assigned to different machines, implying that no job

migration is allowed between machines. Third, the execution time of each job is

predetermined. These assumptions and constraints are quite feasible, as demonstrated

by the display system depicted in the previous section. Given these assumptions, the

preemptive processes with deadlines in a multiprocessor real-time system are

interesting.

To resolve this scheduling problem, the energy function of the problem must first

be derived. The energy function, which resembles the TSP, is transformed into a 3-D

HNN (Fig. 1); then the “optimization” process searches for solutions satisfying a set

of constraints such that the energy function is minimized or maximized. Herein,

scheduling involves three variables: job, machine, and time. These three variables are

depicted in Fig. 1. The “x” axis denotes the “job” variable, with i representing a

6

specific job with a range from 1 to N, the total number of jobs to be scheduled.

Meanwhile, the “y” axis represents the “machine” variable, and each point j on the

axis represents a dedicated machine from 1 to M, the total number of machines to be

operated. Finally, the “z” axis denotes the “time” variable, with k representing a

specific time, which should be less than or equal to T, the deadline of the job. Based

on this definition of variables, a neuron indicated by state variable Vijk is defined as

representing whether or not job i is executed on machine j at a certain time k. The

activated neuron Vijk=1 denotes that the job i is arranged to execute on machine j at

the time k; otherwise, Vijk=0. Notably, each Vijk corresponds to a neuron of the neural

network.

The derived energy function representing the neural network system is as follows:

∑∑∑

∑∑ ∑∑ ∑∑

∑∑∑∑∑∑∑∑∑

= = =

= = == = =

= = =
≠
= == = =

≠
=

+

−+−+

+=

N

i
ijk

M

j
ijk

T

k
ijk

N

i

M

j

T

k
ijk

N

i

M

j
i

T

k
ijk

kij

N

i

M

j

T

k

M

jj
j

T

k
ijk

N

i

M

j

T

k
jki

N

ii
i

ijk

GHGV
C

V
C

PV
C

VVCVVCE

1 1

2

1

5

1 1

2

1

42

1 1 1

3

11
1 1 1

1,
11 11

2

1 1 1
1

1,
11

1

)(
2

)1(
2

)(
2

22

 (1)

where
















≤

>
=

−=

0ijkGif0

0ijkGif1

ijkGH

dkG iijk

.,

.,
)(,and

Where C1, C2, C3, C4, and C5 refer to weighting factors; N denotes the total number of

processes to be scheduled; M is the total number of machines to be operated; T

represents the maximum time quantum of a process. These weighting factors, N, M,

and T, are assumed to be positive constants herein.

7

The C1 energy term confines a processor j to executing only one process, say i or i1,

at a certain time k. This energy term has a minimum value of zero when satisfying this

constraint. The C2 energy term indicates that a process migration is prohibited,

implying that process i runs on processor j or j1. This term also has a minimum value

of zero. In the C3 energy term, Pi denotes the total execution time required by process

i. This energy term means that the time consumed by process i must equal Pi such that

iPijkV =∑ ∑ , i.e. this term becomes zero. Additionally, the C4 energy term is actually a

supplemental constraint to prevent no process being executed on a specific processor

at a certain time. Thus, this energy item falls to a minimum of zero when satisfying

this constraint. The purpose of the C5 energy term is to meet the deadline requirement

of each process i, where di is the time limitation of process i and H(Gijk) is the

Heavside function. When a process is allocated with a run time that exceeds d, the

energy term will exceed zero, and the energy value will grow exponentially with the

associated time lag between di and k. Based on the above discussion, the derived

energy function has a minimum value of zero when all constraints are satisfied.

Eq.(1) can be proved to be an appropriate Lyapunov function for the system under

discussion, as Section 4 illustrates.

3. Competitive HNN

In this section, the discussed scheduling problem and its energy function are

mapped onto the competitive HNN to obtain solutions as described.

Hopfield and Tank originally proposed the neural network, HNN, in [14].

Essentially, the HNN algorithm is based on the gradient technique, thus providing

rapid convergence. The HNN also provides potential for parallel implementation.

