
Discovering Numerical-Type Dependencies for
Improving the Accuracy of Decision Trees

*Yue-Shi Lee, **Show-Jane Yen and *Chen-Wei Fang

*Department of Information Management, Ming Chuan University

5 The-Ming Rd., Gwei Shan District, Taoyuan County 333, Taiwan, R.O.C.

Phone: +886-2-27312296, Fax: +886-3-3294449, E-mail. leeys@mcu.edu.tw

** Dept. of Computer Science and Information Management, Fu Jen Catholic University

510 Chung Cheng Rd., Hsinchuan, Taipei 242, Taiwan, R.O.C.

Phone: +886-3-3173312, Fax: +886-2-29023550, E-mail. sjyen@csie.fju.edu.tw

Abstract

As we know, the decision tree learning algorithms, e.g., C5, are good at dataset classification.
But those algorithms usually work with only one attribute at a time. The dependencies
among attributes are not considered in those algorithms. Unfortunately, in the real world,
most databases contain attributes, which are dependent. Thus, it is very important to
construct a model to discovery the dependencies among attributes, and to improve the
accuracy and effectiveness of the decision tree learning algorithms. Neural network model
is a good choice for us to concern with the problems of attribute dependencies. Generally,
these dependencies are classified into two types: categorical-type dependency and
numerical-type dependency. This paper focuses on the numerical-type dependency and
proposes a Neural Decision Tree (NDT) model, to deal with such kind of dependencies.
The NDT model combines the neural network technologies and the traditional decision-tree
learning capabilities, to handle the complicated and real cases. According to the
experiments on five datasets from the UCI database repository, the NDT model can
significantly improve the accuracy and effectiveness of C5.

Keywords: Attribute Dependency, Data Mining, Decision Tree, Neural Network

Contact Author: Yue-Shi Lee

***This paper is submitted to the Workshop on Artificial Intelligence.

-2-

Discovering Numerical-Type Dependencies for
Improving the Accuracy of Decision Trees

*Yue-Shi Lee, **Show-Jane Yen and *Chen-Wei Fang

*Department of Information Management, Ming Chuan University, Taoyuan, Taiwan, R.O.C.
**Dept. of Computer Science and Information Engineering, Fu Jen Catholic University, Taipei, Taiwan, R.O.C.

E-mail. leeys@mcu.edu.tw, sjyen@csie.fju.edu.tw

Abstract

As we know, the decision tree learning algorithms, e.g., C5, are good at dataset classification.

But those algorithms usually work with only one attribute at a time. The dependencies

among attributes are not considered in those algorithms. Unfortunately, in the real world,

most databases contain attributes, which are dependent. Thus, it is very important to

construct a model to discovery the dependencies among attributes, and to improve the

accuracy and effectiveness of the decision tree learning algorithms. Neural network model

is a good choice for us to concern with the problems of attribute dependencies. Generally,

these dependencies are classified into two types: categorical-type dependency and

numerical-type dependency. This paper focuses on the numerical-type dependency and

proposes a Neural Decision Tree (NDT) model, to deal with such kind of dependencies.

The NDT model combines the neural network technologies and the traditional decision-tree

learning capabilities, to handle the complicated and real cases. According to the

experiments on five datasets from the UCI database repository, the NDT model can

significantly improve the accuracy and effectiveness of C5.

Keywords: Attribute Dependency, Data Mining, Decision Tree, Neural Network

-3-

1. Introduction

One important application of data mining is the ability to perform classification in a huge

amount of data [1]. The decision-tree learning algorithm is one of the most important

results [2]. The decision-tree learning algorithms derive decision trees and rules based on

the training dataset. These trees and rules can be used to predict the classes of new

instances. Basically, they build decision trees by recursively partitioning the dataset

according to the selected attributes. In this framework, they usually deal with only one

attribute at a time. The dependencies among attributes are not considered in those

algorithms. Unfortunately, in the real world, most datasets contain attributes, which are

dependent. Thus, it is very important to construct a model to discover the dependencies

among attributes, and to improve the accuracy of the decision tree algorithms.

Neural network model is a good choice for us to concern with the problems of attribute

dependencies. Generally, these dependencies are classified into two types: categorical-type

dependency and numerical-type dependency. This paper focuses on the numerical-type

dependency and proposes a Neural Decision Tree (NDT) model, to deal with such kind of

dependencies. The NDT model combines the neural network technologies and the

traditional decision-tree learning capabilities to handle the complicated and real cases.

