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Abstract 

Most scheduling problems have been demonstrated to be NP-complete problems. 

Many schemes have been presented to solve the optimization problems. Among which, 

the Hopfield neural network is commonly applied to obtain an optimal solution in 

various different scheduling applications, such as the Traveling Salesman Problem 

(TSP), a typical discrete combinatorial problem. Instead of using deterministic rule, a 

competitive rule provides a highly effective means of attaining a sound solution, can 

reduce the effort of obtaining coefficients. Restated, the competitive mechanism 

reduces the network complexity. This important feature is applied to the Hopfield 

neural network to derive a new technique, i.e. the competitive Hopfield neural 

network technique. This investigation employs the competitive Hopfield neural 

network to resolve a multiprocessor real-time scheduling problem with no process 

migration, time constraints (execution time and deadline). Simulation results 

demonstrate that the competitive Hopfield neural network imposed on the proposed 

energy function ensures an appropriate approach to solving this class of scheduling 
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problems. 

 

1. Introduction 

Various applications, such as communications, routing, industrial control, 

operations research, and production planning employ scheduling concepts. Most 

problems in these applications are confirmed to be NP complete or combinatorial 

problems. The traveling salesman problem (TSP) is a typical NP-complete problem, 

which seeks a tour that has a minimum cost; obtaining the optimal solution is very 

time consuming. 

Various schemes have been developed for solving the scheduling problem. Linear 

programming is a widely used scheme for determining the cost function based on the 

specific scheduling problem. Willems and Rooda translated the job-shop scheduling 

problem into a linear programming format, and then mapped it into an appropriate 

neural network structure to obtain a solution [1]. Furthermore, Foo and Takefuji 

employed integer linear programming neural networks to solve the scheduling 

problem by minimizing the total starting times of all jobs with a precedence constraint 

[2]. Meanwhile, Zhang, Yan, and Chang proposed a neural network method derived 

from linear programming, in which preemptive jobs are scheduled based on their 

priorities and deadline [3]. Additionally, Cardeira and Mammeri investigated the 

multi-processor real-time scheduling by applying the k-out-of-N rule to a neural 

network [4]. Above investigations concentrated on the preemptive jobs (processes) 

executed on multiple machines (multiprocessor) with job transfer permitted by 

applying a neural network. Meanwhile, Hanada and Ohnishi [5] developed a parallel 

algorithm based on a neural network for preemptive task scheduling problems by 

allowing for a task transfer among machines. Park [6] embedded a classical local 
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search heuristic algorithm into the TSP optimization neural network. Most 

investigations have constructed the energy functions for scheduling problems in terms 

of timing constraint, preemption, and migration features associated with the process. 

In our previous work [7], the display system on an advanced avionics system, which is 

a real-time system, may consist of two or more display processors. Each processor is 

responsible for different tasks involving timing constraints, but must not allow task 

migration between processors. To facilitate the control of the pilot, all tasks must be 

properly scheduled to provide the pilot with useful and timely information. Otherwise, 

danger is inevitable. This study focuses mainly on resolving generic problems 

resembling the above situation. Restated, this study investigates a multiprocessor 

scheduling problem involving preemptive multitasking with timing constraints, but 

not allowing migration. 

Hopfield and Tank led the way in using the neural network to solve optimization 

problems. The basic operation of the Hopfield neural networks [8] cooperatively 

decides neuron output state information based on the state input information from a 

community of neurons. Each neuron exchanges information with other neurons in the 

network. The neurons apply this information to drive the network to achieve 

convergence. The energy function used in the Hopfield neural network is an 

appropriate Lyapunov function. Many researchers have recently applied this method 

to various applications. Furthermore, [9] employed the Hopfield neural network with 

mean field annealing to solve the shortest path problem in a communication network. 

