

Name of workshop:
Workshop on Database Systems and Software Engineering

Title of the paper:
Flexible Data Cube for Range-Sum Queries in Dynamic OLAP Data Cubes

Abstract:
The data cube is frequently adopted to implement On-Line Analytical Processing
(OLAP) and provides aggregate information to support the analysis of contents of
databases and data warehouses. Range-sum queries require accessing large data
cubes and adding the contents of massive cells immediately. Techniques have thus
been proposed to accelerate range-sum queries by applying pre-aggregated
specified cells of data cubes. However, this faster response leads to higher update
cost and possible need for extra memory space overhead to store these pre-
aggregated values. To offer the best trade-off choice, this study presents a novel
approach that considers both query cost and update cost to construct data cubes. In
addition, we shall also construct a space-optimal high-dimensional data cube and
propose a flexible and optimal framework, called the Flexible Data Cube (FDC)
approach. The FDC method can support a model to select or integrate these pre-
aggregation techniques for each dimension.

Name, current affiliation, postal address, e-mail address, telephone number,
and fax number for each author:
Chien-I Lee,

Addr: Institute of Information Education, National Tainan Teachers College

Tainan, Taiwan 700, R.O.C.

E-mail: leeci@ipx.ntntc.edu.tw

Tel: (886)6-2133111 ext. 777

Fax: (886)6-2144409

Yu-Chiang Li,

Addr: Department of Computer Science and Information Engineering, National

Chung Cheng University, Chiayi, Taiwan 621, R.O.C.

E-mail: lyc002@seed.net.tw

Tel: (886)5-2720411 ext. 23134

Name of the contact author: Chien-I Lee

Tel: (886)6-2133111 ext. 772

Fax: (886)6-2144409

Keywords: OLAP, Range-sum query, Data cube, Multidimensional database,
Prefix sum.

mailto:leeci@ipx.ntntc.edu.tw
mailto:lyc002@seed.net.tw

Flexible Data Cube for Range-Sum Queries in

Dynamic OLAP Data Cubes

Chien-I Lee1, Yu-Chiang Li2

1Institute of Computer Science and Information Education, National Taiwan

Teachers College, Tainan, Taiwan 700, R.O.C.

leeci@ipx.ntntc.edu.tw
2Department of Computer Science and Information Engineering, National

Chung Cheng University, Chiayi, Taiwan 621, R.O.C.

lyc002@seed.net.tw

Abstract. The data cube is frequently adopted to implement On-Line Analytical

Processing (OLAP) and provides aggregate information to support the analysis of

contents of databases and data warehouses. Range-sum queries require accessing

large data cubes and adding the contents of massive cells immediately. Techniques

have thus been proposed to accelerate range-sum queries by applying pre-aggregated

specified cells of data cubes. However, this faster response leads to higher update cost

and possible need for extra memory space overhead to store these pre-aggregated

values. To offer the best trade-off choice, this study presents a novel approach that

considers both query cost and update cost to construct data cubes. In addition, we

shall also construct a space-optimal high-dimensional data cube and propose a

flexible and optimal framework, called the Flexible Data Cube (FDC) approach. The

FDC method can support a model to select or integrate these pre-aggregation

techniques for each dimension.

Keywords: OLAP, Range-sum query, Data cube, Multidimensional database, Prefix sum.

1 Introduction

Recent developments in information science have resulted in surprisingly rapid

production of data. Efficiently managing massive data, quickly obtaining

information and making correct decisions are very important. For example, the

invention of data mining techniques has made the once impossible tasks of

discovering and gathering hidden but potentially useful information from very

large sets of data a part of our lives. The use of data mining procedures to obtain

 1

mailto:leeci@ipx.ntntc.edu.tw
mailto:lyc002@seed.net.tw

helpful information in data warehouses is currently an attention-drawing field of

research. For business entities and government organizations to stay competitive in

this era of information, it is of especially great importance to be able to quickly

obtain integrated information from a data warehouse via On-Line Analytical

Processing (OLAP) [4] to help the decision makers make quick and accurate

decisions.

