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Abstract

Roles and schema evolulion are becoming popular
research issues in object-oriented databases, and have
been proven to be useful in dynamic and evolving ap-
plications. However, not much work has been done
on discussing their differences. In particular, there is
no programming language or database system which
includes and integrates both mechanisms. Our objec-
tive is to integrate these two mechanisms such that
a role is used to model evolving objects and schema
evolution is used for the flexible design of dynamic
and evolving systems. The resultant language is called
DOOR, a dynamic object-oriented database program-
ming language with role extension; which incorporates
both roles and schema evolution constructs. Important
issues which need to be addressed to integrate these
two approaches are discussed in this paper.
1 Introduction ‘
Roles and schema evolution are becom-

ing popular research issues in object-oriented -

databases, and have been proven to be use-
ful in dynamic and evolving applications. Re-
cently, there has been a significant upsurge of in-
terest in extending conventional object-oriented lan-
guages/systems (e.g., [3, 7, 10, 22, 23, 25, 26]) to fa-
cilitate the modeling of dynamic and evolving appli-
cations. Some of these approaches are based on the
notion of roles (e.g., [3]), while others are based on
the idea of .schema evolution or type evolution (]e.g.,
type evolution in [26], dynamic subclasses in [25], or
dynamic inheritance in SELF [23]).

Roles # type evolution, and both of them are
useful in dynamic and evolving applications.
As described by Richardson and Schwartz [17], most
object-oriented database (OODB) systems display se-
rious shortcomings in their ability to model both the
dynamic nature and the many-faceted nature of com-
mon, real-world entities. A commonly used exam-
ple of this kind of entity is a person. While existing
OODBs may capture the notion that a student is a
person, they do not support the notions that a given
person may become a student, that after graduation,
that person ceases to be a student, and becomes an
alumnus; and that he or she may also be an employee,
a customer, a car owner, a club member, etc. This

92

issue has received attention under the term roles in
database modeling at least since Bachman and Daya
wrote about it in the context of the network data
modeling approach in 1977 [5]. In particular, the role
mechanism can be used to partition the messages for
objects such that objects can receive and send differ-
ent messages at different stages of their evolution/life-
cycle [16]. The partitioning of messages for an object
according to different roles has the advantage of al-
lowing the designer (and possibly the implementer of
the application) to concentrate on the life-cycle of an
object in one role at a time. Moreover, objects can
perform different actions at different stages in their
life-cycle and can specify the interactions between ac-
tivities in terms of the dependencies among the roles
of objects. From the point of view that roles can pro-
vide multi-perspective access of an object, roles are
similar but different (as we will present later in this
paper) to the idea of views [18, 19] for objects.

Alternatively, schema evolution (including type
evolution, etc.) is intended for the support and
management of schema changes. The motivation
of having schema change is that class hierarchy de-
sign is the main theme of schema design for object-
oriented databases. ~The practical applications of
object-oriented databases, such as CAD/CAM, Al,
and multimedia office systems, require the ability to
make a wide variety of changes to the database schema
dynamically; this process is called schema evolution.
The types of schema changes required include creation
and deletion of a class, alteration of the IS-A relation-
ship between classes, addition and deletion of instance
variables and methods, and others. The users tend to
arrive at the desired schema for objects through trial
and error, and it would be useful if they can debug
the schema on the spot (i.e., dynamically). Therefore,
schema change operations are required for designing
the desired schema.

According to these different motivations and ad-
vantages of having roles and schema evolution for
modeling dynamic/evolving applications, we found
that it would be desireable to have an object-role
model and its corresponding language which supports
both roles and schema evolution. Also, we totally
agree with work done by Wieringa et al. [25] in which
they discuss the difference (from the conceptual mod-
eling point of view) between roles and type evolution.



nype change is supported by dynamic subclassing in
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However, there is no existing programming
language or database system which supports
both roles and schema evolution. Therefore,
in this paper we propose a dynamic object-oriented
database programming language with role extension
called DOOR, being prototyped at the Hong Kong
University of Science and Technology, which sup-
ports both role modeling and schema evolution. We
describe the underlying object-role model and the
schema evolution support in DOOR. We also discuss
the issues which need to be addressed to integrate
these two approaches.