Similarly, our previous work [7] also solved a multi-constraint schedule problem for a 

multiprocessor system using the Hopfield neural network. Neural networks seldom 

include competitive architecture into the network for solving the most scheduling 

problems. 
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Imposing a competitive learning mechanism to update the neuron states in the 

Hopfield neural network is referred to as a competitive Hopfield neural network 

(CHNN). A competitive learning rule can not only reduce the time consumed in 

obtaining coefficients but also obtains an effective and sound solution. CHNN has 

been applied to various fields, such as image clustering processes and specific image 

segmentation. Chung, Tsai, Chen, and Sun [10] proposed a competitive Hopfield 

neural network for polygonal approximation. Similarly, Lin, Cheng, and Mao [11] 

also applied a competitive Hopfield neural network to demonstrate the promising 

results in medical image segmentation. Furthermore, Uchiyama and Arbib [12] used 

competitive learning as an efficient method in color image segmentation application. 

The winner-take-all rule employed by the competitive learning mechanism ensures 

that only one job is executed on a dedicated processor at a certain time, enforcing the 

1-out-of-N constraint to be held. The maximum neuron of the Hopfield neural 

network is the activated neuron. The monotonicity of the maximum neuron follows 

from the fact that the maximum neuron is equivalent to a MacCulloch-Pitts neuron 

with a dynamic threshold [13]. One advantage of real-time task scheduling is that we 

are interesting on meeting task timing constraints rather than optimizing a given target. 

Therefore, we are more interested on solving a constraints satisfaction problem. 

In light of above developments, this work investigates the job schedule problem of 

a multiprocess on a real-time multiprocessor that includes timing constraints, via 

CHNN. An energy function designed to illustrate the timing constraints is proposed as 

in [7]. According to the CHNN, the scheduling problem is considered a minimization 

of an energy function. Our results demonstrate that the energy change is invariably 

negative when using formal mathematical derivations. Therefore, HNN can be 

employed to obtain the weighting and threshold matrices, and the competition process 
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can be applied to obtain the solution. 

 The rest of this paper is organized as follows. Section 2 derives the corresponding 

energy function according to the intrinsic constraints of the scheduling problem. After 

this, Section 3 reviews the CHNN, and translates the derived energy functions to the 

CHNN algorithm. Section 4 then gives mathematical proof of the convergence of the 

simplified energy function of CHNN. Next, Section 5 presents the simulation 

examples. Finally, Section 6 includes discussion and conclusions. 

 

2. Energy function of the scheduling problem 

Job-shop scheduling problems markedly differ among cases. Our scheduling 

problem domain considers N jobs (or processes) and M machines (or processors). The 

following assumptions are made regarding the problem domain. First, a job can be 

segmented and the execution of each segment is preemptive. Second, different 

segments of a job cannot be assigned to different machines, implying that no job 

migration is allowed between machines. Third, the execution time of each job is 

predetermined. These assumptions and constraints are quite feasible, as demonstrated 

by the display system depicted in the previous section. Given these assumptions, the 

preemptive processes with deadlines in a multiprocessor real-time system are 

interesting.  

To resolve this scheduling problem, the energy function of the problem must first 

be derived. The energy function, which resembles the TSP, is transformed into a 3-D 

HNN (Fig. 1); then the “optimization” process searches for solutions satisfying a set 

of constraints such that the energy function is minimized or maximized. Herein, 

scheduling involves three variables: job, machine, and time. These three variables are 

depicted in Fig. 1. The “x” axis denotes the “job” variable, with i representing a 



6 

specific job with a range from 1 to N, the total number of jobs to be scheduled. 

Meanwhile, the “y” axis represents the “machine” variable, and each point j on the 

axis represents a dedicated machine from 1 to M, the total number of machines to be 

operated. Finally, the “z” axis denotes the “time” variable, with k representing a 

specific time, which should be less than or equal to T, the deadline of the job. Based 

on this definition of variables, a neuron indicated by state variable Vijk is defined as 

representing whether or not job i is executed on machine j at a certain time k. The 

activated neuron Vijk=1 denotes that the job i is arranged to execute on machine j at 

the time k; otherwise, Vijk=0. Notably, each Vijk corresponds to a neuron of the neural 

network.  