A data cube [9], or multi-dimensional database (MDDB) [1, 14], is a popular

structure used in OLAP to support the interactive analysis of database and data

warehouse. Typically, the data cube is implemented as a multidimensional array. A

data cube is constructed from a subset of attributes in the database. The values of

some particular attributes are chosen as measure attributes, while others are the

dimensions (or functional attributes) of the data cube. The values of measure

attributes are called cells and are aggregated according to the dimensions.

For example, consider a data cube maintained by a car-sales company.

Assume that the figure of sales is of interest: the measure attribute is

SALE_VOLUME, while YEAR and AGE_OF_CUSTOMER are dimensions. Let

the domain of YEAR be 1996 to 2000, and let the domain of

AGE_OF_CUSTOMER be 21 to 100. The data cube thus has 400(=5×80) cells,

each of which contains a SALES_VOLUME value for the corresponding

combination of two dimensions. Fig. 1 depicts the data cube. Consider a typical

query, such as “find the total sales quantity for all five years for customers of age

between 21 and 25,” that is very important to decision-makers. A data cube should

efficiently aggregate the values of cells within the range of the query, called the

range-sum query. Clearly, 25(=5×5) cells must be accessed within the range, and

the cells must be added up immediately. Intuitively, a larger query region yields a

slower response.

Age

Year 21 22 23 24 25 100

1996 3 5 1 2 2 0
1997 7 3 2 6 8 0
1998 2 4 2 3 3 0
1999 3 2 1 5 3 0
2000 4 2 1 3 3 0

Fig. 1. The original data cube of car sales

Analysts always expect timely answers to their queries. Accordingly, Geffner

et al. proposed the Group-By approach [9] to shorten the response time. The

method pre-store aggregated values of the measure attributes in all the cells along

the dimensions. For the same example as shown in Fig. 1, Fig. 2 presents the

 2

extension of the data cube to 486(=6×81) cells by the Group-By approach. The

approach needs only to access five cells in the shadowed area of Fig. 2.

Nevertheless, the data cube with those pre-aggregated cells cannot efficiently

support any range-sum query. For example, the other range-sum query, “find the

total quantity of sales for the first three years for customers aged between 21 and

25,” requires accessing 15(=3×5) cells. Furthermore, this data cube with pre-

aggregated cells requires extra storage space and access to more cells when the

values of the cells get updated. For example, as shown in Fig. 2, when the cell

marked “*” is updated, the cell marked “+” also needs to be updated, and the

reason is that the value of the cell marked “+” is the aggregate value of the five

cells above it, including the updated cell marked “*”. In this sense, applying pre-

aggregation is always a trade-off between a faster response and a lower update

overhead. Consequently, to provide a useful model to reach an appropriate balance

is an important research topic in the field of OLAP.

Several approaches have been proposed, such as the PS method [11], the RPS

method [6], the HC method [2] and the DDC method [5, 7], among others. As

stated above, the pre-computed and stored aggregate values in some specified cells

in the data cube are used to accelerate the answers to queries; however, at the same

time, they slow down the update speed and require further space overhead. In this

paper, we shall propose a new approach that takes both the query cost and the

update cost into account to construct an optimal data cube. Moreover, we shall also

briefly introduce the Iterative Data Cubes (IDC) approach [16, 18], which provides

a modular framework for integrating the previously mentioned methods by

selecting a pre-aggregation method for each dimension to construct a spatially

optimal high-dimensional data cube, though the IDC method fails to consider the

construction of a suitable data cube in certain query (or update) ratio.

Age

Year 21 22 23 24 25 100 Total

1996 *3 5 1 2 2 0 254
1997 7 3 2 6 8 0 261
1998 2 4 2 3 3 0 305
1999 3 2 1 5 3 0 299
2000 4 2 1 3 3 0 310
Total +19 16 7 19 19 0 1429

Fig. 2. The aggregative data cube of car sales

This research also proposes a flexible framework, called the Flexible Data

Cubes (FDC) method, to support a model to select or integrate these pre-

 3

aggregation techniques for each dimension. Our work focuses mainly on methods

that do not require any extra space overhead for dense data cubes.

