(1) Workshop
Workshop on Multimedia Technologies

(2) Title
Image Synthesis by Numbers of Texture Patches

(3) Abstract

In this paper we investigate two kinds of prevalent applications including the texture
synthesis and the texture transfer. The texture synthesis technique takes an input sample and
generates synthetic textures of unlimited size, which perceived by human being to be very
similar to the given source. Initially, we adopt patch-based sampling algorithm to complete
the goal, which derives from the Markov Random Field model and performs faster than the
pixel-based counterpart. Secondly, rather than exhaustive search we explore the
accelerative technique of nearest neighbors search to improve the performance in the
synthesis process of best match. Thirdly, to find the minimum error path the dynamic
programming technique is used for tackling the problem of consistent transition between two
overlapped patches. In particular, our automatic system framework is amenable for
synthesizing the tiling and constrained textures. The usage of tiling texture is very
conventional in texture-mapped geometric models and webpage images, and the constrained
texture synthesis is applicable to a wide category of applications such as hole filling and
object removing.

In addition, we propose a non-iterative method for texture transfer algorithm, which
renders the target image by transferring source texture patches very similar to the texture
synthesis algorithm. The method runs more than an order of magnitude faster than
multi-pass counterpart, and takes into account two match principles of target fidelity and
neighbor coherence. Moreover, we succeed in extending the technique for the label

controlled texture transfer, and demonstrate its employment on landscape gardening.

(4) Authors

® Jiunn-Shyan Lee

jslee@cs.nchu.edu.tw

Institute of Computer Science, National Chung Hsing University
250 Kuo-Kuan Road, 402, Taichung, Taiwan, R.O.C.

Tel: 886-4-22840497 Fax: 886-4-22853869

® Jin-Ren Chern
jrchern@cs.nchu.edu.tw

Institute of Computer Science, National Chung Hsing University

250 Kuo-Kuan Road, 402, Taichung, Taiwan, R.O.C.
Tel: 886-4-22840497 Fax: 886-4-22853869

® Chung-Ming Wang

cmwang@cs.nchu.edu.tw

Institute of Computer Science, National Chung Hsing University
250 Kuo-Kuan Road, 402, Taichung, Taiwan, R.O.C.

Tel: 886-4-22840497 Fax: 886-4-22853869

(5) Correspondence
Jiunn-Shyan Lee (jslee@cs.nchu.edu.tw)

(6) Categories
Computer Graphics, Texture/Image Synthesis, Example-Based Rendering, Non-Photorealistic

Rendering

Image Synthesis by Numbers of Texture Patches

Jiunn-Shyan Lee', Jin-Ren Chern'?, Chung-Ming Wang'
'Institute of Computer Science, National Chung Hsing University
*Department of Information Management, Chien Kuo Institute of Technology

{jslee, jrchern, cmwang} @cs.nchu.edu.tw

Abstract

In this paper we investigate two kinds of prevalent applications including the texture
synthesis and the texture transfer. The texture synthesis technique takes an input sample and
generates synthetic textures of unlimited size, which perceived by human being to be very
similar to the given source. Initially, we adopt patch-based sampling algorithm to complete
the goal, which derives from the Markov Random Field model and performs faster than the
pixel-based counterpart. Secondly, rather than exhaustive search we explore the
accelerative technique of nearest neighbors search to improve the performance in the
synthesis process of best match. Thirdly, to find the minimum error path the dynamic
programming technique is used for tackling the problem of consistent transition between two
overlapped patches. In particular, our automatic system framework is amenable for
synthesizing the tiling and constrained textures. The usage of tiling texture is very
conventional in texture-mapped geometric models and webpage images, and the constrained
texture synthesis is applicable to a wide category of applications such as hole filling and
object removing.

In addition, we propose a non-iterative method for texture transfer algorithm, which
renders the target image by transferring source texture patches very similar to the texture
synthesis algorithm. The method runs more than an order of magnitude faster than
multi-pass counterpart, and takes into account two match principles of target fidelity and
neighbor coherence. Moreover, we succeed in extending the technique for the label

controlled texture transfer, and demonstrate its employment on landscape gardening.