Based on dynamic system theory, the Liapunov function [14] [15] shown in Eq. (2).,

8

has verified the existence of stable states of the network system. This energy function

representing the scheduling problem must be in the same format as the Lyapunov

function, as below:

ijk
i j k

ijkijkxyzijk
x y z i j k

xyz VVWV
2
1E ∑∑∑∑∑∑∑∑∑ +−= θ (2)

Where Vxyz and Vijk denote the neuron states, Wxyzijk represents the synaptic weight

indicating the interconnection strength among neurons, and ijkθ is the threshold

value representing the bias input of the neuron. Additionally, the HNN employs the

deterministic rule to update the neuron state change. This deterministic rule is

displayed in Eq. (3) below:









<
=
>

=+

0,0
0,
0,1

1

ijk

ijk
n

ijk

ijk
n

ijk

Netif
NetifV
Netif

V . (3)

Meanwhile, ijkNet represents the total input or net value of the neuron (i, j, k)

obtained using the interconnection strength, xyzijkW , and the bias input, ijkθ

displayed as follows:

ijk
x y z

xyzxyzijk
ijk

ijk VW
V
ENet θ−=

∂
∂

−= ∑∑∑ (4)

Instead of applying conventional deterministic rules to update neuron states,

competition among neurons is used to determine the winning neuron, i.e. the active

neuron. As discussed previously, applying a winner-take-all learning mechanism to a

Hopfield neural network is frequently referred to as a competitive Hopfield neural

network, CHNN. The concept of the competitive Hopfield neural network resembles

the special case of the k-out-of-N rule proposed by Carderia and Mammeri [4].

Restated, the competitive Hopfield neural network can be considered a 1-out-of-N

confine rule. The proposed competitive HNN neural network converges during

9

network evolutions, and Section 4 provides detailed proof of this convergence.

Since a processor can only execute one job at a time in subject scheduling problems,

omitting the C1 and C4 energy terms from the HNN energy function (Eq. 1) yields a

simplified energy function and satisfies the competitive constraint. Restated, the C1

and C4 energy terms are handled explicitly. The resulting energy function for CHNN

is highlighted as follows:

)(
2
5

)(
2
3

2
2

2

1 1 1

2

1 1 1
11

1 1 1
1

11 11

ijkijk

N

i

M

j

T

k
ijk

i

N

i

M

j

T

k
ijkkij

N

i

M

j

T

k

M

jj
j

T

k
ijk

GHGVC

PVCVVCE

∑∑∑

∑ ∑∑∑∑∑∑∑

= = =

= = == = =
≠
= =

+

−+=

 (5)

The resulting energy function makes it apparent that this must be an appropriate

Lyapunov function. Comparing Eq.(2) with Eq.(5) makes it possible to determine

synaptic interconnection strength, xyzijkW , and the bias input, ijkθ , as illustrated

below:

),(*3)),(1(*),(*2 ixCjyixCWxyzijk δδδ −−−= (6)

and

)(**
2
53 2 GHGCPC ixyz +−=θ (7)

respectively, where





≠
=

=
baif
baif

ba
.0
.1

),(δ is the Kronecker delta function.

In the CHNN, a competitive winner-take-all rule is imposed to update the neuron

states. The neurons on the same column of a dedicated processor at a certain time

compete with one another to decide which specific job should be the winning neuron.

The neuron that receives the maximum net value is the winning neuron. Accordingly,

the output of the winner neuron is set to 1, and the output states of all the other

10

neurons on the same column are set to 0. The winner-take-all update rule of the

neuron for the ith column is illustrated as follows:



 =

= =

otherwise
NetMaxNetif

V ijkNixjk
xjk 0

1
~1 , (8)

where xjkNet is the maximum total neuron input, and is equivalent to the dynamic

threshold on a MaCulloch-Pitts neuron [13].