The rest of this paper is organized as follows. In Section 2, we shall introduce

some related works on pre-aggregation data cubes for range-sum queries. Then, in

Section 3, we shall analyze the query cost and the update cost so as to provide a

model for constructing a suitable data cube in certain query (or update) ratio. In

Section 4, we shall propose a flexible framework for integrating the existing pre-

aggregation methods in a space-optimal way. Section 5 will address the

performance of our new method under conditions of various dimensionalities or

different query (or update) ratios. Finally, the conclusion and direction for future

research will be in Section 6.

2 Related Works

Let D = {1, 2, ...,d} denote the set of dimensions. A d-dimensional data cube with

one measure attribute can be represented by a d-dimensional array A of size

n1×n2×n3×...×nd, where ni ≥ 2 (i ∈ D). Each entry in array A is called a cell, and

each cell includes the aggregate value of the measure attribute corresponding to a

given point in the d-dimensional space. For simplicity without loss of generality,

array A is assumed to have a starting index zero in each dimension, and each

dimension has the same size n. The total size of array A is nd. For the range-sum

query, a naive method is to access and add up all the cells within in the range of the

query. In the worst case, nd cells are accessed to answer the range-sum query.

Otherwise, only the cells to be updated are accessed.

Many techniques have been proposed for approximate [8, 10, 15, 21] and

progressive [12, 17, 20, 23] evaluation of range-sum queries. For dense data cubes

and exact queries, Ho et al. [11] first proposed the prefix sum (PS) method to

improve the effectiveness of the range-sum query. The approach uses an additional

data cube, called the prefix sum cube, which is denoted by array P, with the same

number of dimensions and size as array A. Each cell in P is indexed by (x1, x2, ...,

xd), and stores the sum of the super cube from cell (0, 0, ..., 0) to cell (x1, x2, ..., xd)

in array A. Restated, the sum of the entire array A can be obtained in the last cell of

P (i.e., P[x1, x2, ..., xd]). Namely, for all 0 ≤ xi < ni and i∈D, P[x1, x2, ..., xd] =

[x1, x2, ..., xd]. ∑∑ ∑
= = =

1

1

2

20 0 0
...

x

i

x

i

x

i

d

d

A

Fig. 3 illustrates the main idea of the PS method in two dimensions. The sum

that corresponds to the region of a range-sum query can be determined by adding

and subtracting the sums of other various regions until the region of interest is

 4

obtain. Thus, the PS method reduces the range-sum query to the problem of

reading 2d single individual cells in array P [11]. In Fig.3, “*” denotes the

corresponding cells in array P that must be accessed. The PS method provides

range-sum queries in constant time, regardless of the size of the data cube. In the

worst case, updating the value of cell [0, 0, ..., 0] in the original array A requires

that all the nd cells in array P be updated. Array A can even be deleted to maintain

the same total required storage space once P is computed.

Geffner et al. [6] developed an approach called the relative prefix sum (RPS)

method to reduce the update time with only a constant query cost. The RPS method

partitions the data cube into small chunks called the relative prefix array and uses

additional overlay boxes. However, the RPS method produces a space overhead.

Liang, Wang and Orlowska [13] proposed the double relative prefix sum

(Double RPS) method to further reduce the update time of the RPS method.

However, the Double RPS method depends on more storage space than the RPS

method and results in running time O(n1/3) for each range-sum query.

 * *

 = - - +
 * *

Area_E Area_A Area_B Area_C Area_D

Fig. 3. A geometrical explanation for the two-dimension case: Sum(Area_E) =

Sum(Area_A) - Sum(Area_B) - Sum(Area_C) + Sum(Area_D)

Chan and Ioannidis [2] specified the hierarchical cubes (HC) method based

on two orthogonal dimensions. A particular cube, called the hierarchical band

cube (HBC), exhibits a better trade-off between query and update than the RPS

method. The index mapping structure, however, is too complicated.

Geffner et al. [5, 7] presented the Dynamic Data Cube (DDC) method. The

DDC method balances the query cost and the update cost such that both time

complexities are O(logdn). However, the DDC method results in a space overhead.