Keywords: Texture Synthesis, Texture Transfer, Markov Random Field, Dynamic

Programming, Nearest Neighbors Search, Tiling Texture, Object Removal

1 Introduction

In image-based rendering techniques, applying textures extracted from reality onto
virtual worlds to synthesize novel views is compulsory. The captured textures lead to some
common penalties such as texture seam, texture repetition, texture extrapolation, object
occlusion, and highlight/shadow presence etc. As a consequence, to develop techniques
tackling the problem is an urgent research subject. Recently, texture synthesis [4, 5, 9, 14]
algorithm is one of prominent approach among them.

Texture mapping is ubiquitous technique for adding realism to computer-generated
applications such as interactive virtual environments and first-person shooting games. Due
to its diverse employments in computer graphics, it is being provided as standard rendering
interface both in graphics software and hardware. However, a scanned photograph may be
too small so that to be tiled on the entire object surface. Consequently, undesired artifacts
such as seams and repetition are obvious. A significant solution adopts the texture synthesis
approach to produce unlimited texture size or to re-synthesize a tiling texture.

The texture synthesis algorithm should be able to take a texture sample as input and
generate a synthetic texture of arbitrary size. While the resulting image is not exactly like
the original, it will be perceived by human to be very similar to the given texture. In literal
there are many algorithms pursuing this goal. One class of the algorithm is based on the
Markov Random Field model to avoid explicit probability function construction, but uses a
deterministic searching method on established samples from the source. In other words, the
resulting pixel is predictable from a small set of neighboring pixels. According to the pixel
size at each synthesis time these algorithms can be divided into two categories: pixel-based
sampling [2, 4, 6, 14] and patch-based sampling [5, 9]. Patch-based sampling algorithm has
many advantages over pixel-based counterpart. Firstly, it runs more than an order of
magnitude faster than pixel-based algorithm. Secondly, it produces high quality resultant
textures and works well for a wide category of textures ranging from stochastic to regular.
Thirdly, pixel-based approach is a special case of patch-based algorithm, while the patch size
is properly configured.

In this study our methods of texture synthesis and transfer are based on Efros and
Freeman’s image quilting algorithm [5], which employs overlapped texture patches to
synthesize large textures and finds minimum error cut in boundary transition. However, we
accomplish several improvements in this work, and generate plausible visual effect and
synthesize faster than their work. Firstly, we explore the accelerative technique of nearest
neighbors search, whereas they do not take speed into account. Secondly, we address the
problem of constrained texture synthesis, which is applicable to a variety of applications such
as object removal. A strikingly result is illustrated in Figure 1. Thirdly, we propose a

non-iterative procedure for texture transfer, which runs more than an order of magnitude

faster than the multi-pass method. We also experiment the algorithm to label controlled
texture transfer, as the demonstration in Figure 2.

The remainder of the paper is organized as follows. Section 2 outlines the related
background of pixel-based and patch-based methods for texture synthesis. In section 3 we
introduce the automatic framework of patch-based texture synthesis, especially for the
applications of constrained texture synthesis. Then, we describe non-iterative texture
transfer scheme and augments this technique on labeled image for landscape gardening in
section 4. Section 5 demonstrates some results and performance evaluations. Finally,

section 6 concludes our investigations and highlights some future avenues.

source image source mask synthesized result
| _largetimage | targetmask ________ J

Figure 1: Example of constrained texture synthesis for foreground object removing on Van
Gogh’s painting. With four provided ingredients (source, target, and masks), our system can
fill the desired holes with the neighboring texture patches without any user intervention in a

short time.

Figure 2: Example of labeled texture transfer for landscape gardening. With three
supplied ingredients (source, source label, and target label), our system automatically

transfers the source patches to the labeled target in a few seconds.

2 Related Work

Procedural texture synthesis is well-established technique in computer graphics
community comprising solid texture [10], reaction-diffusion [11], and clonal mosaic [13] etc.
Perlin [10] introduces the noise function that returns a scalar value at a given point to create
patterns such as wood and marble. The reaction-diffusion mechanism [11] governs
chemical concentrations to a stable state for spotted and striped pattern formation occurring
in coats of mammals. Another biological mechanism proposed by Walter [13] simulates cell
division and interactions to produce spotted and striped patterns usually seen on animals.
The methods of procedural texture synthesis have limitations in producing a small range of
textures and problems in designing a proper algorithm to generate the desired textures.