4. Convergence of the CHNN

This section provides a mathematical proof of convergence in the CHNN for the

investigated problem. The simplified CHNN energy function is shown in Eq. 5.The

neuron (i, j, k) obtains the total input, i.e. net value, which is as follows (Eq. 9):

)(
2
5)(3

2
2 2

1
11 11

111 ijkijkiijk

M

jj
j

T

k
kij

ijk
ijk

GHGCPVCVC

V
ENet

−−−−=

−=

∑∑
≠
= =

∂
∂

 (9)

For clarity, this energy function is separated into two parts, mnE and otherE . The

energy function can then be represented as follows (Eq. 10):

othermn

ijkijk

N

i

M

mj
j

T

nk
k

ijkimnimn

N

i
imn

i

N

i

M

mj
j

T

nk
k

ijki

N

i
imn

kij

N

i

M

mj
j

T

nk
k

M

mjjj
j

T

k
ijkkij

N

i

M

mj
j

T

nk
k

imn

EE

GHGVGHGVC

PVPVC

VVVVCE

+=

++

−+−+

+=

∑∑∑∑

∑ ∑∑∑

∑∑∑ ∑ ∑∑∑∑

=
≠
=

≠
==

=
≠
=

≠
==

=
≠
=

≠
=

≠≠
= ==

=
=

≠
=

))()((
2
5

))()((
2
3

)(
2
2

2

1 1 1

2

1

2

1 1 1

2

1

11
1 1 1

1,1
11 11

11
1

1
11

1
11

 (10)

The above four Vimn terms related to the neuron represent a process i being executed at

a specific processor m and specific time n. Restated, Vimn is the neuron on the ith row

(job) and nth column (time) for the specific processor m. The first energy part, mnE ,

11

is the summation of the energy term correlating with neuron state Vimn. The second

part is the remainder, that is, otherE . Focusing on these terms at the (t)th iteration, the

Vlmn is supposed to be the only active neuron (l,m,n) in the nth column on processor m

before updating, that is,





≠=
=

.,0
,1

)(

)(

liforV
andV

t
imn

t
lmn

Moreover, the neuron (q,m,n) at the (t+1)th iteration is supposed to be the only neuron

activated with the largest total input value following updating, namely,





≠=
=

+

+

.,0
,1

)1(

)1(

qiforV
andV

t
imn

t
qmn

The active neuron, based on the winner-take-all update rule, as in Eq.(10), is the one

with the maximum net value on each column in each update, that is

imnNiqmn NetMaxNet
~1=

= .

This equation implies that

lmnqmn NetNet > , (11)

where qmnNet and lmnNet are derived from Eq.(9) as follows:

)(
2
5)(3

2
2 2

1
11 11

11 qmnqmnqqmn

M

mj
j

T

k
kqjqmn GHGCPVCVCNet −−−−= ∑∑

≠
= =

 (12)

 and

)(
2
5)(3

2
2 2

1
11 11

11 lmnlmnllmn

M

mj
j

T

k
kljlmn GHGCPVCVCNet −−−−= ∑∑

≠
= =

. (13)

Investigating Eq.(10), the total energy difference of the neural network, E∆ , between

the (t+1)th and (t)th iteration is the same as the Emn change between the (t+1)th and (t)th

iteration. E∆ is displayed as below:

12

))()((
2
5

))1()1((
2
3

)(
2
2

22

1

2

1

222

11

1
11 11

1
11 11

11

lmnlmnqmnqmn

N

li
i

i

N

qi
i

ilq

klj

M

mj
j

T

k

M

mj
j

T

k
kqj

GHGGHGC

PPPPC

VVCE

−+

−+−−−+

−=∆

∑∑

∑∑∑∑

≠
=

≠
=

≠
= =

≠
= =

 (14)

After some algebraic manipulation and re-arrangement, the energy changes between

the neuron update equals the net value change minus C3. That is

3CNetNetE qmnlmn −−=∆ .

Clearly, the above equation implies that the energy difference in the update is

negative, that is 0<∆E . Restated, the energy function decreases with each iteration.

Hence, the system is convergent during network evolution. Apparently, this energy

function is an appropriate Lyapunov function.

5. Simulation examples and results

The simulations consider classes of scheduling problems with timing constraints.

Additionally, significant portions of the energy curves during neural network

evolution were also shown. Table 1 defines the constants of the energy function in

Eq.(5). Two sets of timing constraints and various different initial neuron states were

applied to the simulations. Tables 2 and 3 list timing constraints for two simulation

examples, respectively. This simulation involves scheduling four processes (jobs) in

two processors (machines). Figs. 3 and 4 illustrate the resulting schedules for distinct

initiate states of example 1, respectively. Meanwhile, Fig. 2 displays the energy

revolution for example 1. Additionally, a second scheduling problem with five

processes and two processors was also simulated. Moreover, different initial

conditions are simulated to better understand the response of the neural network to the

13

scheduling problem. Figs. 5 and 6 present the scheduling results for different initial

states of the second example.