This paper is organized as follows. Section 2 introduces numerical-type dependency.

Section 3 then describes our NDT model. Before concluding, the experimental results are

demonstrated in Section 4.

2. Numerical-Type Dependency

To describe what is the numerical-type dependency, Table 1 shows a numerical-type dataset,

which is a stoke price dataset with 18 instances.

-4-

Table 1 Stock Price Dataset with 18 Instances

Price on Day T Forecast Price on Day T+1 Target: Decision

17.60 17.72 Buy

17.70 17.60 Sell

17.70 17.71 Buy

17.71 17.94 Buy

17.72 17.70 Sell

17.75 17.84 Buy

17.84 17.97 Buy

17.90 17.75 Sell

17.92 18.09 Buy

17.94 18.08 Buy

17.97 18.08 Buy

18.02 17.92 Sell

18.08 17.90 Sell

18.08 18.10 Buy

18.08 18.16 Buy

18.09 18.08 Sell

18.10 18.11 Buy

18.16 18.02 Sell

It is generated by the following two simple rules [3].

IF the stock price on date T is greater than the forecast price on date T+1, sell it.

IF the stock price on date T is less than the forecast price on date T+1, buy it.

Based on the C5 and Table 1, no rules can be generated. After we remove the 17th instance,

C5 obtains four rules, which are listed below. The relationships between dataset and rules

are shown in Figure 1.

If Forecast Price on Day T+1 > 18.02, Buy the Stock.

If Forecast Price on Day T+1 <= 18.02 and Price on Day T > 17.84, Sell the Stock.

-5-

If Forecast Price on Day T+1 <= 18.02, Price on Day T <= 17.84 and

Forecast Price on Day T+1 > 17.7, Buy the Stock.

If Forecast Price on Day T+1 <= 18.02, Price on Day T <= 17.84 and

Forecast Price on Day T+1 <= 17.7, Sell the Stock.

Figure 1 The Relationship between Dataset and Rules

According to the four induction rules listed above, we will make wrong prediction if the data

fell into the four darker areas. The above example shows that even a simple rule “If

Forecast Price on Day T+1 is greater than Price on Day T, Buy the Stock.” cannot be

correctly generated by C5. This is because the numerical-type dependencies are not

considered in the traditional decision-tree learning algorithms, e.g., C5. In next section, we

will describe our NDT model for discovering such kind of dependencies.

3 Neural Decision Tree (NDT) Model

The architecture of our Neural Decision Tree (NDT) model is depicted in Figure 2.

-6-

Figure 2 The architecture of the NDT model

In this architecture, the training data is firstly sent to the neural network model. Artificial

neural networks were inspired from biology [4]. It has been applied to many applications

for different purposes [3, 4, 5]. In this paper, the neural network is used to find the

dependencies among attributes. The model used in this paper is the Back-Propagation (BP)

model. The training data and the results obtained by the neural network model are then

sent to the traditional decision-tree learning algorithm, i.e., C5, to improve the accuracy of

C5 and generate a more compact decision tree.

The followings illustrate the rule extraction steps in NDT model over the

numerical-categorical-mixed dataset.

1. We separate the numerical-categorical-mixed dataset into two parts, e.g., numerical

subset and nominal subset.

2. For categorical subset, we do nothing for it, currently.

3. For numerical subset, we firstly normalize each attribute of the dataset for training

a neural network. This is because the neural network model only accepts

numerical data as input. We adopt min-max normalization method [6] for each

input attribute. Because the squashing sigmoid function, which we adopt in the

neural network model, cannot exactly reach the target value 0 or 1, we adopt

-7-

min-max normalization method with target value 0.2 and 0.8, instead of 0 and 1,

for each output attribute [7]. Based on the normalized dataset, we then train a

back-propagation neural network, collect weights between the input layer and the

first hidden layer, and change each attribute value according to these weights.

4. We combine the categorical subset and the new numerical subset into a new

numerical-categorical-mixed dataset.

5. The new dataset is sent to the C5 to generate the decision tree and rules.

To clearly describe these steps, the followings will describe the details about how to infer the

decision tree and rules for Table 1.