Another prominent direction devotes to analyze a texture and extract its parameters in
order to synthesize a new texture with similar characteristics [3, 7]. Recently, efficient and
deterministic algorithms derived from Markov Random Field (MRF) are proposed, which
avoid constructing explicit probability distribution. Efros and Leung’s [4] method grows a
new image outward from seed pixel that copied from the texture sample in a spiral order. To
synthesize one pixel at a time, the algorithm looks for the best few matches of surrounding
pixels in the square patch compared to the source patches. They randomly select one
matched center, and copy the center color for the synthesized pixel. Wei and Levoy [14]
develop a similar method to visit the pixel in a raster order and consider an L-shaped
neighborhood of current pixel. In particular, they perform the match process based on two
adjacent levels in multi-resolution pyramid to improve the quality of synthetic image. They
also use tree-structured vector quantization (TSVQ) to speed up the match searching process.
These techniques produce good results on the class of stochastic textures such as grass.
Besides, their generality frees the user from any intervention. However, they fail in the
class of repetitive pattern and structured textures such as bricks. A problem indicated by [4]
tends to wander into the wrong part of search space and grow the garbage.

To address the problem of structured texture, patch-based sampling techniques of texture
synthesis are emerged. In recent years, the technique has moved from the domain of pixel
sampling to that patch sampling. In the literal, two studies of patch-based texture synthesis
are developed concurrently, which are proposed by Efros [5] and Liang [9]. The core
difference between them is the adopted technique to tackle the problem of overlapped
boundary transition. Efros applies dynamic programming to find a minimum error
boundary cut, while Liang uses feathering technique to blend two overlapped patches.
Liang [9] reports that the feathering approach can produce more smooth color change than
minimum error cut, but it also produces a smeary effect in some case. In the paper we adopt
the patch-based method to accomplish the goal of constrained texture synthesis. In

particular, we extend the technique to render images by the given texture, denoted as texture

transfer.

3 The Framework of Texture Synthesis

The texture synthesis algorithm takes an input sample and synthesizes output textures to
any desired resolution, which perceived by human to be very similar to the input sample.
The algorithm is based on the Markov Random Field model to avoid explicit probability
function construction, but uses a deterministic searching method on input sample. Our
texture synthesis algorithm adopts patch-based sampling method, since it performs more than
an order of magnitude faster than the pixel-based algorithm [2, 4, 6, 14] and is applicable to a

wide category of stochastic and regular textures.

3.1 Patch-based Texture Synthesis

Our texture synthesis framework is based on Efros and Freeman’s image quilting
algorithm [5], which employs overlapped texture patches to synthesize the larger texture and
finds minimum error cut in boundary transition. However, in their work they don’t
concentrate on the time of best match search and on the case of constrained texture synthesis.
In the paper we propose an automatic framework to accomplish these synthesis goals. First,
we explore the accelerative technique of nearest neighbors search [1] to minify the search
time in the synthesis process. Second, we address the problem of constrained texture
synthesis, which succeeds in synthesizing tiling textures and filling the image holes without
user intervention.

First, the source texture can provide a set of candidate patches B . Our algorithm
proceeds in a raster scan order. For each of to be synthesized target patch B, (i), its
overlapped region (usually has been synthesized) is compared against all possible candidate’s
correspondent region from B . Then, a best match patch B (j) with minimum distance is
selected and pasted onto the patch B, (i)‘s location. We use L2 norm (sum of squared
difference) to measure the similarity between two compared patches. To measure a distance

between two overlapped boundary regions, the L2 norm is illustrated in equation 1:

D(S,T) =Y [(rs(k) =1y (k) + (g (k) ~ g, (k)" +(by (k) by (K))*] (1)

keO

The distance measure of two overlapped regions S and 7 is computed according to L2 norm
distance, which is a sum of squared difference of all pixels in the regions. Where rgb are
pixel colors at position & in red, green, and blue channel respectively. O represents the set of

pixels in the overlapped boundary region.

The key operation of algorithm is a deterministic search on patch’s boundary match.
We have to search the patch with the minimum distance among all source candidates. We
can formulate this search as nearest neighbors search problem in the high-dimensional space.
There are efficient algorithms available [1], since the approximate nearest neighbors is a
well-studied problem. Therefore, instead of brute force method we construct a kd-tree
comprised of candidate patches to serve as a basis for the remaining query operation. In
order to avoid building numerous kd-trees for each of boundary configurations, we choose
using four boundaries as compared feature vector. As the illustration in Figure 3, the patch
configuration with four non-overlapped boundaries is our adopted solution. In particular,
besides saving the time and space of kd-tree construction we find that four boundaries
configuration is of worth, while performing constrained texture synthesis or synthesizing
tiling textures.