The storage overhead occurring in both the RPS method and the DDC method

is removed by the space-efficient data cubes (SEDC) method [19]. The SEDC

method provides two strategies to construct the data cube, called the space-efficient

relative prefix sum (SRPS) technique and the space-efficient dynamic data cubes

(SDDC) technique. The SRPS technique requires the query cost and update cost

that are less than or equal to those of the RPS method; at the same time, the SDDC

 5

approach needs the query cost and update cost that are less than or equal to those of

the DDC method.

The above methods attempt to handle data cubes of any dimensionality by

dealing with all the dimensions simultaneously and treating the different

dimensions uniformly. These algorithms are typically complex, and it is difficult to

prove their correctness and analyze their performance. The iterative data cube

(IDC) method [16, 18] was proposed to trade off the query cost and the update

cost. A different method can be applied to each dimension. Different one-

dimensional techniques can be combined, resulting in a diverse variety of IDC

frameworks. Therefore, the IDC technique can be used easily for cube construction

and does not suffer from the weakness of producing space overhead for dense data

cubes.

In 2001, Chun et al. [3] proposed an additive R-tree-like index structure called

the -tree, designed to reduce significantly the cost for updating the data cube.

However, this method requires extra space overhead. Recently, Wang et al. [22]

have presented a condensed cube that reduces the size of data cubes. Even though

this approach does well with sparse data cubes, for dense date cubes, the

condensed cube technique is nothing new but a Group-By method.

∆

Performance analysis establishes that the PS method has the minimum query

cost and maximum update cost. In contrast, the original array A has the maximum

query cost and minimum update cost. Table 1 shows the analysis of other typical

methods, whose query costs and update costs are between these two extremes.

Note that the HRC [2] cube with a height of 2 is called the local prefix sum (LPS)

cube [18].

Table 1. Trade-off between query cost and update cost for one-dimensional

techniques

One-dimensional
techniques

Query cost
(worst case)

Update cost
(worst case) Note

Original array A n 1
LPS 





k
n + 1 k k: block size

SDDC 2  n2log  n2log
SRPS 4 2 n - 2 k = n

PS 2 n

3 Analysis of the average query cost and update cost for data cubes

Existing approaches have been used to evaluate the worst query or update cases.

However, they do not seem to have been used to find suitable data cubes with a

specific query (or update) ratio. In this section, we shall analyze the average query

 6

cost and update cost to find the suitable data cube with a particular query (or

update) ratio. The original array A, the LPS method and the PS method will all be

analyzed.

The query cost and update cost are evaluated in terms of the number of cells

that must be accessed, which is proportional to the number of accessed cells with

accessed disk pages. In this paper, we do not care about the CPU time. For

simplicity without loss of generality, reading and writing a cell are assumed to

have the same unit cost. According to the IDC method [16, 18], if the one-

dimensional average query (or update) cost is known, the d-dimensional average

query (or update) cost can be computed by multiplying the one-dimensional cost.

Analysis of one-dimension

Definition 1 (Average query cost) Let Q be a element of query set, Cq(n) be the

total query cost function and n be the size of dimension. We define the average

query cost function Caq(n) to be Cq(n) / , where = ∑
=

n

Q
Q

1
∑
=

n

Q
Q

1 2
)1(+nn .

Definition 2 (Average update cost) Let Cu(n) be the total update cost function and

n be the size of dimension. We define the average update cost function Cau(n) to be

Cu(n) / n.

Based on Definitions 1 and 2, the average query and update costs of the three

data cube construction methods are analyzed as follows:

1. Original array A:

(a) Average query cost: By Definition 1,

Caq(n) = / ∑
=

+−
n

Q
QnQ

1
)1(

2
)1(+nn =

3
2+n

(b) Average update cost: n / n = 1

2. LPS method (k = 2):

(a) Average query cost:

The divide-and-conquer approach is taken to analyze the average query

cost of the LPS method. The LPS cube is divided into two equal sub-

cubes. The total query cost becomes,

Cq(n) = 2Cq(2
n) + (

2
n)2 Caq2(n) (1)

where Caq2(n) denotes the average query cost of the query set (Cq2)

whose query ranges both sub-cubes. Every query in Cq2 can be divided

into two sub-queries. Fig. 4 shows a query of Cq2 , n = 8. The query

Sum(A[1] : A[5]) can be divided into two sub-queries Sum(A[3] : A[1])

and Sum(A[4] : A[5]).