The organization of this paper is as follows. In
section 2, the object-role data model for DOOR is
defined. We then present the schema evolution sup-
ported by DOOR in section 3. In particular, we
discuss the integration issues arising from support
of both the role mechanism and schema evolution.
They include the reference problems caused by object
deletion and role change, issues about objects which
change type and objects which change role, the change
of class definition, and the change of class lattice. Sec-
tion 4 discusses other related work and section 5 de-
scribes the current status of the prototype and future
work. Finally, section 6 concludes the paper.

2 The Object-Role Data Model for.

DOOR

In DOOR, a role is conceptually like an object, ex-
cept that it has a special relationship to other objects
(or roles) which are said to play the role. A role can
be played by an object or by another role. We now
define the DOOR data model formally with the fol-
lowing notation and definitions.

Let P be an infinite set of property functions. Each
p € P can be a value from a simple enumeration
type, an object instance from some class, an arbi-
trarily complex function, or an object method. Each
p € P has a name and signature (i.e., domain types).
For simplicity, we assume that all p € P have a unique
property identifier. Let T be the set of all types. For
t € T, properties(t) corresponds to the set of prop-
erty functions of ¢ and domain,(¢) denotes the do-
main of p in ?.

Let C = OCU RC be the set of all classes. An ob-
ject class oc; € OC has a unique class name, a type
description and a set membership, and a role class
rc; € RC has a unique class name (which is distinct
from all object class names), a type description, a set
membership and a player qualification (which is a set
of class names that specify which classes’ instances are
qualified to be a role player of this role class). The
type associated with a class corresponds to a common
interface for all instances of the class. We refer to the
name of the type associated with a class ¢ (where
¢ € C) by type(c) and to the set of property func-
tions defined for ¢ by properties(type(c{)), or short,
properties(c). If p € P is a property function de-
fined for ¢, then we refer to the domain of p for ¢ by
domain,(c). In particular, if ¢ is a role class (i.e.,
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¢ € RC), then we refer to the player qualification (a
set of class names) by players(c). An object class is
also a container for a set of objects, and a role class
is a container for a set of roles.

Definition 1. For two classes ¢i1,c2 € C' (where
C' C OC or C' C RC), c; is called a subset of c,
denoted by ¢; C ey, iff 1 €c; = 1 € 3. |

Definition 2. For two classes ¢1,¢co € (' (where
C'" C OC or ¢ C RC), ¢ is called
a subtype of cy, denoted by ¢ <X ¢g, iff
(properties(c;) 2 properties(cz)) and (Vp €
properties(cz), domain,(c;) C domaing(cy)). O

Definition 3. For two classes ¢1,c2 € C' (where
C' C OC or C' C RC), ¢; is called a subclass of
¢co, denoted by ¢; 2sa cg, 1ff ¢; < ¢g and ¢1 C ¢s. ]

Definition 4. Let inst,(C) denote the set of all pos-
sible instances of class C' with the state of the world
being «. We define a function called played-by in the
model such that if OC is an object class and RCy, RCy
are role classes, then in each state a of the world, we
have

played-by: insto(RC,) — insto(OC) U insto(RCY)

where played-by(r) (r € insto(RC1)) is called the
player of r, and played-by has the following proper-
ties:
1. For any state a of the world, r1 € inst,(R) and
ry = played-by(r1) = ry # 71;
2. played-by is neither a surjective function nor in-
Jjective function.

0

The codomain of played-by includes both the instances
of object classes and role classes. Therefore, a role
player can be an object, or even a role. However, by
property (a) above, we eliminate the case that the
player of a role instance is the role instance itself, al-
though it is possible that both the player of a role in-
stance and the role instance itself are of the same role
class. For example, a person can be a club-member of
a credit card club, and being a general club-member,
he can then further join as a club-member of the privi-
lege club of the credit card. The second property pro-
vides more information about the role playing char-
acteristics. It implies that an object (or a role) can
play multiple roles (ile., played-by is not injective),
and also, an object (or a role) may not be a player of
any roles at all (i.e., played-by is not surjective).

