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Abstract

To overcome the effect of modeling error between nonlinear multiple time-delay system and

Takagi-Sugeno (T-S) fuzzy model with multiple time delays, a robustness design of fuzzy control

is proposed in this paper. In terms of Lyapunov's direct method, a stability criterion is hence

derived to guarantee the stability of nonlinear multiple time-delay interconnected systems. Based

on this criterion and the decentralized control scheme, a set of model-based fuzzy controllers is

then synthesized via the technique of parallel distributed compensation (PDC) to stabilize the

nonlinear multiple time-delay interconnected systems and the ∞H  control performance is

achieved at the same time. Finally, a numerical example with simulations is given to demonstrate

the concepts discussed throughout the paper.
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I. Introduction

During the recent years, a number of research activities have been concerned with the topic of

stability analysis and stabilization of interconnected systems, also called large-scale systems or

composite systems [1]. In practices, due o the information transmission between subsystems, tine

delays naturally exist in interconnected systems. The existence of time delays is frequently a

source of instability [2]. Hence, the problem of stability analysis of time-delay systems has been

one of the main concerns of researchers wishing to inspect the properties of such systems.

Since the control design of nonlinear systems is a difficult process and the plants are always

nonlinear in practical control systems, many nonlinear control methods have been proposed to

overcome the difficulty in controller design for real systems. However, the control schemes for
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nonlinear systems are so complicated that they are not suitable for practical application [1].

Therefore, we need to develop a simplified model that can be used to design a controller. In the

past few years, fuzzy-rule-based modeling has become an active research field because of its

unique merits in solving complex nonlinear system identification and control problems. In attempt

to obtain more flexibility and more effective capability of handling and processing uncertainties in

complicated and ill-defined systems, Zadeh [2] proposed a linguistic approach as the model of

human thinking, which introduced the fuzziness into systems theory [3]. Unlike conventional

modeling, fuzzy rule-based modeling is essentially a multimodel approach in which individual

rules (where each rule acts like a "local model") are combined to describe the global behavior of

the system [4].

During the last decade, fuzzy control has been successfully applied to the control design of

nonlinear systems (see [5-10] and the references therein). In these papers, a so-called Takagi-

Sugeno (T-S) fuzzy model was employed to approximate a nonlinear plant, and then a fuzzy

controller was designed to stabilize the T-S fuzzy model. All of them, however, neglect the

modeling error between nonlinear system and fuzzy model. Existence of the modeling error may

be a potential source of instability for control designs that have been based on the assumption that

the fuzzy model exactly matches the plant [9]. Over the past two years, Chen et al. [1] and

Kiriakidis [9] have proposed novel approaches to overcome the influence of modeling error in the

field of model-based fuzzy control for nonlinear systems.

However, a literature search indicates that the effect of modeling error for nonlinear system

has not been discussed yet. Therefore, A robustness design of fuzzy control via model-based

approach for nonlinear interconnected systems is proposed in this study to overcome the effect of

modeling error. Accordingly, the T-S fuzzy model is employed to approximate each nonlinear

system. In this type of fuzzy model, each fuzzy implication is expressed by a linear system model,

which allows us to use linear feedback control as in the case of feedback stabilization. The control

design is carried out based on the fuzzy model via the parallel distributed compensation (PDC)
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scheme. The idea is that a linear feedback control is designed for each local linear model. The

resulting overall fuzzy controller, which is nonlinear in general, is a fuzzy blending of each

individual linear controller [5, 8].

This paper is organized as follows. The system description is presented and the T-S fuzzy

model is briefly reviewed in section II. In section III, a set of decentralized fuzzy controllers is

described. In section IV, a robustness design of fuzzy control and a stability criterion are proposed

to overcome the effect of modeling error. The design algorithm is proposed in section V. In

section VI, a numerical example with simulations is given to illustrate the results. Finally, the

conclusions are drawn in section VII.

II. System Description

Consider a nonlinear multiple time-delay interconnected system N composed of J

subsystems jN , . ,  2, ,1 Jj L=  The jth subsystem jN  is described as follows:
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where jf  jf  and jkg  are the nonlinear vector-valued function, )(tx j  is the state vector, jkτ

(time delay) jNk  , ,2 ,1 L=  are positive real numbers, )(tu j  is the input vector, )(tjφ  denotes

the external force and jnC   is the interconnection matrix between the nth subsystem and jth

subsystems.