Furthermore, to make a consistent transition between two overlapped regions where two
textures match best, we adopt dynamic programming technique to find the path with the
lowest error. Bl and B2 are two overlapped regions with the same pixel size mxn. The

error weight is defined as

2 2 2 2
e, =(Bl,,—B2,) =(rl,,—r2,)’ +(gl,, —g2,,)* +(bl,, —b2,,)*. We want to find a

minimum cost path from the source (row 0) to the destination (row m-1). E, represents

the found minimum cost form pixel location (i, j) to the destination (row m-1). Therefore,

using equation 2 to traverse from i=m-1 to i=0, we can find out the minimum path.

El.,j =e,; fori=m-1

2)

Ei,j =€ ; +min(E E Ei+1,j+1) fori=0..m-2

i+1,j-1>"i+l,j°

Finally, we summarize our texture synthesis framework in the following pseudo code.

Besides, Figure 4 and 5 shows the synthesis process and some synthesized results.

Input: source texture with mask image, target texture with mask image

Output: synthesized resultant image, which resembles the source

Procedure TextureSynthesis()
construct noise texture for the result from source pixels
copy the non-synthesized pixels of the target to the result
check suitable patches of the source and build a kd-tree based on overlapped
boundary
check to be synthesized patches of the result and insert into a linklist
for each node in the linklist of the result
acquire the overlapped boundary from the result based on the node's location
search the best match of the boundary feature from the source kd-tree
adopt dynamic programming for minimum cut path in the overlapped boundary
paste the selected source patch onto the result based on minimum cut path

boundary uh' | swxsh: source resolution
| twxth: target resolution
' : pw = Iw+ew+rw

~ center
\ g = dh+ch+
ch plock \ ph = dh+ch+uh
/ /| #candidate = (sw-pw+1)(sh-ph+1)
i for non-tiling source

_; ew L #candidate = sw*sh
LT .,dlh“;” for tiling source
I : W stask = [tw/cw |[*[th/ch]
dotted line: boundary_size = pw*ph-cw*ch
cut path of feature_vector_size = boundary_size*3
minimum cost for RGB color

Figure 3: The configuration of adopted patch in our system framework. It is feasible to
accomplish a variety of synthesis applications such as tiling texture and constrained
synthesis.

otiption of that nedlologically' andk & single cans (DOncticnsl description
sonceptual and mf such . rnmrlbe the weaive of a f+k a single concepty
alth of simple-celr arribe the wealth af s
Aogleally'® and in Whereas no genecially if sale-coll reaeurophysiologicall,
aticmal awseriptiol) of that realth af slfple-eelscibon nr wpecially if such s fow
& o single and miol 4 and inl 4 Ips us o underst.
be |he wealth of simple-cauch a framewark Ingle mmp" way. Whereas
the Vg% and b unde pea—is pesiians (DOG), differ

tptual anearophysiologicaicription of that ner that neurstive of a Gaussiun,
of simrpecially if such o and matand and w0 on-
eally’ balps s to undersalth of dmple-cellnple-cell reple-cell receptive
aningle ctmoeptiar, ‘Bphnloh;u:dly ¥ and inthul description of traind the t
i the wealth of slarially if soch a framework hasingle conceptual s no gener
fophysislogicallylps us to understand the fr the wealth of simpeence of o
sallv if such o frame way. Whereas, nafferencos » singlgiconcepn.al and ns
Homal detive of a ams (DOG of & Gaussian, higribe the wealth of simple-cel
o # singlescrica, ative of a Gon, and so on—cn Prerophysislogically'™ and ir
o the vplo-coll rectica, ancell receptive feld pecially if soch a framework b
1 fanetives ol positiom—is pefibe the wealth of Mmple-otr a functivn of poft
-{-u! nl-wr p!nnerrh.: ne '!turml‘nhlo‘lnlhl and icticnal description ¢