 7

0 1 2 3 4 5 6 7

Fig. 4. n = 8. The query Sum(A[1] : A[5]) can be divided into two sub-queries

Sum(A[3] : A[1]) and Sum(A[4] : A[5])

Thus, the average query cost of Cq2 is the sum of the average cost of the

left sub-query and the right sub-query.

Caq2(n) = CaqRL(
2
n) + CaqLR(

2
n) (2)

CaqLR(n) = 2
Q

 / n = ∑
=

2/

1

n
Q

4
2+n

CaqRL(n) = (2
Q

 + ∑
=

2/

1

n
Q

2
n) / n =

4
4+n

CaqLR(n) + CaqRL(n) =
4

2+n +
4

4+n =
2

3+n (3)

 Introducing Eq.(3) into Eq.(2), we get Caq2(n)

Caq2(n) = CaqLR(2
n

) + CaqRL(2
n

) = 2
32/ +n (4)

 Introducing Eq.(4) into Eq.(1), we get the recursive function of total

query cost as follows:

Cq(n) = 2Cq(2
n) + (

2
n)2 (CaqLR(

2
n) + CaqRL(

2
n))

= ...

= 2hCq(h

n
2) + 2

3

2
n

(h22
1 + …+ 42

1 + 22
1) + 2

2

2
3n

(h2
1

 + … + 22
1

 + 12
1

)

Let n = 2h, and Cq(1) = 1,

Cq(n) =
12

3n +
4

3 2n +
6
n (5)

 Substituting Eq.(5), we get the average query cost:

Caq(n) = Cq(n) /
2

)1(+nn =
2
3 +

6
1−n -

1
1
+n

 (6)

(b) Average update cost:
2
3 n / n =

2
3

3. PS method:

(a) Average query cost: (2
Q

 - n) / ∑
=

n
Q

1 2
)1(+nn =

1
2
+n
n

(b) Average update cost: / n = ∑
=

n

Q
Q

1 2
1+n

 8

Table 2 shows the result of the analysis of the original array A, the LPS

method and the PS method for d-dimension. Assume that the query ratio is q, and

the update ratio is u = (1 - q). If the total number of queries and updates is N, then

the total cost C = N×q×Caq(n) + N×u×Cau(n). The most suitable cube varies for

different query (or update) ratios. For example, these data cubes in Fig. 5 are two-

dimensional, where N = 10,000 and the size of dimension is 32. A higher query

ratio corresponds to a better PS cube, and a lower query ratio indicates a superior

LPS cube and also a better original array A.

Table 2. Average query cost and update cost of the three data cubes

Data cube Average query cost Average update cost

Original array A (
3

2+n
)d 1

LPS (k = 2) (
2
3 +

6
1−n

 -
1

1
+n

) d (
2
3

)d

PS (
1

2
+n
n

)d (
2

1+n
)d

1.E+04

1.E+05

1.E+06

1.E+07

1.0 0.8 0.6 0.4 0.2 0.0
Query ratio (q)

To
ta

l c
os

t (
ac

ce
ss

 c
el

ls
)

lo
ga

rit
hm

ic
 s

ca
le

A

LPS

PS

Fig. 5. The total query and update costs of data cubes for d = 2, N = 10,000, n = 32

4 Flexible Data Cube (FDC)

According to the query (or update) ratio, exponential time is required to find the

most appropriate pre-aggregated data cube. For example, n! data cubes exist in an

one-dimension situation, and (nd)! data cubes exist in a d-dimension situation. The

Flexible Data Cube (FDC) method that we shall propose right here is a heuristic

method to select or integrate any two pre-aggregation techniques for each

dimension. The most suitable FDC data cube can be obtained in linear time. Here,

we shall use the original array A, LPS, and PS to construct the FDC data cube.