Definition 2.1 [4]: The solution of a dynamic system are said to be uniformly ultimately bounded

(UUB) if there exist positive constants β  and κ , and for every ),0( κδ ∈  there is a positive

constant )(δTT = , such that

Ttttxtx +≥∀≤⇒< 00 ,)()( βδ

In a little more than a decade ago, a fuzzy dynamical model had been developed primarily
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from the pioneering work of Takagi and Sugeno [14] to represent local linear input/output

relations of nonlinear systems. This dynamical model is described by fuzzy IF-THEN rules and it

will be employed here to handle the control design problem of the nonlinear interconnected

system N. The ith rule of this fuzzy model for the nonlinear interconnected subsystem jN  is

proposed as the following form:

Rule i:  IF jgig jjij Mt xMtx
   

  is  )( and  and    is  )( 11 L

THEN )()()( )()(
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where  g
g jjj
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j Rtxtxtxtx ×∈= 1

21 )]( ,),( ),([)( L  denotes the state vector,

       m
jmjj

T
j Rtutututu ×∈= 1

21 )]( ,),( ),([)( L  denotes the control input,

       z
jzjj

T
j Rtttt ×∈= 1

21 )]( ,),( ),([)( φφφφ L  denotes the unknown disturbances with a known

upper bound )()( tt jupj φφ ≥ . jri   ,, 2 , 1   L=  and jr  is the number of IF-THEN rules; jiA , jkiA ,

and jiB  are constant matrices with appropriate dimensions; jpiM  ( g,,p , 2 1 L= ) are the fuzzy

sets, and )(~)(1 txtx jgj  are the premise variables. The final state of this fuzzy dynamic model is

inferred as follows:
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in which ))(( txM jpjpi  is the grade of membership of )(tx jp  in jpiM . In this paper, it is assumed
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that ,0)( ≥tw ji  jri   ,, 2 , 1   L= ; Jj  , ,2 ,1 L=  and  0)(
1

>∑
=

jr

i
ji tw for all t. Therefore, 0)( ≥th ji  and

1)( 
1

=∑
=

jr

i
ji th  for all t.

    In the next section, the concept of PDC scheme is utilized to design fuzzy controllers.

III. Parallel Distributed Compensation

According to the decentralized control scheme, a set of model-based fuzzy controllers is

synthesized via the technique of parallel distributed compensation (PDC) to stabilize the nonlinear

multiple time-delay interconnected system N. The concept of PDC scheme is that each control

rule is distributively designed for the corresponding rule of a T-S fuzzy model. The fuzzy

controller shares the same fuzzy sets with the fuzzy model in the premise parts [9]. Since each rule

of the fuzzy model is described by a linear state equation, a linear control theory can be used to

design the consequent parts of a fuzzy controller. The resulting overall fuzzy controller, nonlinear

in general, is achieved by fuzzy blending of each individual linear controller.

Hence, the jth model-based fuzzy controller can be described as follows:

Rule i:  IF jgig jjij MtxMtx
 

  is  )( and  and    is  )( 11 L

THEN )()( txKtu jjij −= ,                                             (3.1)

where i =1, 2,…, jr . The final output of this fuzzy controller is
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IV. ∞H  Control Design via Fuzzy Control

The purpose of this paper is two-fold: to stabilize the closed-loop nonlinear interconnected

systems and to attenuate the influence of the external disturbance )(tjφ  on the state variable
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)(tx j  [24, 25]. The influence of )(tjφ  will worsen the performance of fuzzy control system. So,

to guarantee the control performance by eliminating the influence of )(tjφ  is a significant

problem in the control system. In this work, not only the stability of fuzzy control system is

advised but also the ∞H  control performance is satisfied as follows:
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where ft  denotes the terminal time of the control, jη  is a prescribed value which denotes the

effect of )(tjφ  on )(tx j , and jQ  is a positive definite weighting matrix. The physical meaning

of (4.1) is that the effect of )(tjφ  on )(tx j  must be attenuated below a desired level jη  from the

viewpoint of energy.

If the initial condition is also considered, the inequality (4.1) can be modified as
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where jP  are some positive definite matrices.

IV. Robustness Design of Fuzzy Control

In this section, the stability of the nonlinear multiple time-delay interconnected system N

is examined under the influence of modeling error. In subsection 4.1, the issue of modeling error

is addressed and the guarantee of stability of N  is given in subsection 4.2.