Definition 5. An object-role schema is a directed
acyclic graph S = (V, E), where V = V,UV, is a finite
set of vertices and E = Ey;qU Epjayed-by 1S a finite set
of directed edges. Each element in V, corresponds to
a class oc; and each element in V, corresponds to a
class rcj. FEjs, corresponds to a binary relation on
Vo x V, or V. x V,. that represents all direct isa rela-
tionships between all pairs of object classes in V, and
between all pairs of role classes in V;, while Epiayed-5

corresponds to a binary relation on V. x V, or V,. x VZ
that represents all direct played-by relationships be-
tween a role class in V, and an object class in V,,
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or between a pair of role classes in V.. In particu-
lar, each directed edge e from ¢; to cs, denoted by
e =< c1,cy >, represents the direct isa relationship
between the two classes (¢ isa c¢z3). There are two
designated root nodes, one called Object which con-
tains all object instances of the database, and another
called Role which contains all role instances of the
database. Both of their type descriptions are empty.
O .

Definition 6. An object o is a quadruple (oid,
class, properties, roles) where oid is a globally unique
and unchangeable identifier together with a tomb-
stone symbol say L, class is the class name of which
properties is defined, properties is the property func-
tions inherited from the class, and roles is a set of
roles being played by o. Let O be an infinite set of
object instances. The collection of objects that belong
to an object class oc is denoted by insto(oc) = {o |
o € oc}. A role ris a triple (class, properties, roles)
where class 1s the class name of which properties is
defined, properties is the property functions inherited
from the class, and roles is a set of roles being played
by r. Similarly, let R be an infinite set of role in-
stances. The collection of roles that belong to a role
class ¢ is denoted by insty(rc) = {r | r € rc}. o

The tombstone symbol L, included as an object
identifier, handles the reference problem for object
deletion. This will be further illustrated later.

Furthermore, it is possible to define delegation from
roles to players. For example, suppose we model an
employee e as a role of a person p, and sex is an at-
tribute of persons but not of employees. Then sez(e)
would be a 'type error. We can correct this error by
delegating the evaluation of sex to played-by(e) [14].
This amounts to replacing sez(e) by sex(played-by(e)).
Moreover, roles also provide data protection by par-
titioning the messages received by. players. For exam-
ple, suppose we model an employee e and a student
s as two roles of a person p, and studentid is an at-
tribute of students but not of persons or employees.
Then studentid(e) would be a type error. Unless we
know that person p is a student and access his/her
information from the perspective of accessing student
information (by studentid(s)), studentid(p) would also
be a type error.

By introducing the role class hierarchy into the ob-
ject class hierarchy, our role model is formed. These
two types of classes are orthogonal to each other, and
each of them can be partitioned into subclasses. The
difference between role classes and object classes lies
in the fact that an instance of an object subclass is
identical to (i.e., has the same identifier as) an in-
stance of its superclass but an instance of a role class
is different from any instance of its player class. This
formalizes the difference with respect to the counting
problem mentioned in [24].

Similar to the other properties of a class, the player
relationships of a class will be inherited to all its sub-
classes. For example, consider a PERSON who can
be an EMPLOYEE and a STUDENT as shown in
the object-role schema in Figure 11. The player rela-

1 Class names in bold denote object classes, and class names
in italic denote role classes.
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tionship will be inherited to all the subclasses of PER-
SON, i.e., CHILD and ADULT in this case. However,
only an ADULT can be a CAR_.OWNER. Therefore,
a CHILD cannot play the role CAR_.OWNER.

stupent | _ _ P _ _ | pERsoN EMPLOYEE

_________

CHILD ADULT CAR_OWNER .

Figure 1: An object-role schema which shows that
PERSON (including CHILD and ADULT) can at
any moment be an EMPLOYEE and/or a STU-
DENT, but only an ADULT can at any moment be a
CAR_OWNER.