6. Discussion and conclusions

HNN uses the quadratic energy function, which results in the quadratic cost of the

interconnection network and hence poor scaling property. The winner-take-all

mechanism eliminates the constraint terms in the energy function, simplifying the

network by reducing the interconnections among neurons [10]. Hence, CHNN can

help overcome the scaling problem. This work illustrated an approach to mapping the

problem constraint into the energy function of the competitive Hopfield neural

network so as to resolve the timing constraints schedule problem. The energy function

proposed herein works efficiently and can be applied to investigating certain

scheduling problems.

Simulation results demonstrate some significant consequences for CHNN and the

features of CHNN when applied to the scheduling domain examined herein, as

follows.

(1) Randomly assigning the initial states can obtain feasible schedules for the

investigated scheduling problem.

(2) The rate of convergence is initial-state dependent;

(3) The entailed synaptic weight matrix in Eq.(6), although symmetric (i.e.

ijkxyzxyzijk WW =), has a self-feedback interconnection, implying 0≠xyzijkW . Thereby,

the network may oscillate during network evolution [14][16]. Consequently, a

solution is not guaranteed, causing inevitable oscillation. In [17], Takefuji and Lee

proposed a hystersis binary neuron model to effectively suppress the oscillatory

behavior of neural dynamics for solving combinatorial optimization problems.

14

Moreover, weighting factor determination is an intrinsic shortcoming of HNN, and

the simulations also encounter this drawback. However, the set of weight matrixes

used in our simulation as listed in Table 1 is not unique. Different sets of weighting

factors produce different neural network revolutions.

The Hopfield neural network is known to frequently trap to a local minimum after

the network is stabilized. The simulated annealing technique can effectively obtain a

global minimum capable of escaping from the local minimum. However, this

approach requires more iteration. An important feature of a scheduling algorithm is its

efficiency or performance, i.e., how its execution time grows with problem size. The

parameter most relevant to the time a neural network takes to find a solution is the

number of iterations needed to converge to a solution. According to simulation results,

this CHNN requires an average of 5 ~ 20 iterations to converge. Each iteration

involves updating every column of the competitive Hopfield neural network. The

number of neurons for the proposed neural network is (* *)N M T , and the

computational time for each iteration is equal to the total neurons (* *)N M T

multiplied by the computation time for each neuron (proportional to)*(MN).

Consequently, this algorithm results in a)**(22 TMNO complexity. Restated, the

execution time required for each iteration is proportional to)**(22 TMNO .

Furthermore, finding the solution for a very large-scale system (very large N and/or

very large M) might require an unacceptably long time. Thus, for large scaled cases,

the scaling problem will become a drawback of the proposed model. A future work

should examine how to reduce the complexity in solving the scheduling problems.

This work focuses on the problem of real-time scheduling without ready time

consideration. For practical implementation, the problem can be extended to involve

the temporal relationship of ready time or priority for each job. Restated, each job

15

would be ready to run at different time. Correspondingly, the constructed energy

function in this work can be modified by adding additional energy terms to satisfy

extra requirement. A notion resembling the priority scheduling constraint may be

involved. A future work should address this issue more thoroughly.

Reference

[1] T. M. Willems and J. E. Rooda, “Neural Networks for Job-shop Scheduling,”

Control Eng. Practice, 2(1) (1994) 31-39.

[2] Y. P. S. Foo and Y. Takefuji, “Integer linear programming neural networks for

job-shop scheduling,” in: IEEE Int. Conf. on Neural Networks, vol. 2, 1998, pp.

341-348.

[3] Chang-shui Zhang, Ping-fan Yan, Tong Chang, “Solving Job-Shop Scheduling

Problem with Priority Using Neural Network,” in: IEEE Int. Conf. on Neural

Networks, 1991, pp. 1361-1366.

[4] C. Cardeira and Z. Mammeri, “Neural networks for multiprocessor real-time

scheduling,” in: Proc. Sixth Euromicro Workshop on Real-Time Systems, 1994, pp.

