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Abstract

In real applications, data provided to a
learning system usually contain noisy and fuzzy
information which greatly influences concept
descriptions derived- by conventional inductive
learning methods. Modifying learning methods to
learn concept descriptions in noisy and vague

environments is thus very important. In this paper,

we apply fuzzy set concept to machine learning to
solve this problem. A fuzzy learning algorithm based
on the AQR strategy is proposed to manage noisy
and fuzzy information. The proposed algorithm

generates fuzzy linguistic rules from fuzzy instances.

In the experiment, the lIris Flower classification
problem is used to compare the accuracy of the
proposed algorithm with that of some other learning
algorithms. Experimental results show that our
method yields high accuracy.

Keyword: Juzzy set, fuzzy AQR, hypothesis space,

instance space, inductive learning.
1. Introduction

Among machine learning  approaches
[61[81(17], inductive learning from instances may be
the most commonly used in real world application
domains. Inductive learning is basically a process of
inferring concept’ descriptions that include all
positive instances and exclude all negative instances.
These traditional inductive learning procedures are
however inapplicable to some application domains,
since data in the real world usually contain fuzzy
information. The fuzzy information will in general
greatly influence the use of the concepts derived
[15]{19][20]. Some kinds of inductive learning
problems arising in vague environments were
discussed in [2][3][5][10][11]. Modifying traditional
inductive learning methods to work well in vague
environments is then very important. Several
successful learning strategies based on ID3 have
been proposed [7]{19]{20][21][23]; most of these use

* To whom all correspondence should be sent.

trec-pruning and fuzzy logic techniques. In [22],
Wang et al proposed a fuzzy version space learning
algorithm to manage both noisy and fuzzy data. In
this paper, we will propose a fuzzy learning
algorithm based on the AQR learning strategy [8]
that induces a fuzzy rule set from fuzzy data. The
learning ‘approach can overcome problems of
inductive learning in vague learning environments.

The remainder of this ‘paper is organized as
follows. Some related concepts and terms are
reviewed in Section 2. The AQR learmng strategy is
reviewed in Section 3. The fuzzy AQR learning
algorithm is proposed in Section 4. Experimental
results from the IRIS flower classification problem
are presented in Section 5. Finally, conclusmns are
glven in Section 6.

2. Review of Related Concepts and Terms

In this section, we review some concepts and
terms which are related to this paper. They are
described as follows.

2.1 Fuzzy Set Concepts

A fuzzy set is an extension of a crisp set. Crisp
sets allow only full membership or no membership
at all, whereas fuzzy sets allow partlal membership.
In‘other words; an element may belong to more than
one set. In a crisp set, the membershlp or non-
membership of an element x in set 4 is described by
a characteristic functmn u A(x), where

fxeA
us () =
10 ifx eA

Fuzzy set theory extends this concept by
defining partial membership, which can take values
ranging from O to 1 :

ug X —-[0,1],
where X refers to the universal set defined for a
specific problem.

Assuming that 4 and B are two fuzzy sets with
membership functions of u,(x) and ug(x), then the

following fuzzy operators can be defined.
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(1) The intersection operator:

UanB(X) = U4 (¥) T up(¥),

where 7: [0, 1] » [0, 1] —> [0, 1] is a t-norm
operator satisfying the following condxtlons [14]:
foreach a, b, ¢ € [0, 1)

(i) atl=a

G) aTb=b7a

(i) atb2c7d ifazcb2d,

ivvatbtTc=at(b Tco=@t7 b) T ec.

Some instances of a f-norm operator a b are

min(a,b) anda«b.

(2) The union operator. -

U,y (X)= U4 (x) P us (x),

where P: [0, 11 [0, 1] ™ [0 1] is an s-norm

operator satlsfymg the followmg conditions [14]
foreacha, b, ¢ € [0, 1]:
(i) apO=aq
(i) apb=bpa
(i) apb=2cpdifa2ch2d,
iv) aPbpPc=aP bPo)= (@pPb)pPec
Some instances of an s-norm operator a p b are

max(a,b) anda+b-axb.
2.2 Machine Lcarning.»Conecpts

An instance space is a set of instances that can
be legally described by a given instance language.
Instance spaces can be divided into two classes:
attribute-based instance spaces and structured
instance spaces [18]. In an attribute-based instance
space, each instance can be represented by one or
several attributes. Attribute-based mstance spaces
are of the main concern here. .

A hypothesis space is a set of hypotheses that
can be legally described by a concept description
language (generahzatlon language). The form of a
hypothesis space is restriction to concepts that can
be expressed in conjunctive or disjunctive forms.

In the following sections, these concepts will
be used in our learning algonthm to derive fuzzy
knowledge.

3. Review of the AQR Learning Strategy

AQR is an inductive learning system [8] that
uses the basic AQ algorithm [16] to generate a set of
classification rules, one for each class. When
building classification rules, AQR performs a
heuristic search through the hypothesis space to

determine the descriptions that account for all

- positive instances and no negative instances. AQR

processes the training instances in stages; each stage
generates a single rule, and then removes the
instances it covers from the training set. This step is
repeated until enough rules have been found to cover
all the instances of the chosen class. The algorithm
of AQR is descnbed as follows:

AQR algonthm.

- Let POS be a set of positive instances.
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Let NEG be a set of negative instances.

STEP 1.Let COVER be the empty cover.