 

The derived energy function representing the neural network system is as follows: 
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Where C1, C2, C3, C4, and C5 refer to weighting factors; N denotes the total number of 

processes to be scheduled; M is the total number of machines to be operated; T 

represents the maximum time quantum of a process. These weighting factors, N, M, 

and T, are assumed to be positive constants herein. 
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The C1 energy term confines a processor j to executing only one process, say i or i1, 

at a certain time k. This energy term has a minimum value of zero when satisfying this 

constraint. The C2 energy term indicates that a process migration is prohibited, 

implying that process i runs on processor j or j1. This term also has a minimum value 

of zero. In the C3 energy term, Pi denotes the total execution time required by process 

i. This energy term means that the time consumed by process i must equal Pi such that 

iPijkV =∑ ∑ , i.e. this term becomes zero. Additionally, the C4 energy term is actually a 

supplemental constraint to prevent no process being executed on a specific processor 

at a certain time. Thus, this energy item falls to a minimum of zero when satisfying 

this constraint. The purpose of the C5 energy term is to meet the deadline requirement 

of each process i, where di is the time limitation of process i and H(Gijk) is the 

Heavside function. When a process is allocated with a run time that exceeds d, the 

energy term will exceed zero, and the energy value will grow exponentially with the 

associated time lag between di and k. Based on the above discussion, the derived 

energy function has a minimum value of zero when all constraints are satisfied. 

Eq.(1) can be proved to be an appropriate Lyapunov function for the system under 

discussion, as Section 4 illustrates. 

 

3. Competitive HNN 

In this section, the discussed scheduling problem and its energy function are 

mapped onto the competitive HNN to obtain solutions as described. 

Hopfield and Tank originally proposed the neural network, HNN, in [14]. 

Essentially, the HNN algorithm is based on the gradient technique, thus providing 

rapid convergence. The HNN also provides potential for parallel implementation. 

Based on dynamic system theory, the Liapunov function [14] [15] shown in Eq. (2)., 
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has verified the existence of stable states of the network system. This energy function 

representing the scheduling problem must be in the same format as the Lyapunov 

function, as below: 

ijk
i j k

ijkijkxyzijk
x y z i j k
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Where Vxyz and Vijk denote the neuron states, Wxyzijk represents the synaptic weight 

indicating the interconnection strength among neurons, and ijkθ  is the threshold 

value representing the bias input of the neuron. Additionally, the HNN employs the 

deterministic rule to update the neuron state change. This deterministic rule is 

displayed in Eq. (3) below: 
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Meanwhile, ijkNet  represents the total input or net value of the neuron (i, j, k) 

obtained using the interconnection strength, xyzijkW , and the bias input, ijkθ  

displayed as follows: 
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Instead of applying conventional deterministic rules to update neuron states, 

competition among neurons is used to determine the winning neuron, i.e. the active 

neuron. As discussed previously, applying a winner-take-all learning mechanism to a 

Hopfield neural network is frequently referred to as a competitive Hopfield neural 

network, CHNN. The concept of the competitive Hopfield neural network resembles 

the special case of the k-out-of-N rule proposed by Carderia and Mammeri [4]. 

Restated, the competitive Hopfield neural network can be considered a 1-out-of-N 

confine rule. The proposed competitive HNN neural network converges during 
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network evolutions, and Section 4 provides detailed proof of this convergence. 

Since a processor can only execute one job at a time in subject scheduling problems, 

omitting the C1 and C4 energy terms from the HNN energy function (Eq. 1) yields a 

simplified energy function and satisfies the competitive constraint. Restated, the C1 

and C4 energy terms are handled explicitly. The resulting energy function for CHNN 

is highlighted as follows: 
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The resulting energy function makes it apparent that this must be an appropriate 

Lyapunov function. Comparing Eq.(2) with Eq.(5) makes it possible to determine 

synaptic interconnection strength, xyzijkW , and the bias input, ijkθ , as illustrated 

below: 

),(*3)),(1(*),(*2 ixCjyixCWxyzijk δδδ −−−=       (6) 

and  

)(**
2
53 2 GHGCPC ixyz +−=θ          (7) 

respectively, where  
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≠
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=
baif
baif

ba
.0
.1

),(δ  is the Kronecker delta function.  

