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Abstract
To overcome the effect of modeling error between nonlinear multiple time-delay system and
Takagi-Sugeno (T-S) fuzzy model with multiple time delays, a robustness design of fuzzy control
is proposed in this paper. In terms of Lyapunov's direct method, a stability criterion is hence
derived to guarantee the stability of nonlinear multiple time-delay interconnected systems. Based
on this criterion and the decentralized control scheme, a set of model-based fuzzy controllers is
then synthesized via the technique of parallel distributed compensation (PDC) to stabilize the
nonlinear multiple time-delay interconnected systems and the H® control performance is
achieved at the same time. Finally, a numerical example with simulations is given to demonstrate
the concepts discussed throughout the paper.
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|. Introduction

During the recent years, a number of research activities have been concerned with the topic of
stability analysis and stabilization of interconnected systems, also called large-scale systems or
composite systems [1]. In practices, due o the information transmission between subsystems, tine
delays naturally exist in interconnected systems. The existence of time delays is frequently a
source of instability [2]. Hence, the problem of stability analysis of time-delay systems has been
one of the main concerns of researchers wishing to inspect the properties of such systems.

Since the control design of nonlinear systemsis a difficult process and the plants are aways
nonlinear in practical control systems, many nonlinear control methods have been proposed to

overcome the difficulty in controller design for real systems. However, the control schemes for
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nonlinear systems are so complicated that they are not suitable for practical application [1].
Therefore, we need to develop a smplified model that can be used to design a controller. In the
past few years, fuzzy-rule-based modeling has become an active research field because of its
unique merits in solving complex nonlinear system identification and control problems. In attempt
to obtain more flexibility and more effective capability of handling and processing uncertaintiesin
complicated and ill-defined systems, Zadeh [2] proposed a linguistic approach as the model of
human thinking, which introduced the fuzziness into systems theory [3]. Unlike conventional
modeling, fuzzy rule-based modeling is essentially a multimodel approach in which individual
rules (where each rule acts like a "local model™) are combined to describe the global behavior of
the system [4].

During the last decade, fuzzy control has been successfully applied to the control design of
nonlinear systems (see [5-10] and the references therein). In these papers, a so-called Takagi-
Sugeno (T-S) fuzzy model was employed to approximate a nonlinear plant, and then a fuzzy
controller was designed to stabilize the T-S fuzzy model. All of them, however, neglect the
modeling error between nonlinear system and fuzzy model. Existence of the modeling error may
be a potential source of instability for control designs that have been based on the assumption that
the fuzzy model exactly matches the plant [9]. Over the past two years, Chen et a. [1] and
Kiriakidis [9] have proposed novel approaches to overcome the influence of modeling error in the
field of model-based fuzzy control for nonlinear systems.

However, a literature search indicates that the effect of modeling error for nonlinear system
has not been discussed yet. Therefore, A robustness design of fuzzy control via model-based
approach for nonlinear interconnected systems is proposed in this study to overcome the effect of
modeling error. Accordingly, the T-S fuzzy model is employed to approximate each nonlinear
system. In this type of fuzzy model, each fuzzy implication is expressed by alinear system model,
which allows us to use linear feedback control asin the case of feedback stabilization. The control

design is carried out based on the fuzzy model via the parallel distributed compensation (PDC)



scheme. The idea is that a linear feedback control is designed for each loca linear model. The
resulting overall fuzzy controller, which is nonlinear in genera, is a fuzzy blending of each

individual linear controller [5, §].

This paper is organized as follows. The system description is presented and the T-S fuzzy
model is briefly reviewed in section I1. In section 111, a set of decentralized fuzzy controllers is
described. In section 1V, arobustness design of fuzzy control and a stability criterion are proposed
to overcome the effect of modeling error. The design algorithm is proposed in section V. In
section VI, a numerical example with simulations is given to illustrate the results. Finaly, the

conclusions are drawn in section VII.