Note that this inheritance property of player rela-
tionships also holds for role classes, not just object
classes. However, since DOOR  allows multiple inheri-
tance, there are some cases where we need to conjunct
the player constraints of the superclasses of a multi-
ple inherited role class. Consider an interesting exam-
ple shown in Figure 2, where & PERSON (including
a CHILD or an ADULT) can be a STUDENT, but
only -an ADULT can be an EMPLOYEE. Hence a
CHILD cannot play the role EMPLOYEE. The role
class STUDENT-WORKER is formed by multiple in-
heritance from both EMPLOYEE and STUDENT
classes. The player constraint of this STUDENT-
WORKER is computed simply by the conjunction of
its superclasses’ player constraints, i.e., a STUDENT-
WORKER has to be a PERSON (since both an EM-
PLOYEE and a STUDENT have to be a PERSON)
as well as an ADULT (since an EMPLOYEE has to
be an ADULT) and ADULT is.a PERSON, so the
player constraint for STUDENT-WORKER 1s PER-
SON A ADULT = ADULT. This means that ADULT
can play the role STUDENT-WORKER, and CHILD
cannot.

Multiple inheritance in the object class hierarchy
does not cause the conjunction of player constraints
in the role hierarchy since a multiple inherited object
class, which possesses the properties of all its super-
classes, can play any roles which can be played by any
one of its superclasses.

3 Schema Evolution
Schema, evolution may involve many different kinds

of dynamic changes. For example, the class changes
supported by DOOR include:

¢ update (add/delete/rename) an instance variable
o change the type of an instance variable

e update (add/drop) a superclass to/from a class’s
superclass list

¢ update the class hierarchy (add/delete/rename a
class) '

In addition, the following changes are supported if the
class is a role class:



PERSON [~ -~~~ -~ - - -~~~ ~-——-—-—-——- STUDENT

is_u

STUDENT-
WORKER

ADULT [ _ __

- Figure 2: An object-role schema which shows that
PERSON (including CHILD and ADULT) can at any
moment be a STUDENT, but only an ADULT can at
any moment be an EMPLOYEE. Therefore, only an
ADULT can be a STUDENT-WORKER.

o adding a player to a role class’s player qualifica-
tion list

¢ deleting a player from a role class’s player quali-
fication list

Other changes to objects or roles (instances) include:

e update (create/delete) an object of an object
class

. change' the type of an object

¢ update the values of an object

¢ update (create/delete) a role for an object

e update the values of a particular role of an object

o transfer (copy/move) a role from one object to
another object

Due to space limitations, we select a few interesting
changes from the above lists and discuss their impor-
tant issues in the following subsections.

3.1 Model Invariants

The following invariants are imposed for the
DOOR datd'model. The invariants hold at every qui-
escent ‘state of the schema, i.e., before and after a
schema change operation. They provide a basis for
the definition of the semantics of every meaningful
schema change, by ensuring that the change does not
leave the schema in an.inconsistent state (one that
violates any invariant).

Class Lattice Invariant The isa
relationship forms two lattices, of which the pre-
defined object class Object and the pre-defined
role class Role are the only two roots.

Unique Name Invariant Each instance variable
and method defined or inherited by a class must
have a unique name. Each class (no matter
whether an object class or a role class) must have
a unique name.

Full Inheritance Invariant A class inherits the
union of instance variables and methods from its
superclasses, unless it defines an instance variable
or method with the same name. If more than one
superclass defines the same instance variable or
method, the one inherited is the one defined by
the superclass that appears earliest in the class’s
superclass list.
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Type Compatibility Invariant If a class ¢ defines
an instance variable with the same name as an
instance variable it would otherwise inherit from
superclass s, the type of t’s variable must be a
subclass of the type of s’s variable.

Typed Variable Invariant The type of each in-
stance variable must have a corresponding class
in the class lattice.

Role-Player Qualification Invariant A role of
role class R has to be played by a player (an
object or a role) which is of a class specified in
the player qualification of R.