In Table 1, there are two numerical-type input attributes and one categorical-type output

attribute with two targets (Buy or Sell). First of all, we prepare this dataset by normalizing

each input attribute using min-max normalization method. The equation is listed below.

56.0

17.6V
V old

new

−
=

For categorical-type output attribute, we also adopt min-max normalization method with

target value 0.2 and 0.8 instead of 0 and 1. The normalized dataset is shown in Table 2.

According to this normalized dataset, we then train a neural network model with the

following parameters: Hidden Layer: 1, Input Nodes: 2, Hidden Nodes: 2, Output Nodes: 2,

Number of Instances: 18, Training Cycles: 30,000, Initial Weight Bound: 0.3, Learning Rate:

1.0, Decreased by: 0.95, Lower Bound: 0.1, and Momentum: 0.5. Based on these

parameters, the training results are shown in Figure 3.

-8-

Table 2 Normalized Stock Price Dataset

Target: Decision
Price on Day T Forecast Price on Day T+1

Buy Sell

0 0.214 0.8 0.2

0.179 0 0.2 0.8

0.179 0.196 0.8 0.2

0.196 0.607 0.8 0.2

0.214 0.179 0.2 0.8

0.268 0.429 0.8 0.2

0.429 0.661 0.8 0.2

0.536 0.268 0.2 0.8

0.571 0.875 0.8 0.2

0.607 0.857 0.8 0.2

0.661 0.857 0.8 0.2

0.750 0.571 0.2 0.8

0.857 0.536 0.2 0.8

0.857 0.893 0.8 0.2

0.857 1 0.8 0.2

0.875 0.857 0.2 0.8

0.893 0.911 0.8 0.2

1 0.750 0.2 0.8

Figure 3 Training Results for Normalized Stock Price Dataset

-9-

We examine the link weights between the input layer and the first hidden layer. Then, we

change the attribute values according to these weights. That is, we transform the

normalized stock price dataset into a new one by the following formula.

J1 = (-38.387) * I1 + (38.059) * I2 - (-0.099)

J2 = (-1.522) * I1 + (0.028) * I2 - (-1.587)

I1 means “Normalized Price on Day T”, I2 means “Normalized Forecast Price on Day T+1”,

J1 means “New Price on Day T” and J2 means “New Forecast Price on Day T+1”. The

transformed results generated by this way are shown in Table 3.

Table 3 Transformed Stock Price Dataset

Price on Day T Forecast Price on Day T+1 Target: Decision

8.057 1.593 Buy

-6.954 1.315 Sell

0.522 1.321 Buy

15.468 1.305 Buy

-1.529 1.266 Sell

5.930 1.191 Buy

8.596 0.953 Buy

-10.469 0.779 Sell

11.267 0.742 Buy

9.217 0.687 Buy

7.160 0.605 Buy

-7.141 0.462 Sell

-12.613 0.297 Sell

0.979 0.307 Buy

5.057 0.310 Buy

-1.066 0.279 Sell

0.288 0.254 Buy

-9.942 0.086 Sell

-10-

Then, the transformed dataset is sent to the C5 to generate the decision tree and rules.

Using the original and the transformed datasets, the results generated by the C5 are shown in

Figures 4 and 5, respectively.

Figure 4 C5 Results Using Original Dataset

Figure 5 C5 Results Using Transformed Dataset (NDT Model)

-11-

From Figures 4 and 5, the comparisons are summarized as follows:

• After applying the NDT model, the error rate of classification for decision tree is

reduced from 38.9 to 0.0.

• After applying the NDT model, the error rate of classification for decision rule is also

reduced from 38.9 to 0.0.

• Before applying the NDT model, C5 generate no decision rules from the original

dataset. This is because the original dataset contains noisy data.

• After applying the NDT model, C5 generate two decision rules from the transformed

dataset. It reveals that the NDT model can handle the noisy data perfectly.

After removing the noisy data from original dataset, the original dataset contains 17

instances. Using this dataset, we also apply the NDT model to transform it. The results

generated by the C5 are shown in Figures 6 and 7.

Figure 6 C5 Results Using Reduced Dataset

-12-

Figure 7 C5 Results Using Transformed Reduced Dataset (NDT Model)

From Figures 6 and 7, the comparisons are summarized as follows:

• After applying the NDT model, the error rate of classification for decision tree and

rule is still 0.0.