In the CHNN, a competitive winner-take-all rule is imposed to update the neuron 

states. The neurons on the same column of a dedicated processor at a certain time 

compete with one another to decide which specific job should be the winning neuron. 

The neuron that receives the maximum net value is the winning neuron. Accordingly, 

the output of the winner neuron is set to 1, and the output states of all the other 
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neurons on the same column are set to 0. The winner-take-all update rule of the 

neuron for the ith column is illustrated as follows: 



 =

= =

otherwise
NetMaxNetif

V ijkNixjk
xjk 0

1
~1 ,        (8) 

where xjkNet  is the maximum total neuron input, and is equivalent to the dynamic 

threshold on a MaCulloch-Pitts neuron [13].  

 

4. Convergence of the CHNN 

This section provides a mathematical proof of convergence in the CHNN for the 

investigated problem.  The simplified CHNN energy function is shown in Eq. 5.The 

neuron (i, j, k) obtains the total input, i.e. net value, which is as follows (Eq. 9): 
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For clarity, this energy function is separated into two parts, mnE  and otherE . The 

energy function can then be represented as follows (Eq. 10):  
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The above four Vimn terms related to the neuron represent a process i being executed at 

a specific processor m and specific time n. Restated, Vimn is the neuron on the ith row 

(job) and nth column (time) for the specific processor m.  The first energy part, mnE , 
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is the summation of the energy term correlating with neuron state Vimn. The second 

part is the remainder, that is, otherE . Focusing on these terms at the (t)th iteration, the 

Vlmn is supposed to be the only active neuron (l,m,n) in the nth column on processor m 

before updating, that is,  
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activated with the largest total input value following updating, namely, 
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The active neuron, based on the winner-take-all update rule, as in Eq.(10), is the one 

with the maximum net value on each column in each update, that is 

imnNiqmn NetMaxNet
~1=

= . 

This equation implies that  

lmnqmn NetNet > ,            (11) 

where qmnNet  and lmnNet  are derived from Eq.(9) as follows: 
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Investigating Eq.(10), the total energy difference of the neural network, E∆ , between 

the (t+1)th and (t)th iteration is the same as the Emn change between the (t+1)th and (t)th 

iteration. E∆  is displayed as below: 
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After some algebraic manipulation and re-arrangement, the energy changes between 

the neuron update equals the net value change minus C3. That is 

3CNetNetE qmnlmn −−=∆ . 

Clearly, the above equation implies that the energy difference in the update is 

negative, that is 0<∆E . Restated, the energy function decreases with each iteration. 

Hence, the system is convergent during network evolution. Apparently, this energy 

function is an appropriate Lyapunov function. 

 

5. Simulation examples and results 

The simulations consider classes of scheduling problems with timing constraints. 

Additionally, significant portions of the energy curves during neural network 

evolution were also shown. Table 1 defines the constants of the energy function in 

Eq.(5). Two sets of timing constraints and various different initial neuron states were 

applied to the simulations. Tables 2 and 3 list timing constraints for two simulation 

examples, respectively. This simulation involves scheduling four processes (jobs) in 

two processors (machines). Figs. 3 and 4 illustrate the resulting schedules for distinct 

initiate states of example 1, respectively. Meanwhile, Fig. 2 displays the energy 

revolution for example 1. Additionally, a second scheduling problem with five 

processes and two processors was also simulated. Moreover, different initial 

conditions are simulated to better understand the response of the neural network to the 
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scheduling problem. Figs. 5 and 6 present the scheduling results for different initial 

states of the second example. 