S A G UL
i "ll’nﬂ‘vwnnllhﬂ naure

w4k n single conceptual and matham.
meribe the wealth: of slmpla-coll rece;
wd nearophysiologically'-? and infarred

eapecially if sch @ framework has th Hmesy e
ik Y blicnind - ¢ the wealth m‘ulwh-n" post of posi ption of that u»mlﬂ'«fmpr.nn hmmtion—io_positnignd the licription uf that nes
it hélps o to understand the functis rophysiolegically'-) and intion of thaription mgle conceptual nd a1 sophysislogically'* and imtion of thaription o+ » single conceptual and mat
buaper way. Wherems no gumeric mos july if wch hawtusl he wealth of shmpl ially if wch & framework haptusl snonceptuslibe the wealth of simple-call
ossians (DOG), difference of offet €y 4y 1o undwrstand the fi of simplalth of simear ophysiologically'Sand inf o wh to understand the f of simplalth of simesrophysiologically' and inf
fivative of & Gaussian, higher derivati Jwwy. Wetional descriptiseek » single conceptecially if such a frams (DOG) Wiy, Wetiooal dwacriptioesk » single conceptrcially if such a frams (DOG)
" funition, and %0 on—cun be expects |, (DOGH & single conceptribe the wealth of tlps us to undarsteve of a Ga s (DOGHK 8 single conceptribe the wealth of 1lps us to understrve of & i
imple-cell receptive field, we noneth # of & Gribe the wealth af way. W and it of & Gribe the wealth of risarophysl Wogicallr! way. Whereancrica, and
s .
source texture synthesizing halfway synthesized result

7

Figure 4: We can synthesize a tiling texture to any desired resolution resembling input
source. We use the accelerative techniques of patch-based sampling and kd-tree search, and
dynamic programming technique to find minimum cut path between two overlapped regions

to stitch the overlapped boundaries in a consistent transition.

synthesized results

TTEETET
S ER R
r‘ﬂ |‘ﬂl [IL j n :.| ME ﬁ_._,

SEwiEwEga

A

“ﬂPﬂﬂ5UMEL
el

IIII::HH]

source textures
t:: [e i
b !

Edﬂﬁ&

=il

Figure 5: More texture synthesis examples. Our patch-based algorithm works well for a

wide category of textures ranging from stochastic to regular.

3.2 Tiling Texture Synthesis

To handle the image boundaries is inevitable, especially for tiling texture synthesis.
The usage of tiling texture is ubiquitous in webpage image and image-based rendering
environment. We treat the image toroidally so that the synthetic image is tiled seamlessly.
In other words, we treat P(x, y)=P(x mod W,y mod H) while x is out of legal range of
image width (0..W-1) or y is out of image height (0..H-1). Figure 6 demonstrates the result
of tiling texture synthesis thanks to the mechanism of toroid and our four boundaries

configuration. Notice that the source tiling leads to the joint edges quite striking.

<< Source »> << Result »»

Figure 6: We tile the source texture horizontally and vertically leading to the joint edges
quite noticeable. To reduce the undesired artifact of seam, our system adopts patches with

four boundaries and treats the result image as toroid.

3.3 Constrained Texture Synthesis

Texture synthesis can also be used as a tool for solving several practical problems. For
instance, photographs or scanned images may reveal some scratches, and our algorithms can
clean and recover the undesired flaws. With four supplied ingredients (source, source mask,
target, and target mask) as input, our system can fill the indicated holes with neighboring
texture patches very quickly without any user intervention. The white pixels in the source
mask indicate feasible texture patches. Moreover, the black pixels in the target mask define
the patches to be synthesized. Figure 7 demonstrates the example of constrained texture
synthesis. With the specified masks our framework is simple enough to automatically fill

the holes by neighboring patches, which are match-selected.

source image source mask
target image target mask synthesized result

Figure 7: Example of constrained texture synthesis for hole filling, object removing, and
image inpainting etc. In each step system synthesizes one patch in scan-line order, and thus

it demands the patches with four matched boundaries to synthesize the tasks in the last

column and the last row.

4 The Framework of Texture Transfer

We propose a non-iterative procedure for patch-based texture transfer so that it performs
more than an order of magnitude faster than the counterpart of Efros’s multi-pass method [5].
Furthermore, the algorithm is applicable to a wide category of applications such as
texture-by-numbers [8], in which a realistic scene is composed of a variety of textures. In
this study, we exploit the technique for label controlled texture transfer and demonstrate its
employment on landscape gardening. In addition, we further develop an interactive

interface for the user painting and controlling the synthesis process.