Il. System Description

Consider a nonlinear multiple time-delay interconnected system N composed of J

subsystems N;, j=12,---,J. Thejth subsystem N, isdescribed asfollows:

X; (1) = f,(x;(©),u; () + ng,- (x;(t-1)) + icnj X (1) + 9, (1) (2.1)

nzj

where f, f, and g,; are the nonlinear vector-valued function, x;(t) is the state vector, 7,
(time delay) k=12,---,N; are positive real numbers, u;(t) isthe input vector, ¢, (t) denotes
the external force and C,; is the interconnection matrix between the nth subsystem and jth
subsystems.

Definition 2.1 [4]: The solution of a dynamic system are said to be uniformly ultimately bounded

(UUB) if there exist positive constants  and K, and for every o [1(0,k) there is a positive

constant T =T(d), such that

Ix(to)| <o O x(t)|< B.Ot=t, +T

In a little more than a decade ago, a fuzzy dynamical model had been developed primarily



from the pioneering work of Takagi and Sugeno [14] to represent loca linear input/output
relations of nonlinear systems. This dynamical model is described by fuzzy IF-THEN rules and it
will be employed here to handle the control design problem of the nonlinear interconnected

system N. The ith rule of this fuzzy model for the nonlinear interconnected subsystem N; is

proposed as the following form:

Rulei: IF x;(t) is M;;; and---and x;(t) is M

THEN X,(0) = A;X, (t)+ZAk,x,(t ~T,) + B,U, (0 + 9, (1) (22)

where X7 (t) =[x, (t), X, ()., X,; ()] O R™® denotes the state vector,

ujT (t) =[uy; (t), uy; (1), uy, (O] O R™™ denotes the control input,

@ (t) =[@; (t), @, (), -, @, (t)] O R™ denotes the unknown disturbances with a known
upper bound @, 1))@ ®). i=1,2,- 1 and r; is the number of IF-THEN rules; A;, A,;,

and B;; are constant matrices with appropriate dimensions; M, (p=12,---,9) are the fuzzy

ipj

sets, and x;; (t) ~ X, (t) arethe premise variables. The final state of this fuzzy dynamic model is

inferred as follows:
ZVVIJ (t)[AJX] (t) + ZAkJX] (t Tk]) + BIJ ](t) +q0j (t)]
Zvvi,-(t)

:Zhl(t)(A (t)+;AkJXJ(t —Ty) T Bu (D)) + ¢, (1) (2.3)

X, (t) =

with

(t) - rl |\/||pj (XpJ (t)) h|] (t) - ¢ (24)

ZW (t)

inwhich M, (x,; (t)) isthe grade of membership of x;(t) in M, . Inthis paper, it is assumed

ipj



I

that w;(t)=0, i=1,2,-,r; j=12,---,J and zwij(t)>0forallt. Therefore, h;(t)20 and
1=1

rZihj(t)=1foraIIt.

In the next section, the concept of PDC scheme is utilized to design fuzzy controllers.

[11. Parallel Distributed Compensation

According to the decentralized control scheme, a set of model-based fuzzy controllers is
synthesized via the technique of parallel distributed compensation (PDC) to stabilize the nonlinear
multiple time-delay interconnected system N. The concept of PDC scheme is that each control
rule is distributively designed for the corresponding rule of a T-S fuzzy model. The fuzzy
controller shares the same fuzzy sets with the fuzzy model in the premise parts[9]. Since each rule
of the fuzzy model is described by a linear state equation, a linear control theory can be used to
design the consequent parts of a fuzzy controller. The resulting overall fuzzy controller, nonlinear
in genera, is achieved by fuzzy blending of each individual linear controller.

Hence, the jth model-based fuzzy controller can be described as follows:

Rulei: IF x;(t) is M;;; and---and x;(t) is M,

i

THEN u,(t) ==K, x,(t), (3.1)

wherei =1, 2,---, r,. Thefina output of thisfuzzy controller is

ijVVij(t)Kinj (9 I
u; (t)=-+ N = _Z hj t) Kijxj (). (3.2

Zvvij(t)

V. H® Control Design via Fuzzy Control
The purpose of this paper is two-fold: to stabilize the closed-loop nonlinear interconnected

systems and to attenuate the influence of the external disturbance @, (t) on the state variable