 9

Consider the one-dimensional FDC method:

1. Array A is the initial data cube.

2. Array A is divided into two parts (sub-cubes). The first sub-cube has the

smaller index value of k’, the other k’’ (= n - k’) cells are in second sub-

cube. Initially, k’ = 0.

3. Any two methods can be selected for the two sub-cubes, and the minimum

average query cost and update cost of the data cube FDCm can be

maintained.

4. k’= k’+1. Repeat Step 3 until k’ = n – 1.

5. The most suitable (optimal) FDC data cube (FDCopt) is the one with the

minimum FDCm generated in Step 3.

When k’ = 0, the array A, LPS, and PS are all special cases of FDC cubes.

Finding the FDCopt cube requires only linear time (≤ 3×3×n = 9n). In multiple

dimension cases, one-dimensional techniques are applied in each dimension [16,

18]. The analysis of the FDC average query cost and update cost is similar to the

LPS method mentioned in the previous section.

Analysis of one-dimension case

Based on Definition 1 and 2, the average query cost and update cost of one of

the FDC cubes are as follows:

1. Average query cost:

CaqFDC(n) = (total cost for querying the first sub-cube + total cost for

querying the second sub-cube + total cost for querying the two sub-

cubes simultaneously) / total number of queries. Therefore, CaqFDC (n) =

()'(
2

)1'(' kCkk
aqi

+ +)''(
2

)1''('' kCkk
aqj

+ + k))''()'((''' kCkCk aqLRjaqRLi +) /
2

)1(+nn ,

where i, j ∈ {A, LPS, PS}, and Caqi(k’) denotes the average query cost of

the first sub-cube which follows the i method. Similarly, Caqj(k’’)

denotes the average query cost of the second sub-cube which follows the

j method. The item (denotes the average query cost of

the query set whose query ranges covers both of the sub-cubes.

))''()'(kCkC aqLRjaqRLi +

2. Average update cost:

CauFDC(n) = (total cost for updating the first cube + total cost for

updating the second cube) / total number of updates. Therefore,

CauFDC(n) = Cui(k’) + Cuj(k’’) / n ,

 10

where i, j ∈ {A, LPS, PS}, and Cui(k’) denotes the total update cost of the

first sub-cube which applies the i method. Similarly, Cuj(k’’) denotes the

total update cost of the second sub-cube which applies the j method.

According to Table 2 and the above analysis, the average query cost and

update cost of any FDC can be obtained. For one of the one-dimensional FDC

cubes, n = 8 and k’ = 4. The FDC cube’s first part is an LPS sub-cube and second

part is a PS sub-cube. The average query cost and update cost are as follows.

1. CaqFDC(8) =
5
9

2
54
×

× +
5
8

2
54
×

× +)
8

153(4 +×4 /
2

98× =
9
28

2. CauFDC(8) = (
2
34× +

2
94×) / 8 = 3

FDCopt = min{q×CaqFDC + u×CauFDC} (7)

In Eq.(7), the cost of FDCopt is the minimum among the FDC cubes. To

analyze a high-dimensional data cube, according to the IDC method [16, 18], once

the one-dimensional average cost is figured out, the d-dimensional average cost

can be computed by multiplying the one-dimensional cost.

5 Performance Analysis

In this section, we shall compare the performance of our FDCopt with those of the

original array A, the LPS method, and the PS method. Without loss of generality,

assume every different query range has the same probability of being queried, and

every cell has the same probability of getting updated. For simplicity, consider a

data cube that has the same size in each dimension. In this case, the average cost

equals q×Caq(n) + u×Cau(n).

In Fig. 5, the best data cube differs from situation to situation (with different

query ratios). Fig. 6 shows how the methods compare on the average cost in the

two-dimension case at different query (or update) ratios. The X axis is query ratio

and the Y axis is average query cost. While n = 4,16 or 64, the average cost of the

FDCopt is less than or equal to the other techniques in different query ratios (from 1

to 0). When the query ratio is q = 0, the original array A is a special case of the

FDCopt. When q = 1, the PS cube is a special case of the FDCopt. In these three

cases, the larger the size of each dimension, the greater the difference between the

FDCopt and the other methods. Note that the Fig. 6(c) uses logarithmic scale for Y

axis.