• After applying the NDT model, the decision tree size is reduced from 4 to 2.

• After applying the NDT model, the number of decision rules is reduced from 4 to 2.

From the above experiments, it is obviously that the NDT model remarkably improves the

classification accuracy, decision tree size, and the number of decision rules based on C5.

Besides, the NDT model can also perfectly handle the noisy data. From Figure 7, C5

generate the following rule.

If Price on Day T (in Table 3) <= -1.066, Sell the Stock.

Otherwise, Buy the Stock.

“Price on Day T (in Table 3) <= -1.066” can be rewritten as follows:

Price on Day T (in Table 3) <= -1.066

-13-

�� -38.387 * (Price On Day T (in Table 1) - 17.6) / 0.56 + 38.059 *

(Price On Day T+1 (in Table 1) - 17.6) / 0.56 - 0.099 > -1.066

� Price On Day T+1 (in Table 1) + 0.15 > 1.009 * Price On Day T

� Price On Day T+1 (in Table 1) > Price On Day T (in Table 1)

Therefore, the correct rule “If Price on Day T+1 (in Table 1) > Price On Day T (in Table 1),

Sell the Stock, Otherwise Buy the Stock” can be obtained. That is, the NDT model can

actually discover the dependencies among attributes. In next section, we will demonstrate

the NDT model in several larger datasets.

4 Experimental Results

In experiments, we use five datasets collected from the UCI database repository

(http://www1.ics.uci.edu/~mlearn/MLRepository.html) as a test bed. Based on these

datasets, we compare the NDT model with C5. Table 4 shows these five experimental

datasets in details. They include four pure numerical datasets and 1 numerical-

categorical-mixed dataset. The number of instances is listed in column named “#”.

Table 4 Experimental Datasets from UCI Databases

of Input AttributesDataset
Name Numerical Categorical

Types in
Target Class

#
Naive Prediction Error

(%)

1 Wine 13 0 3� 178� 60.11%

2 Iris 4 0 3 150� 66.67%

3 Pima 8 0 2� 768� 34.90%

4 Glass 9 0 6� 214 64.49%

5 Heart 6 7 2 270 44.44%

Table 4 also lists the error rate for naive prediction, which is just classified the instances by

the major proportion of target class. The naive prediction can be regarded as the baseline

-14-

model for the following experiments. That is, the accuracies of C5 and NDT model must

far better than the naive prediction.

Table 5 Experimental Results for Decision Tree Using UCI Databases

C5 NDT

Decision Tree Decision Tree
Dataset
Name

#

Size Errors (%) Size Errors (%)

Naive Prediction
Error (%)

1 Wine 178 5.40 7.35% 5.00 5.36% 60.11%

2 Iris 150 4.73 4.94% 3.94 3.41% 66.67%

3 Pima 768 26.65 25.77% 17.30 22.32% 34.90%

4 Glass 214 24.00 30.10% 21.69 29.52% 64.49%

5 Heart 270 21.62 22.96% 16.66 21.15% 44.44%

Table 6 Experimental Results for Decision Rule Using UCI Databases

C5 NDT

Decision Rule Decision Rule
Dataset
Name

#

Size Errors (%) Size Errors (%)

Naive Prediction
Error (%)

1 Wine 178 4.85 6.95% 3.36 5.47% 60.11%

2 Iris 150 4.14 4.95% 3.03 3.48% 66.67%

3 Pima 768 17.12 25.50% 10.91 22.68% 34.90%

4 Glass 214 16.31 30.88% 15.94 29.60% 64.49%

5 Heart 270 11.31 21.27% 8.24 20.10% 44.44%

Table 7 Improvements of NDT Model Relative to C5 for Decision Tree

C5 NDT

Decision Tree Decision Tree

Improvements
(%)Dataset

Name
Size Errors (%) Size Errors (%) Size Errors (%)

1 Wine 178 5.40 7.35% 5.00 5.36% 7.41% 27.07%

2 Iris 150 4.73 4.94% 3.94 3.41% 16.70% 30.97%

3 Pima 768 26.65 25.77% 17.30 22.32% 35.08% 13.39%

4 Glass 214 24.00 30.10% 21.69 29.52% 9.64% 1.93%

5 Heart 270 21.62 22.96% 16.66 21.15% 22.94% 7.88%

-15-

Table 8 Improvements of NDT Model Relative to C5 for Decision Rule

C5 NDT

Decision Rule Decision Rule

Improvements
(%)Dataset

Name
Size Errors (%) Size Errors (%) Size Errors (%)