X; (t) [24, 25]. The influence of ¢, (t) will worsen the performance of fuzzy control system. So,
to guarantee the control performance by eliminating the influence of ¢, (t) is a significant

problem in the control system. In this work, not only the stability of fuzzy control system is

advised but alsothe H® control performance is satisfied as follows:

J

> [X 0Q,x, (Dt < nle_[;fq?f(t)qoj(t)dt (4.1)

=

where t; denotes the terminal time of the control, n; is a prescribed value which denotes the
effect of @, (t) on x;(t), and Q; is a positive definite weighting matrix. The physica meaning
of (4.1) isthat the effect of ¢, (t) on x;(t) must be attenuated below adesired level n; from the

viewpoint of energy.

If theinitial condition is aso considered, the inequality (4.1) can be modified as

]Zl J,Otf X-J!- (t)Qij (t)dt < JZl X-lj— (O) ij i (O) +n 12 ]Zl J—Otf (p}- (t)(p] (t)dt (42)

where P, are some positive definite matrices.

V. Robustness Design of Fuzzy Control
In this section, the stability of the nonlinear multiple time-delay interconnected system N
is examined under the influence of modeling error. In subsection 4.1, the issue of modeling error

is addressed and the guarantee of stability of N isgiven in subsection 4.2.

4.1 Modeling Error

Substituting Eg. (3.2) into Eq. (2.1) yields the jth (j=1,2,---,J) closed-loop nonlinear

subsystem N asfollows:

X (t) = Z Zh (Oh, OLA, - B, K,)x, (1) + ZAM X, (t=,)]



0+ TGO+ 00T, ) + 5 Cyx,0)

n#j

_ Z Z h; Oh; OI(A; - B, K,;)x; (t) + ZlAijj (t-T,)]

= ZJ rZhij Mh; OIA; - B;K))x; (1) + N;iAkj X, (t =T y)]

00+ 0+ 38 AT,)* 3 C,x, (0 51

n#j

where T, (x, (©)=f, (X (t),u; (t)) with uj(t):—rzj h, (K, X, (1)
e () =[T. (x, (1) - Z Z h, (O, (A, - B, K, )X, O], (5.2)
& (t-1) =0 (X (t-14))— ZJ Z h; (O O A X, (-Ty)

=g, (%, (t-Ty)) - Z hy () A X; (t-T,) (5.3)

Nj

and A®,(t) =€ (t)+Zéj (t-t,;) denotes the modeling error between the jth closed-loop

=1
nonlinear subsystem (4.1) and the close-loop fuzzy model ((2.3)+(3.2)).

Suppose that there exists abounding matrix AH;; such that

ESHOIE (5.4)

Zj ZJ h; Oh; (OAH,; X, (t)

for thetrajectory x;(t), and the bounding matrix AH,; can be described as follows[15, 16]:

AH,. =0

ilj

iljﬁ' (5.5)

J

where || Oy

||sl,for i,1=22-r,

J

j=12,---,J . From Egs. (4.34.4), we have

APT() 49,0 (3 3 1, O8, O8H, KOS S 1, O, O8H, x (0}



:{Z Z h; (th; ()3, H X, (t)}T{Z Zhj Oh, (03, H %, O}

Z Zjhj (O, O], Z Zh (Oh, )3,

S[ﬁjxj (t)]T[ﬁjxj (t)]. (5.6)

< [qjxj (t)]T[I_Tij ()]

That isto say the modeling error - A®, (t) is bounded by the specified structured bounding matrix
H,.

Remark 4.1: The procedures for determining 9,,; and H ; aredescribed by the following simple

example. Assuming that the possible bounds for all elementsin AH,;; are

[Ah Ah' [
AH, = hizllj Ahﬁ%% (5.7)
where —¢°> <Ah <¢gp® forsome €7°, r,s=12and i, | =1,2,---,r;; j=12,---,J.

il] j?

One possible description for the bounding matrix AH;; is

@ll O DI}:H 812E|
u . . _
AH =0 522513]21 gjzzD=5njHj (5.8)
B 0% & 8

where —1<4dj; <1 for r =1,2. It isnoticed that J,; can be chosen by other forms as long as

| 8,1, = 1. Then, we check the validity of Eq. (4.3) in the simulation. If it is not satisfied, we can

expand the bounds for al elements in AH;; and repeat the design procedures until Eq. (4.3)

holds.