Fig. 7 shows how the methods compare on the average cost in the four-

dimension case with different dimensionalities. The X axis is the size of dimension

and the Y axis is average query cost. Fig. 7 uses logarithmic scales for both X and

 11

Y axes. While q = 1, 0.9, 0.1 or 0, the FDCopt is less than or equal to the other

techniques for various dimension sizes. Fig. 7(a) shows that the PS cube is a

special case of the FDCopt. When q = 1, the performances of the FDCopt and the

original array A are in agreement. In Fig. 7(b), the FDCopt outperforms the other

methods, where q = 0.9. Fig. 7(c) also reveals that the FDCopt is the best. When n is

smaller than or equal to 16, the average costs of FDCopt and LPS are about the

same. Fig. 7(d) illustrates that the original array A is a special case of the FDCopt,

and thus both the average costs of FDCopt and array A are 1.

0

1

2

3

4

5

6

7

8

9

1 0.8 0.6 0.4 0.2 0

query ratio (q)

A
ve

ra
ge

 c
os

t
(a

cc
es

s
ce

ll
s)

A
LPS
PS
FDC

(a)

0

10

20

30

40

50

60

70

1 0.8 0.6 0.4 0.2 0
query ratio (q)

A
ve

ra
ge

 c
os

t
(a

cc
es

s
ce

ll
s)

A

LPS

PS

FDC

(b)

1

10

100

1000

10000

1 0.8 0.6 0.4 0.2 0

query ratio (q)

A
ve

ra
ge

 c
os

t
(a

cc
es

s
ce

ll
s)

A
LPS
PS
FDC

(c)

Fig. 6. Average query cost and update cost at different query ratios: (a) d = 2, n = 4

(b) d = 2, n = 16 (c) d = 2, n = 64

6 Conclusions

Range-sum queries on data cubes constitute an important tool for analysis.

Techniques have been proposed to accelerate range-sum queries by pre-aggregating

some specified cells in data cubes. In this paper, we have proposed a novel approach

that takes both the query cost and the update cost into consideration to construct the

spatially optimal data cube. In addition, we have also proposed a new method called

the FDC method. It is a flexible and optimal framework that supports a model to

select or integrate pre-aggregating techniques for each dimension. The FDC method

 12

outperforms other methods at any query (or update) ratio, and it requires only linear

time to determine the best FDC. Our analysis has revealed that the FDC method does

provide an effective and efficient framework for pre-aggregating data cubes. In the

future, the authors plan to develop new techniques that can efficiently support sparse

data sets.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

2 4 8 16 32 64 128 256

size (n)

A
ve

ra
ge

 c
os

t
(a

cc
es

s
ce

ll
s) A

LPS

PS

FDC

(a)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

2 4 8 16 32 64 128 256

size (n)

A
ve

ra
ge

 c
os

t
(a

cc
es

s
ce

ll
s) A

LPS

PS

FDC

(b)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

2 4 8 16 32 64 128 256

size (n)

A
ve

ra
ge

 c
os

t
(a

cc
es

s
ce

ll
s) A

LPS

PS

FDC

(c)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

2 4 8 16 32 64 128 256

size (n)

A
ve

ra
ge

 c
os

t
(a

cc
es

s
ce

ll
s) A

LPS

PS

FDC

(d)

Fig. 7. Average query cost and update cost for different dimension sizes: (a) d = 4, q

= 1 (b) d = 4, q = 0.9 (c) d = 4, q = 0.1 (d) d = 4, q = 0

References

 [1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling Multidimensional Databases.

In Proc. of the 13th Intl. Conf. on Data Engineering, pp. 232-243, Apr. 1997.

 [2] C.Y. Chan and Y.E. Ioannidis. Hierarchical Cubes for Range-Sum Queries. In

Proc. of the 25th Intl. Conf. on Very Large Data Bases, pp. 675-686, Sep. 1999.

 [3] S.-J. Chun, C.-W. Chung, J.-H. Lee, and S.-L. Lee. Dynamic Update Cube for

Range-Sum Queries. In Proc. of the 27th Intl. Conf. on Very Large Data Bases,

pp. 521-530, Sep. 2001.