4.1 Non-iterative Texture Transfer

With the maturation of the patch-based sampling technique, we can easily extend it to
the application of texture transfer, which renders the target image with numbers of texture
patches from the source sample. In principle, we intend that the bright patches of target
image correspond to the bright patches of source texture, and the dark patches of target image
have a low match error with respect to the dark patches of the source. In a texture transfer

algorithm two aspects of feature match are need to be concerned, which are “Fidelity Match”

and “Coherence Match”. The “Fidelity Match” (M ,) attempts to efficiently select a source

patch, which matches the synthesizing patch of the target according to user specified features.
Meanwhile, the “Coherence Match” (M) attempts to have a consistent transition and to

preserve coherence with the neighboring synthesized patches. Efros [5] accomplishes the

goal by issuing a composite query of both concerns, which is a weighted sum of these two

matches, as following equation M =oM_ +(1-o)M,. Basically, the parameter o

determines the tradeoff between the texture synthesis and the fidelity to target. As a
consequence, one synthesis pass is difficultly choosing a good parameter o« to produce
appealing result. Therefore, an iterative method is emerged from him [5] to compensate the
drawback.

10

In this paper, our patch-based texture transfer algorithm adopts a non-iterative framework,
which performs more than an order of magnitude faster than Efros’s multi-pass procedure.
Besides, our method takes into consideration both match principles of target fidelity and
neighbor coherence. The crucial scheme we adopted is that we firstly determine the &
feasible candidates of “Fidelity Match” from source patches, and then search a best candidate
of “Coherence Match” among them for the target’s resultant patch. Obviously, the
parameter & determines the tradeoff between the target fidelity and the texture synthesis. A
small £ leads to more resemblance to the target image, and a large k& more neighbors
coherence can be. However, a large & also causes a longer time for patch selection. Figure
8 illustrates a resulting example of proposed texture transfer algorithm, and more results are
demonstrated in Figure 9. Finally, we summarize this non-iterative algorithm for texture

transfer in the following pseudo code:

Input: a source texture and a to be transferred target image

Output: resultant image of texture transferred

Procedure TextureTransfer()
copy all pixels of the target onto the result
check suitable patches of the source and build a kd-tree based on center feature
vector
check to be synthesized patches of the result and insert into a linklist
for each node in the linklist of the result
acquire the center feature vector from the result based on the node's location
determine k best matches of the center feature vector from the source kd-tree
select a best match of the overlapped boundary among & center matches

adopt dynamic programming for minimum cut path in the overlapped boundary

paste the selected source patch onto the result based on minimum cut path

11

source texture target image

s

Figure 8: To synthesize a transferred patch, we determine k nearest matches of the center
feature vector from the kd-tree composed of source patches. Following, we select the best

match of the overlapped boundary among these & center matched candidates.

Figure 9: More texture transferred examples. The synthesized result on right shows
inconsistent boundary transition because the input source belongs to an image not a texture
(doesn’t satisfy the stationary property [14]).

4.2 Texture Transfer by Label
Motivated by Ashikhmin [2] and Hertzmann [8]’s working system, we develop a
practical system for labeled texture transfer as well. It is straightforward to extend the

texture transfer algorithm to apply a labeled example to another labeled image. In practice,

12

instead of using RGB or grayscale color as feature vector, we may utilize user specified label
as feature vector to dominate the process of best match search. In principle, our algorithm
allows any kind of information or composite channels of information being used to control
the synthesis process. Moreover, we not only develop an automatic framework for labeled
texture transfer based on the supply of source and target label maps, but also provide a user
interface for the interested user with intuitive control over the synthesis process. Benefiting
from one patch sampling a time rather than numerous pixel samplings, the system can

provide immediate update by using an accelerative search to the established source kd-tree.

,ﬁ, inting Program Using Labeled Texture Transfer _ O] %
<< Source >» << Source Label »>
. - *'

<< Result »»

Figure 10: We develop an interactive system for the interested user painting the target label
map to control the synthesis. Benefiting from one patch sampling at a time, we can provide

the immediate update by issuing a query to the established kd-tree.