59-64.

[5] A. Hanada, and K. Ohnishi, “Near optimal jobshop scheduling using neural

network parallel computing,” in: Int. Conf. on Proc.Industrial Electronics, Control,

and Instrumentation, vol. 1, 1993, pp. 315-320.

[6] Jeon Gue Park, Jong Man Park, Dou Seok Kim, Chong Hyun Lee, Sang Weon Suh,

and Mun Sung Han, “Dynamic neural network with heuristic,” in: IEEE Int. Conf. on

Neural Networks, vol. 7, 1994, pp. 4650-4654.

[7] Yueh-Min Huang and Ruey-Maw Chen, “Scheduling Multiprocessor Job with

Resource and Timing Constraints Using Neural Network,” IEEE Trans. on System,

Man and Cybernetics, part B, 29(4) (1999).

16

[8] J. J. Hopfield and D. W. Tank, “Neural Computation of Decision in Optimization

Problems,” Biological Cybernetics, 52 (1985) 141-152.

[9] M. W. Dixon, G. R. Cole, and M. I. Bellgard, “Using the Hopfield network with

mean field annealing to solve the shortest path problem in a communication network,”

in: Int. Conf. on Neural Networks, vol. 5, 1995, pp. 2652-2657.

[10] P. C. Chung, C. T. Tsai, E. L. Chen, and Y. N. Sun, “Polygonal approximation

using a competitive Hopfield neural network,” Pattern Recognition, 27 (1994)

1505-1512.

[11] J. S. Lin, K. S Cheng, and C. W. Mao, “A fuzzy Hopfield neural network for

medical image segmentation,” IEEE Trans. Nuclear Science, 43(4) (1996) 2389-2398.

[12] Toshio Uchiyama and Michael A. Arbib, “Color Image Segmentation Using

Competitive Learning,” IEEE Trans. Pattern Analysis Machine Intelligence, 16(12)

(1994) 1197-1206.

[13] K. Lee, Y. Takefuji and N. Funabiki, “A parallel improvement algorithm for the

biparties subgraphy problem,” Case Western Reserve Univ., CAISR Tech. Rep.

TR91-105. 1991.

[14] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: A model,”

Science, 233 (1986) 625-633.

[15] G. Bilbro, R. Mann, T. Miller W. Snyder, D. E. Van den Bout, and M. White,

“Mean field annealing and neural networks,” in: Advances in Neural Information

Processing System, 1989, pp. 91-98.

[16] M. Takeda, J. W. Goodman, “Neural networks for computation: number

representation and programming complexity,” Applied Optics, 251986 3033-3046.

[17] Y. Takefuji and K. C. Lee, “An artificial hystersis binary neuron: a model

suppressing the oscillatory behaviors of neuron dynamics,” Biological Cybernetics,

17

64 (1991) 353-356.

Fig.1. 3-D Hopfield neural network.

Constants for CHNN
C2 C3 C5
2.0 1.0 3.0

Table 1. Weighting factors

 Time Required Time Limit Time Required Time Limit
Process 1 4 6 Process 1 2 3
Process 2 3 4 Process 2 5 8
Process 3 3 6 Process 3 3 4
Process 4 2 3 Process 4 4 8

 Process 5 2 5
Table 2. Timing Constraints Matrix. Table 3. Timing Constraints Matrix.

(simulation example 1) (simulation example 2)

0 5 10 15 20 25
0

5

10

15

20

25

30

of iterations

E
ne

rg
y

Fig. 2. Energy evolution of example 1.

Machine 1

Machine 2

 Job1 Job2 Job3 Job4
Fig. 3. Simulation results of example 1.

Machine 1

Machine 2

 Job1 Job2 Job3 Job4

Fig. 4. Simulation results of example 1.

j

k

i

x(Job)

y(Processor)

z(Time)
Vijk
(0 or 1)

oscillation

18

Machine 1

Machine 2

 Job1 Job2 Job3 Job4 Job5

Fig. 5. Simulation results of example 2.

Machine 1

Machine 2

 Job1 Job2 Job3 Job4 Job5

Fig. 6. Simulation results of example 2.