Besides these invariants, we- would like to keep as

much information as possible during the schema

change process because there is no way to get back
the information once it is lost during the process.

3.2 Reference problems caused by Object

Deletion and Role Change

The dangling reference problem caused by object
deletion indeed has been noticed and mentioned by
many researchers (such as [1, 26]). In this subsection,
we describe an approach to deal with the problem
concerning the explicit deletion of objects. or the role
changes of objects.

Assume that John is working in a company with
object identifier 01id1088, and his supervisor is the
manager of the company, i.e., a Person -called Peter
with object identifier 0id1023.

(0id1023, Person, [name: "Peter Lee', sex:
"male"], {(Manager, [company: 0id1088,
salary: 320001, {}, )}, ) :

(0id1027, Person, [name: "John Ng", sex:
"male"], {(Clerk, [company: 0id1088,
salary: 9000, supervisor: 0id1023], {},
D00

If for some reason, the object 0id1023 is deleted
from the database, John’s supervisor will have a dan-
gling pointer. This problem can be solved by replacing
each reference to 01d1023 with a tombstone which de-
notes a deleted object. However, with this approach,
we need to update all these references again if we later
have another person (another object of object class
Person) become the manager of company 0id1088.

Moreover, if Peter is still in the database, but
he might have resigned and turned back to a ‘nor-
mal’ person, then John’s supervisor will still point to
01d1023.

(01d1023, Person, [name: "Peter Lee', sex:

"male"], {}, _)

(01d1027, Person, [name: "John Ng", sex:
"male"], {(Clerk, [company: 0id1088,
salary: 9000, supervisor: 0id1023], {},

D 0

If we again replace each reference to 0id1023 with a
tombstone, we may wrongly overwrite valid references
(such as those references to Peter from his -Person
perspective).

Worse still, if Peter has resigned and Linda (ob-
viously with different object identifier) becomes the
new manager of company 0id1088,
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(0id1032, Person, [mame: "Linda Lau", sex:
nfemale"], {(Manager, [company: 0i1d1088,
salary: 330001, {}, )}, )

(0id1027, Person, [name: "John Ng", sex:
"male"], {(Clerk, [company: 0id1088,
salary: 9000, supervisor: 0id1023], {},
D0

then we need an intelligent update which re-
places all references to 0id1023 with 0id1032 if they
‘treated’ 01id1023 as manager. To deal with this prob-
lem, in DOOR, users can specify the role type defini-
tion for Clerk as follows:

(Clerk, [company: Company, salary: Integer,
supervisor: Manager],., {Person})

For object deletion, all references to a deleted ob-
ject will be replaced by a tombstone which denotes the
‘dead’ object. For role change, adding a role to an ob-
ject obviously does not cause any reference problem.
However, this is relatively more complicated to delete
a role from an object. In DOOR, there are two op-
erations to drop a role from an object. One of them
is to destroy a role which is currently being played
by an object. Another operation is to release a role
from an object and all values of the role still persist.
In the above example, all references of type (or sub-
type of, if any) Manager to 0id1023 (Peter) will be
deleted and replaced by a tombstone 1f we destroyed
the role Manager of 0id1023. Alternatively, if the
role Manager is released from 01d1023, all references
of type (or subtype of, if any) Manager to 0id1023
(Peter) will be replaced by a tombstone with an un-
defined identifier (1) and then the role Manager (with
its values) is moved from 0id1023 to the tombstone
object. With this approach, a new object can play this
role so that the role values are preserved and reused.

To illustrate this further, consider an interesting
example that a company has two managers (roles
mi, my) played by two different persons (objects
'p1, p2). If these two managers are referenced by other
objects as shown in Figure 3(a), and then both the
persons are deleted. The references to these deleted
objects and their playing roles are held by two tomb-
stone objects as shown in Figure 3(b). Since the origi-

managerl manager2

played-by ! + played-by played-by 1 played-by

a refecence to ml a refecence to m2 2 reference toml 2 reference to m2

(@) ®)

Figure 3: (a): Object references before deletion. (b):
Object references after deletion.

nal identifications of the objects (i.e., p1, p2) have been
deleted and replaced by the tombstones, access and
identification to the roles (i.e., my, my) has to pass
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through the company ¢1. If no such access point ex-
ists, that is, there is no reference to the tombstones,
these tombstones along with their roles will be de-
stroyed by garbage collection in DOOR.