5 Results

As the illustration in Figure 3, we adopt four boundaries as to be compared feature
vector for statistical constrain. The size of the patch center (cw xch) is one of parameters
specified by the user and it depends on the properties of the given textures. It must be big
enough to capture the relevant structure in the texture. In practice, we usually assume that
the size of the texture element is known to serve as patch’s center size. A smaller center
size implies a weaker statistic constrain, but a bigger one costs the more computation time
and memory space for constructing the kd-tree. It also lengthens the later search operations.
In particular, while the patch center and boundary sizes are properly configured, we simulate
the work of pixel-based approach straightforward.

Besides, the size of patch boundaries (Iw-dh-rw-uh) should be sufficient large to avoid

13

mismatching boundary feature. A wider boundary zone implies a strong statistical constrain,
but it also costs more time and space for the kd-tree construction. In order to improve the
system performance we adopt a simple method, which reduces the candidate number of
source by successive candidates. In other words, we only add one patch into the kd-tree for
every R successive patches. The selection of R is a tradeoff between the synthesis speed and
the synthesis fidelity. A large R significant decreases the synthesis time, but it also
decreases the synthesis perfection. In our experiment, a small R (<5) produces no visible
difference from R=1 (accepts all source patches). Besides, the statistical amounts for
candidate number, task number, feature vector size, and total kd-tree size are listed in

equation 3:

#candidate = (sw— pw+1)(sh— ph+1) for non —tiling source

#candidate = sw*sh for tiling source

#task =[tw/ew |*[th/ch (3)
feature vector _size =boundary size*3 for RGB color

kd —tree_size = feature vector _size* (# candidate)

Table 1 summarizes the adopted parameters for the demonstrated examples, and Table 2
shows their respective synthesis time. All time are measured on a Pentium 4 - 1.5GHz PC
with 128M RAM. Our experiments show that our algorithms are fast enough to enable

real-time texture synthesis and generate plausible visual effects.

Table 1: Quantitative descriptions of test examples.

Texture Texture Object Texture Texture
synthesis synthesis removal transfer transfer
(Figure 4) (Figure 6) (Figure 7) (Figure 8) (Figure 10)
(/=30) (/=30)
Source 128x128 128%128 200150 128%128 128%128
texture
(swxsh)
Target image 256x256 128x128 200x150 512x512 512x256
(tw xth)
Patch center 32x32 32x32 16x16 16x16 20x%20
(cwXch)
Patch 8-8-8-8 8-8-8-8 6-6-6-6 6-6-6-6 6-6-6-6
boundary
(Iw-dh-rw-uh)
Candidate 6,561 6,561 5,320 10,201 9,409
patches (#C)
Reduced 1,641 1,641 1,330 2,551 2,353
candidates
(#C/R) (R=4)
Task patches 64 16 65 1024 338
(#N)

14

Table 2: Timing statistics of test examples.

Texture Texture Object Texture Texture
synthesis synthesis removal transfer transfer
(Figure 4) |(Figure 6) |(Figure 7) |(Figure 8) |(Figure 10)
(k=30) (k=30)
Training time 2.77 sec 4.03 sec 0.55 sec 0.63 sec 0.95 sec
for kd-tree (Tt)
Synthesizing 3.56 sec 0.88 sec 1.16 sec 15.90 sec 9.63 sec
time
(Ts=(T1+T2)N)
Searching a 0.052 sec 0.052sec| 0.015sec| 0.013sec| 0.026 sec
best match
patch (T1)
Finding 0.003 sec 0.003 sec 0.002 sec 0.002 sec 0.002 sec
minimum cost
cut (T2)
Total executing 6.33 sec 4.91 sec 1.71 sec 16.53 sec 10.58 sec
time (T=Tt+Ts)

6 Conclusions and Future Work

In the paper we present two categories of applications comprising the texture synthesis
and the texture transfer. ~We adopt patch-based sampling method for these two
accomplishments, since it runs more than an order of magnitude faster than the pixel-based
counterpart and is applicable to a wide range of stochastic and regular textures.

The texture synthesis algorithm takes an input sample and generates synthetic texture of
arbitrary size. While the resulting image is not exactly like the original, but perceived by
human being to be very similar to the given sample. The dynamic programming technique
is used for tackling the problem of consistent transition between two overlapped patches.
Besides, an accelerative technique of nearest neighbors search is explored instead of
exhaustive search to minify the searching time of best match. Furthermore, we propose the
automatic framework to accomplish two particular categories of synthetic textures, the tiling
texture and the constrained synthesis. The usage of tiling texture is very conventional in
texture-mapped geometric models and webpage images, and the constrained synthesis is
applicable to a wide range of applications such as hole filling and object removing.