 [4] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-Line Analytical

Processing) to User-Analysts: An IT Mandate. Technical Report, 1993.

 13

 [5] S. Geffer, D. Agrawal, and A. El Abbadi. The Dynamic Data Cube. In Proc. of

the Intl. Conf. on Extending Database Technology, pp. 237-253, Mar. 2000.

 [6] S. Geffer, D. Agrawal, A. El Abbadi, and T. Smith. Relative Prefix Sums: An

Efficient Approach for Querying Dynamic OLAP Data Cubes. In Proc. of the

15th Intl. Conf. on Data Engineering, pp. 328-335, Mar. 1999.

 [7] S. Geffer, M. Riedewald, D. Agrawal, and A. El Abbadi. Data Cube in Dynamic

Environments. IEEE Data Engineering Bulletin, Vol. 22, No. 4, pp. 31-40,

1999.

 [8] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. Optimal and

Approximate Computation of Summary Statistics for Range Aggregates. In

Proc. of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pp. 227-236, May 2001.

 [9] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.Venkatrao, F.

Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and

Knowledge Discovery, Vol. 1, No. 1, pp. 29-53, 1997.

[10] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating

Multi-Dimensional Aggregate Range Queries over Real Attributes. In Proc. of

the ACM SIGMOD Intl. Conf. on Management of Data, pp. 463-474, May 2000.

[11] C. T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range Queries in OLAP

Data Cubes. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data,

pp. 77-88, June 1997.

[12] I. Lazaridis and S. Mehrotra. Progressive approximate Aggregate Queries with a

Multi-Resolution Tree Structure. In Proc. of the ACM SIGMOD Intl. Conf. on

Management of Data, pp. 401-412, May 2001.

[13] W. Liang, H. Wang, and M. E. Orlowska. Range Queries in Dynamic OLAP

Data Cubes. Data & Knowledge Engineering, Vol. 34, No. 1, pp. 21-38, 2000.

[14] The OLAP Council. MD-API the OLAP Application Program Interface Version

2.0 Specification, 1998.

[15] V. Poosala and V. Ganti. Fast Approximate Answers to Aggregate Queries on a

Data Cube. In Proc. of the 11th Intl. Conf. on Scientific and Statistical Database

Management, pp. 24-33, Aug. 1999.

[16] M. Riedewald, D. Agrawal, and A. E. Abbadi. The Iterative Data Cube.

University of California, Santa Barbara, Computer Science Technical Report,

2000.

[17] M. Riedewald, D. Agrawal, and A. E. Abbadi. pCube: Update-Efficient Online

Aggregation with Progressive Feedback. In Proc. of the 12th Intl. Conf. on

Scientific and Statistical Database Management, pp. 95-108, July 2000.

 14

[18] M. Riedewald, D. Agrawal, and A. E. Abbadi. Flexible Data Cubes for Online

Aggregation. In Proc. of the Intl. Conf. on Database Theory, pp. 159-173, Jan.

2001.

[19] M. Riedewald, D. Agrawal, A. E. Abbadi, and R. Pajarola. Space-Efficient Data

Cubes for Dynamic Environments. In Proc. of the Intl. Conf. on Data

Warehousing and Knowledge Discovery, pp. 24-33, Sep. 2000.

[20] R. R. Schmidt and C. Shahabi. How to Evaluate Multiple Range-Sum Queries

Progressively. In Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, pp. 133-141, June 2002.

[21] J. Shanmugasundaram, U. Fayyad, and P. Bradley. Compressed Data Cubes for

OLAP Aggregate Query Approximation on Continuous Dimensions. In Proc. of

the 15th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,

pp. 223-232, Aug. 2000.

[22] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed Cube: An Effective

Approach to Reducing Data Cube Size. In Proc. of the 18th Intl. Conf. on Data

Engineering, pp155-165, Apr. 2002.

[23] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. Using Wavelet Decomposition to

Support Progressive and Approximate Range-Sum Queries over Data Cubes. In

Proc. of the 9th Intl. Conf. on Information and Knowledge Management, pp.

414-421, Nov. 2000.

 15