This approach is new in that it uses a tombstone
object to hold a role (or multiple roles) such that its
(or their) values can be preserved and passed to an-
other object. Moreover, the use of a tombstone (to
denote an object with undefined object identifier) can
be used to hold a role such that it can be initialized
by assigning values to the role attributes. For exam-
ple, we can initialize the company attribute of role
Manager-to a company with object identifier 01d1088
such that someone who plays this role will automati-
cally become a manager of this company.

3.3 Objects that change Type versus Ob-
jects that change Role

Objects that change type Sa,lso called object mi-
gration) cannot be simply implemented by creating a
new object in class C’, copying properties from ob-
ject @ and deleting @ from C. This is because the
object before and after the change should be referred
to by the same object identifier. Therefore, a spe-
cific object migration function (or a similar function,
e.g. the become: primitive in Smalltalk-80 [9]) has
to be implemented in a level in which object iden-
tifiers can be accessed and manipulated. DOOR 1is
equipped with a similar migration function to sup-
port the type change of objects. However, even with a
specific migration function, problems with type check-
ing (type violation) may still occur [26]. To illustrate
these problems further, let us define object migration

more formally.
ob]eax
i '/
i

-
;
object x |
class B classC dass B °:‘>J'°° * | elssc
A
g
©

| class B | classC

@ ®
Figure 4: Assume the world will reach state o be-
fore o/: (a) z € insto(B) C insty(A) and then z €
insto(A) but z & inste(B). (b) z € insty(A) but
z ¢ insty(B) and then z € insty (B) C instq (A).
(c) z € insty(B) but z ¢ insty(C) and then z ¢
sty (B) but z € instq (C).

Object c is said to migrate to class C’ € OC from
class C € OC if there exists states «, @’ of the world

where & — o/ 2, then we have
¢ ¢ inste(C') and ¢ € insto/(C'), and/or
¢ € insto(C) and ¢ ¢ insty(C)

Figure 4 shows the scenarios corresponding to this
definition. Figure 4(a) corresponds to the second line
of the above definition and Figure 4(b) corresponds to
the first line. Figure 4(c) (which corresponds to the
and case, i.e., both first and second lines, in the above

2To save space, we use o -2, o' to denote that the world
will reach the state o before o'.



definition) describes a compound case which can be
decomposed into the other two cases by considering
z migrates to class A first and then migrates to class
C.

The type violation (mismatch) problem will not oc-
cur in case (b) because an object changes its type A
to A’s subtype B so that all references to the object
of type A will still be compatible with the object of
type B. However, type violation may occur for case

a) and hence (c) (since (c) is a combination of case
Ea; and (b(}) Similarly, the player qualification check-
ing is needed for object migration processes like case
(a) and hence (c).

If there are any references (of type X) to an object
o (certainly of a subtype (X*) of X), and o changes to
a new type Y which is not a subtype of X, then type
violation occurs. In DOOR, we follow the approach
mentioned in [26] that a tombstone will be used in
place of the type-mismatched object for these refer-
ences. Moreover, if there is a player qualification vio-
lation to the object of the new type, the roles which
the object is no longer qualified to play will be moved
to a tombstone object. These roles (including their
states and values) can then be preserved for other
qualified objects to play. However, if these roles are
not referenced by any other objects/roles, it will be
garbage collected (similar to the deletion case men-
tioned in the previous subsection). This is because
in DOOR, a role can only exists by associating with
an object (including a tombstone object? and a tomb-
stone object will be garbage collected unless it is being
referenced.