As to the application of texture transfer, we propose a non-iterative algorithm
transferring matched patches from source texture to the target image. We efficiently and
significantly diminish the synthesis time compared to the multi-pass counterpart. Our
method also takes into account two match principles of target fidelity and neighbor coherence.
Furthermore, we succeed in extending the technique for label controlled texture transfer, and
demonstrate its employment on landscape gardening. An interactive and controllable
interface is provided for the interested user real-time painting, benefiting from one patch

sampling a time using an accelerative kd-tree search.

15

While the current results are encouraging, we present some directions that could be
further exploited. In our current implementation, we adopt simple L2 norm to compute
distance metric. To develop a better measure function of distance is an important open area
of research. In principle, the image can be of arbitrary dimensions and contents. The
feature selection for the matching constrain is also another large open problem. Besides
RGB color, grayscale, and label, some other information such as depth, orientation, and
another color space, may be used to represent the feature vector in order to improve the
synthesis result. Moreover, our patch-based algorithm can be applied to motion synthesis
such as ocean waves and clouds [14]. Another interesting direction allows direct synthesis
of textures covering three-dimensional objects by proposed patch-based algorithm rather than

pixel-based counterparts [12, 15, 16].

Reference

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An Optimal
Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions,” Journal
of the ACM, 45(6):891-923, 1998.

[2] M. Ashikhmin, “Synthesizing Natural Textures,” Proceedings of ACM Symposium on
Interactive 3D Graphics, pp. 217-226, 2001.

[3] J. S. De Bonet, “Multiresolution Sampling Procedure for Analysis and Synthesis of
Texture Images,” Proceedings of ACM SIGGRAPH ‘97, pp. 361-368, 1997.

[4] A. Efros and T. Leung, “Texture Synthesis by Non-Parametric Sampling,” Proceedings
of International Conference on Computer Vision, pp. 1033-1038, 1999.

[5] A. Efros and W. T. Freeman, “Image Quilting for Texture Synthesis and Transfer,”
Proceedings of ACM SIGGRAPH 2001, pp. 341-346, 2001.

[6] P. Harrison, “A Non-hierarchical Procedure for Re-synthesis of Complex Textures,”
Proceedings of Central Europe on Computer Graphics, Visualization and Computer
Vision, pp. 190-197, 2001.

[7] D. J. Heeger and J. R. Bergen, “Pyramid-based Texture Analysis/Synthesis,”
Proceedings of ACM SIGGRAPH 95, pp. 229-238, 1995.

[8] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, “Image
Analogies,” Proceedings of ACM SIGGRAPH 2001, pp. 327-340, 2001.

[9] L. Liang, C. Liu, Y. Q. Xu, B. Guo, and H. Y. Shum, “Real-Time Texture Synthesis by
Patch-Based Sampling,” ACM Transactions on Graphics, 20(3):127-150, 2001.

[10] K. Perlin, “An Image Synthesizer,” Proceedings of ACM SIGGRAPH ‘85, pp. 287-296,
1985.

[11] G. Turk, “Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion,”

16

Proceedings of ACM SIGGRAPH ‘91, pp. 289-298, 1991.

[12] G. Turk, “Texture Synthesis on Surfaces,” Proceedings of ACM SIGGRAPH 2001, pp.
347-354,2001.

[13] M. Walter, A. Fournier, and M. Reimers, “Clonal Mosaic Model for the Synthesis of
Mammalian Coat Patterns,” Proceedings of Graphics Interface, pp. 82-91, 1998.

[14] L. Y. Wei and M. Levoy, “Fast Texture Synthesis Using Tree-structured Vector
Quantization,” Proceedings of ACM SIGGRAPH 2000, pp. 479-488, 2000.

[I5]L. Y. Wei and M. Levoy, “Texture Synthesis over Arbitrary Manifold Surfaces,”
Proceedings of ACM SIGGRAPH 2001, pp. 355-360, 2001.

[16] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin, “Texture and Shape Synthesis on
Surfaces,” Proceedings of 12th Eurographics Workshop on Rendering, pp. 301-312,
2001.

17