1 Wine 178 4.85 6.95% 3.36 5.47% 30.72% 21.29%

2 Iris 150 4.14 4.95% 3.03 3.48% 26.81% 29.70%

3 Pima 768 17.12 25.50% 10.91 22.68% 36.27% 11.06%

4 Glass 214 16.31 30.88% 15.94 29.60% 2.27% 4.15%

5 Heart 270 11.31 21.27% 8.24 20.10% 27.14% 5.50%

Tables 5 and 6 show the experimental results for decision tree and rule, respectively.

Tables 7 and 8 show the improvements of NDT Model relative to C5 for decision tree and

rule, respectively. From Tables 7 and 8, the improvements of NDT model relative to C5 are

summarized as follows:

� After applying the NDT model, the reduction of decision tree size ranges from

7.41% to 35.08%.

� After applying the NDT model, the reduction of decision rule size ranges from

2.27% to 36.27%.

� After applying the NDT model, the reduction of the classification error rate for

decision tree ranges from 1.93% to 30.97%.

� After applying the NDT model, the reduction of the classification error rate for

decision rule ranges from 4.15% to 29.70%.

From the above experiments, it is obviously that the NDT model can actually discover the

numerical-type dependencies among attributes. At the same time, the NDT model

remarkably improves the classification accuracy, decision tree size, and the number of

decision rules based on C5.

-16-

5 Concluding Remarks

In the past few years, many researchers focus on the research in classification and

decision-tree learning algorithms. For those decision-tree learning algorithms, there are

still challenging problems in real-life datasets, which are mixed with numerical and

categorical attributes. In this paper, we propose a model, Neural Decision Tree (NDT)

Model, to deal with the problems of attribute dependencies. It combines the neural network

technologies and traditional decision tree learning capabilities to handle the complicated and

real cases. In experiments, we use five real datasets from the UCI databases. Based on

these datasets, the experimental results show that the NDT model remarkably improves the

classification accuracy, decision tree size, and the number of decision rules based on C5.

This is because the NDT model can successfully capture the dependencies among attributes.

Even thought the NDT model performs well for improving the accuracy and

effectiveness of C5, the dependencies among categorical-type attributes are not processed in

this paper. Chen [8] proposed the concepts for categorical-type dependencies. However,

they did not describe how these dependencies could be obtained efficiently. This kind of

dependencies is also important for the improvements of decision-tree learning algorithms.

If we can capture the complete dependencies among input attributes, more improvements

can be reached. But, it needs to be investigated further.

Acknowledgement

Research on this paper was partially supported by National Science Council grant

NSC90-2213-E130-003 and NSC90-2213-E030-003.

-17-

References

[1] M. S. Chen, J. Han and S. Yu, (1996). “Data Mining: An Overview from a Database

Perspective”, IEEE Transaction on Knowledge and Data Engineering, Vol. 8, No. 6,

pp. 866-882, 1996.

[2] J. R. Quinlan, (1996). “Improved Use of Continuous Attributes in C4.5”, Journal of

Artificial Intelligence Approach, No. 4, pp. 77-90, 1996.

[3] B. Kovalerchuk and E. Vityaev, (2000). Data Mining In Finance - Advances in

Relational and Hybrid Methods, Kluwer Academic Publishers, 2000.

[4] H. Lu, R. Setiono and H. Liu, (1996) “Effective Data Mining Using Neural Networks”,

IEEE Transaction on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 957-961,

1996.

[5] S. W. Changchien and T. C. Lu, (2000). “A Data Mining Procedure Using Neural

Network, Self Organization Map and Rough Set to Discover Association Rules”,

Proceedings of the International Computer Symposium, 2000.

[6] J. Han and M. Kamber, (2000). Data Mining - Concepts and Techniques, Morgan

Kaufmann Publishers, 2000.

[7] D. Pyle, (1999). Data Preparation for Data Mining, Morgan Kaufmann Publishers,

1999.

[8] M. S. Chen, (1998). “On the Evaluation of Using Multiple Attributes for Mining

Classification Rules”, Proceedings of IEEE International Conference On Tools and

Artificial Intelligence, 1998.