The difference between objects that change type
and objects that change role, from the conceptual
point of view, was pointed out by Wieringa et al.
[25]. Furthermore, for languages like DOOR, which
support the playing of multiple roles (in particular,
multiple roles of the same role type), role change does
not necessarily cause the same effect as an object’s
type change. This difference is also underlined by the
difference between role class and object class being il-
lustrated by the counting problem mentioned in [24].

3.4 Class Definition’s Changes and Class
Lattice’s Changes

Changes of class definition which corresponds to
changes of type definitions have been investigated by
a number of researchers which include [6, 26]. With
the support of object migration mentioned in last sub-
section, one simple way to support dynamic class def-
inition’s changes is: create a class (say class A’) which
is new version of the class (say class A) to be changed;
then migrate all objects from the old class to the new
class (i.e., from class A to class A’); afterwards, delete
the old class; finally, repeat these steps to the sub-
classes of the old class A.

Class addition is a simple primitive which is in fact
exactly the same as class creation which adds a new
class to the class lattice. Class deletion of class C
is implemented in a way that all objects of class C
will be destroyed, and then its direct superclass(es)
will become the direct superclass(es) of its direct sub-

- class(es). Afterwards, the definitions of all its sub-
classes need to be modified (similar to the class defi-
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nition’s changes) to reflect this change.

Some systems allow users to delete a class only if no
object exists for that class. In DOOR, we assume that
useful objects will be moved to other classes (since
object migration contructs are provided) before their
class as well ‘as its objects are deleted. Note that we
cannot automate this process by automatically mi-
grating all objects of the class to be deleted to its su-
perclass because that class might have more than one
superclasses, and we cannot decide which superclass-
should be migrated.

Addition and deletion of an isa edge in a class
lattice is supported by two primitive functions: isa-
add and isa-del, respectively. isa-add(C, C’) is sim-
ply defined as inst(C) C inst(C’) in the world, and
isa-del(C, C’) is defined as inst(C) ¢ inst(C’) in
the world unless there exists a class C* such that
inst(C) C inst(C") C inst(C’). Addition and dele-
tion of an edge to a pair of classes will trigger the
need of modifying the .definitions of all the subclasses
of one of them. This modification process, and hence
the effect, is similar to the one in class definition’s
changes described above. '

Related Work

The concept of a role was already defined in 1977 by
Bachman and Daya [5] in the context of the network
data modeling approach. Various role models and im-
plementations in the context of databases have been

roposed afterwards. These include Vision [19], ORM
16], and aspects [17}, etc., and the most recent sys-
tems include Fibonacci [2, 3], Gottlob e al.’s role ex-
tension of Smalltalk [10]. Fibonacci is a new, strongly
typed database language. Its objects simply consist
of an identity and an acyclic graph of roles. Each role
can be dynamically added or dropped. Objects are
defined in classes and roles are defined separately and
form a different hierarchy. Instead of implementing a
new language, Gottlob et al. [10] demonstrated the
extension of Smalltalk for incorporating roles. . Dif-
ferent from Fibonacci, they included multiple instan-
tiation of roles, and the integration of class and role
hierarchies. To some extent, both Fibonacci and Got-
tlob et al.’s work are similar to ORM in the sense that
roles are also rooted in (though not encapsulated into)
a class, and these roles can be inherited from the class
to its subclasses. Different from ORM, aspects, and
views, however, the roles attached to a class in both
approaches can form their own “is_a” hierarchy.

Besides the work (mainly based on the concept
of roles) mentioned above, there is some other work
which relies on schema evolution, type evolution, or
dynamic inheritance. SELF is a prototype-based lan-
guage with a simple and uniform model [23] which
mncludes the concept that an object’s parent slots,
like other data slots, may be assigned new values at
run-time. An assignment to a parent slot effectively
changes an object’s inheritance at runtime. Conse-
quently, the object can inherit different methods and
exhibit different behavior. This dynamic inheritance
allows part of an object’s implementation to change
at runtime. The Garnet system [15] includes a sim-
ilar mechanism, also called dynamic inheritance but
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implemented differently, to effect wholesale changes
in the implementation of an object’s behavior. This
feature has been used in Garnet to capture the sig-
nificant changes in a user-interface object’s behavior
when switching between build mode and test mode
in an application builder tool. Predicate classes (in
a language called Cecil) [8] can emulate some of the
functionality of dynamic inheritance as found in SELF
and Garnet. Where a SELF program would have an
assignable parent slot and a group of parent objects
that could be swapped in and out of the parent slot,
Cecil with predicate objects would have an assignable
field and a group of predicate objects whose predicates
test the value of the field. A related mechanism is the
become: primitive in Smalltalk-80 [9]. This operation
allows the identities of two objects to be swapped, and
so is more than powerful enough to change the repre-
sentation and implementation of an object.