4.1 Modeling Error

Substituting Eq. (3.2) into Eq. (2.1) yields the jth ( Jj  , ,2 ,1 L= ) closed-loop nonlinear

subsystem jN  as follows:
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and )()()(
1

∑
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−+≡Φ∆
jN

k
jkjjj tetet τ  denotes the modeling error between the jth closed-loop

nonlinear subsystem (4.1) and the close-loop fuzzy model ((2.3)+(3.2)).

Suppose that there exists a bounding matrix jli   
H∆  such that
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for the trajectory )(tx j , and the bounding matrix jli   
H∆  can be described as follows [15, 16]:

 jjlijli HH
    

δ=∆                                    (5.5)

where 1 ≤jli   
δ , for jrli  , ,2 ,1  , L= , Jj  , ,2 ,1 L= . From Eqs. (4.3–4.4), we have
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That is to say the modeling error )( tjΦ∆  is bounded by the specified structured bounding matrix

 jH .

Remark 4.1: The procedures for determining l jiδ  and  jH  are described by the following simple

example. Assuming that the possible bounds for all elements in jli   
H∆  are
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where 11 ≤≤− rr
jli   

δ  for 2 ,1=r . It is noticed that jli   
δ  can be chosen by other forms as long as

1 ≤i l jδ . Then, we check the validity of Eq. (4.3) in the simulation. If it is not satisfied, we can

expand the bounds for all elements in jli   
H∆  and repeat the design procedures until Eq. (4.3)

holds.

4.2 Stability in the Presence of Modeling Error

In the following, a stability criterion is proposed to guarantee the stability of the closed-loop

nonlinear interconnected system N  which consists of J closed-loop subsystems described in Eq.

(4.1). Prior to examination of stability of N , a useful concept is given below.

Lemma 5.1 [27, 28]: For any A, B nRRRR  ∈  and for any symmetric positive definite matrix G nn×∈ RRRR  
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or RRRR , we have

                       BGBGAABA TTT 1 2 −+≤− .

Theorem 4.1: The closed-loop nonlinear interconnected system N  is stable, if there exist

symmetric positive definite matrices jP  and positive constants ,jβ , λ γ  and the feedback gains

i jK 's shown in Eq. (3.2) are chosen to satisfy
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Moreover, )(
 jniM Qλ  and )(

   jnliM Qλ  denote the maximum eigenvalues of jniQ
 

 and jnliQ
   ,

respectively.
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VVVV. Algorithm

Based on the above analysis, the complete design procedure can be summarized in the

following algorithm.

Problem: For a given nonlinear interconnected system N, how do we synthesize a set of

decentralized fuzzy controllers to stabilize N ?

The problem described above can be solved in the following steps.

Step 1: Select the fuzzy plant rules and membership functions for each nonlinear subsystem jN

to establish its fuzzy model.

Step 2: Synthesize a set of decentralized model-based fuzzy controllers via the concept of PDC

scheme.

Step 3: Based on Remark 4.1, the bounding matrix )( ji l ji l j HH δ=∆ , for jrli  , ,2 ,1 , L= ,

Jj  , 2, ,1 ⋅⋅⋅= , are chosen to satisfy Eq. (4.3).

Step 4: If there exist some positive definite matrices jP  and the feedback gains jiK 's to satisfy

the stability conditions of Theorem 4.1 via LMI (linear matrix inequality) optimization

algorithms, the nonlinear interconnected system N can be stabilized by the synthesized

fuzzy controllers in Step 2. Otherwise, repeat Steps 2-3 to find appropriate fuzzy

controllers and the bounding matrix i l jH∆ )(  ji l j Hδ=  such that the stability criterion

is satisfied.

VI. Conclusions

In order to ensure the stability of nonlinear interconnected TMD systems, a stability criterion

is derived from Lyapunov's direct method. According to this criterion and the decentralized

control scheme, a set of model-based fuzzy controllers is synthesized to stabilize the nonlinear

interconnected TMD system and overcome the influence of modeling error. Similarly, the

common P matrix of the criterion is obtained by using linear matrix inequality (LMI) optimization
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algorithms to solve the robust fuzzy control problem. So, the proposed fuzzy control can be

applied to any robust control design of nonlinear interconnected systems. Finally, a numerical

example with simulations is provided to demonstrate the results.
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