  

6. Discussion and conclusions 

HNN uses the quadratic energy function, which results in the quadratic cost of the 

interconnection network and hence poor scaling property. The winner-take-all 

mechanism eliminates the constraint terms in the energy function, simplifying the 

network by reducing the interconnections among neurons [10]. Hence, CHNN can 

help overcome the scaling problem. This work illustrated an approach to mapping the 

problem constraint into the energy function of the competitive Hopfield neural 

network so as to resolve the timing constraints schedule problem. The energy function 

proposed herein works efficiently and can be applied to investigating certain 

scheduling problems.  

Simulation results demonstrate some significant consequences for CHNN and the 

features of CHNN when applied to the scheduling domain examined herein, as 

follows.  

(1) Randomly assigning the initial states can obtain feasible schedules for the 

investigated scheduling problem. 

(2) The rate of convergence is initial-state dependent; 

(3) The entailed synaptic weight matrix in Eq.(6), although symmetric (i.e.  

ijkxyzxyzijk WW = ), has a self-feedback interconnection, implying 0≠xyzijkW . Thereby, 

the network may oscillate during network evolution [14][16]. Consequently, a 

solution is not guaranteed, causing inevitable oscillation. In [17], Takefuji and Lee 

proposed a hystersis binary neuron model to effectively suppress the oscillatory 

behavior of neural dynamics for solving combinatorial optimization problems. 
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Moreover, weighting factor determination is an intrinsic shortcoming of HNN, and 

the simulations also encounter this drawback. However, the set of weight matrixes 

used in our simulation as listed in Table 1 is not unique. Different sets of weighting 

factors produce different neural network revolutions. 

The Hopfield neural network is known to frequently trap to a local minimum after 

the network is stabilized. The simulated annealing technique can effectively obtain a 

global minimum capable of escaping from the local minimum. However, this 

approach requires more iteration. An important feature of a scheduling algorithm is its 

efficiency or performance, i.e., how its execution time grows with problem size. The 

parameter most relevant to the time a neural network takes to find a solution is the 

number of iterations needed to converge to a solution. According to simulation results, 

this CHNN requires an average of 5 ~ 20 iterations to converge. Each iteration 

involves updating every column of the competitive Hopfield neural network. The 

number of neurons for the proposed neural network is ( * * )N M T , and the 

computational time for each iteration is equal to the total neurons ( * * )N M T  

multiplied by the computation time for each neuron (proportional to )*( MN ). 

Consequently, this algorithm results in a )**( 22 TMNO complexity. Restated, the 

execution time required for each iteration is proportional to )**( 22 TMNO . 

Furthermore, finding the solution for a very large-scale system (very large N and/or 

very large M) might require an unacceptably long time. Thus, for large scaled cases, 

the scaling problem will become a drawback of the proposed model. A future work 

should examine how to reduce the complexity in solving the scheduling problems. 

This work focuses on the problem of real-time scheduling without ready time 

consideration. For practical implementation, the problem can be extended to involve 

the temporal relationship of ready time or priority for each job. Restated, each job 
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would be ready to run at different time. Correspondingly, the constructed energy 

function in this work can be modified by adding additional energy terms to satisfy 

extra  requirement. A notion resembling the priority scheduling constraint may be 

involved. A future work should address this issue more thoroughly.  
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Fig.1. 3-D Hopfield neural network. 

 

 

Constants for CHNN 
C2 C3 C5 
2.0 1.0 3.0 

Table 1. Weighting factors 

 

 Time Required Time Limit   Time Required Time Limit 
Process 1 4 6  Process 1 2 3 
Process 2 3 4  Process 2 5 8 
Process 3 3 6  Process 3 3 4 
Process 4 2 3  Process 4 4 8 

    Process 5 2 5 
Table 2. Timing Constraints Matrix.       Table 3. Timing Constraints Matrix. 
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Fig. 2. Energy evolution of example 1. 
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Fig. 3. Simulation results of example 1. 
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Fig. 4. Simulation results of example 1.
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Fig. 5. Simulation results of example 2. 
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Fig. 6. Simulation results of example 2. 

 