4.2 Stability in the Presence of Modeling Error

In the following, a stability criterion is proposed to guarantee the stability of the closed-loop
nonlinear interconnected system N which consists of J closed-loop subsystems described in Eq,
(4.1). Prior to examination of stability of N , auseful concept is given below.

Lemma 5.1 [27, 28]: For any A, BO R" and for any symmetric positive definite matrix GO R™"



or R,wehave
-2A'TB<A'GA+B'G™B.
Theorem 4.1: The closed-loop nonlinear interconnected system N is stable, if there exist

symmetric positive definite matrices P, and positive constants 3;, A, y and the feedback gains

K;;'sshown in Eq. (3.2) are chosen to satisfy

() /’\\inj =An(@Q,)< 0 for i=12-,r; n, j =12, (4.10a)
Aing =M Q)< O for i<lsr; n, j =1 2,0 (4.10b)
or
|:]A’\lnj ~12nj /Tlr-nj O
s I N
(1) /\j = Z 0 12nj 2 2rni D<O for j=1,2,00JJ (4.11)
n=. D~' _ R EI
a\lrinj 2r;nj Arjnj E
or
J
(rn ZQmj +Qj <0 (4.11)
where
1 N; N;
Qinj :{3[('61] _Bleij)TPj +Pj(Aj _Bleij)+;ij +;PjAkj Rl:lelTijj]
L ATH 1p2 4y 1p2)e (Ah + AP C CT P 4.12
j[ﬁ, i j+Bj j+yj j] (T) j ~nj ~nj j} ( )
1 N; N;
Quny :{j[(HiTIiPJ +P1Hi|j)+ZR<j +;PJAKJ' AP
1 — _ _ J - _
+3[BJ‘HJ'THJ +1811P12 +yj1Pj2]+A (T [ +A 1PanjC:j Pj} 4.13)
—B. K.+ - —-B .K..
with H,, = (A 7By K+ (A 7BiKy) (4.14)

2

Moreover, Ay (Q,) and A,(Q,,) denote the maximum eigenvalues of Q, and Q,,;,

respectively.



V. Algorithm

Based on the above anaysis, the complete design procedure can be summarized in the
following algorithm.
Problem: For a given nonlinear interconnected system N, how do we synthesize a set of
decentralized fuzzy controllersto stabilize N ?

The problem described above can be solved in the following steps.

Step 1. Select the fuzzy plant rules and membership functions for each nonlinear subsystem N,

to establish its fuzzy model.
Step 2: Synthesize a set of decentralized model-based fuzzy controllers via the concept of PDC

scheme.

Step 3: Based on Remark 4.1, the bounding matrix AH;,; (=9, H_j), for i, =2,2,---,r,

ilj J

j =1, 2, 01J , are chosen to satisfy Eq. (4.3).

Step 4. If there exist some positive definite matrices P, and the feedback gains K;;'s to satisfy

the stability conditions of Theorem 4.1 via LMI (linear matrix inequality) optimization
algorithms, the nonlinear interconnected system N can be stabilized by the synthesized

fuzzy controllers in Step 2. Otherwise, repeat Steps 2-3 to find appropriate fuzzy

controllers and the bounding matrix AH;,; (=9, H_j) such that the stability criterion

il
is satisfied.
V1. Conclusions
In order to ensure the stability of nonlinear interconnected TMD systems, a stability criterion
is derived from Lyapunov's direct method. According to this criterion and the decentralized
control scheme, a set of model-based fuzzy controllers is synthesized to stabilize the nonlinear

interconnected TMD system and overcome the influence of modeling error. Similarly, the

common P matrix of the criterion is obtained by using linear matrix inequality (LM1) optimization

10



algorithms to solve the robust fuzzy control problem. So, the proposed fuzzy control can be
applied to any robust control design of nonlinear interconnected systems. Finally, a numerical

example with ssimulationsis provided to demonstrate the results.
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