Alternatively, substantial work which includes [4,
7, 13, 12, 20, 21, 26] has been done in the context
of schema evolution and type evolution, however, the
concept of role modeling for evolving objects was ex-
cluded. '

5 Current Status and Future Work

The first prototype of DOOR, based on the meta-
object protocol (MOP) [11] of the language Scheme,
has been developed. The role playing mechanism,
which is similar to the implementation of delegation
in Clovers [22], has been implemented as a MOP. The
reasons for implementing DOOR as MOP are as fol-
lows:

User-defined schema evolution operators
Existing approaches to schema evolution provide
- only a fixed set of evolution operations. With
MOP implementation of schema evolution, users
can compose complex schema evolution opera-
tions from a set of primitive operations which
allow any schema modification.

Expanding the DOOR. data model During the
prototyping phrase, the entire data model may
need to be expanded or changed frequently. This
can be done by expanding or modifying the cor-
responding DOOR, components (i.e., the corre-
sponding MOPs).

Changes in consistency definition The schema
consistency definitions and even the model invari-
ants might need to be adjusted or relaxed both
by users or developers. This also increases the
flexibility for some special applications.

Furthermore, instead of being represented by glob-
ally unique identifiers, roles are identified by the name
of their role classes together with the role values.
This representation solves the practical implementa-
tion problems (including dangling references and the
representation of historial information) of object up-
dates as well as class migration.

For example, in [24], roles are identified by unique
identifiers. Assume we have two persons p1 and p2
playing the roles of employee el and e2 respectively,
that share information as follows:
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(pl, [name: s, address: al], {(ei, [salary: n,
company: cl...)}, ),

(p2, [name:...], {(e2, [manager: e1,...]1...)},
).

The advantage of referring a manager of e2 (or p2)

" to role el instead of object p1 is that the manager of

p2 refers to the right person even someone else (say
pl?), instead of p1, is playing the manager role of p2.

(p1’, [name: s, address: al, {(ei', [salary: n,
company: cl...)}, _), o
(p2, [pame:...], {(e2, [manager: e1,...]1...)},

).

However, transferring of a role identifier between
two different objects is not possible in the identifi-
cation scheme described in [24]: e.g., p is regarded
as playing a different employee role only if p resigns
and later is retired. Even this is possible, it causes
problem when the value c is changed to another com-
pany, say c¢’. Then p1 is no longer the manager of p2.
However, since the manager attribute of e2 refers to
el and el’s player is still pi.

Currently, the prototype supports both transient
objects and persistent objects. However, persistent
objects are stored in flat files. This is no longer ade-
quate and efficient for serious implementation. There-
fore, our ongoing work is to implement a persistent ob-
ject store for DOOR. The main difficulty is to design
the persistent store such that it supports the dynamic
updates well. As most of the work on persistent stores
is focused on the recovery, scalability and access per-
formance, not much previous work has been found on
this particular issue.

6 Conclusions

We have presented in this paper a dynamic object-
oriented database programming language with role
extension, called DOOR, which incorporates both
roles and schema evolution constructs. With DOOR,
a role can be used to model evolving objects and
schema evolution can be used to increase the flexi-
bility and maintainability of the design of a dynamic
and evolving system. Important issues which help to
integrate these two approaches were discussed in de-
tail. They include the reference problems caused by
object deletion and role change, issues about objects
which change type and objects which change role, the
change of class definition, and the change of class lat-
tice.
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