STEP 2. While COVER does not cover all instances
in- POS, " process the following = steps.
Otherwise, stop the procedure and return
COVER.

STEP 3. Select a SEED, i.¢., a positive mstance not
covered by COVER.

STEP 4. Call procedure GENSTAR to generate a set
STAR which is a set of complexes that

- covers SEED but that covers no 1nstances in
ENG. '

STEP 5.Let BEST be the best complex in STAR
according to the user-defined criteria.

STEP 6. Add BEST as an extra disjunct to COVER..

GENSTAR procedure:
STEP 1.Let STAR be the set contalmng the empty
complex.

‘STEP 2. While any complex in STAR covers some

negative instances in NEG, process the

following steps. Otherwise, stop  the
. procedure and return STAR.
STEP 3. Select a negative instance Eneg covered by
a complex in STAR ‘
STEP 4. Specialize complexes m STAR to exclude
Eneg by:
a. Let EXTENSION be all selectors that
~ cover SEED, butnotEpeg.
b. Let STARbetheset { x N y|Xx €

.STAR, y € EXTENSION}
¢.-Remove . all - complexes  in STAR
* subsuiried by other complexes.
STEP 5.Repeat this step until size of STAR
maxstar (a user-defined maximum).
Remove the worst complex from STAR.

<

The concepts derived from AQR- are
represented  as ~ the  multiple-valued logic
propositional calculus with typed variables, which
can be represented as follows:

If <cover> then predict <class>, where

<cover> = <complex 1> or .... or <complex m>,
<complex> = <selector 1> and ... and <selector n>,
<selector> = <attributes r values>,



<r> = relation operator.

A selector relates a variable to a value or a
disjunction of values. For example, "color = red’,
*height = tall", and "weight > 60 kg" are all
selectors. A conjunction of selectors forms a
complex. A cover is a disjunction of complexes
describing all positive all positive instances and
none of the negative ones of the concept.

Unfortunately, AQR only works well in - ideal
domains where no noisy or fuzzy data is present.
When such data are presented, the derived rules
usually provides wrong classification information.
However, the effective use of learning systems in
real-world applications substantially depends upon
their capability in handling noisy and fuzzy
information. In this paper, we thus apply the concept
of fuzzy sets to the AQR learning strategy to solve
the above problem.

4. The Fuzzy AQR Learning Strategy

Conventionally, inductive learning is to find a
concept description R that describes all the positive
instances and none of the negative ones. If E is the
set of positive and negative instances, P is the set of
positive - instances, and N is the set of negative
instances, then we find a concept description R such
that '

"VeteP,e*cR Ve eN,e2zR",
where ,+ is a positive instance and ,- is a negative
one, candg are rclation operators that mean
*covered by" and "not covered by" respectively.

The concept description R, however, may not
be easily found by conventional inductive learning
approaches under imprecision and noise. In order to
overcome these problems, the conventional inductive
learning problem is then generalized as:

"VeeP,eER VeeN,eER",
where R is a fuzzy concept description, ¢ is a
linguistic quantifier of type "almost all", "most”, [14]
etc., P denotes a set of instances with the "soft"
positiveness and N denotes a set of instances with

the "soft" negativeness, & and & are fuzzy relation

operators that mean "probably covered by" and
“probably not covered by" respectively. Each
instance e can be considered as a soft instance. Soft
instances differ from conventional instances in that
they have class membership ~values. The
membership value u p(e) specifies the degree to

which instance e belongs to the positive class P,
and the membership value u N(e) specifies the
degree to which instance e belongs to the negative
class N'. The inductive learning is generalized to
find a concept description, R, which can describes
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almost all of the "soft" positive instances and almost
none of the "soft" negative instances. The term
"describes” may have a fuzzy sense here, i, to a
degree from O to 1.

The representation of a "soft" training instance
is usually in terms of seclectors with a class
membership value. Each selector is represented as [4
r 'a'], where 4 is an attribute, r is a crisp or fuzzy
relation, a is a crisp or fuzzy value. An example for a
"soft" training instance is shown as follows.
e=[height>190cm]&[weight>80kg] = [basketballer],

with membership value Uy e tballer(e)=0.8,

where [height > 190 cm] and [weight > 80 kg] are
both selectors, and u, (¢) is a class
asketballer

membership value to specify the degree to which
instance e belongs to the class basketballer.

The selectors used to describe instances may,
however, be - different from  that of the derived
concepts since some selectors in the derived concepts
may be expressed in fuzzy terms. For example, the
fuzzy concept derived from instances may be
represented as : '

Rule: If [height = 'tall'}&[weight = 'heavy'] Then the
player is a baseketballer, with membership
value ubasketballer(Rule) =038,

where u (Rule) is represented the certainty

basketballer
of the rule.

It is clear that selectors used in the instance
space to describe instances and ones in the
hypothesis space to describe the derived concepts
need not be the same. Since a dichotomy of attribute
values is certainly too rigid and unrealistic: -in
practice, we allow for a degree of identify between
the value of attribute 4; in the instance e and the
selector s; in the hypothesis space. This degree uSi(e)

can be obtained by fuzzy matching. The values of
usi(e) between 0 and 1 are used to represent the
degree of covering instance e by S;, 0 indicates the
definite exclusion and 1 is the definite inclusion.
If we have an instance e = S, S; ... §;S;S; ...
I 1)1 J2
S}mSk‘Skz Sknand a complex C] = Slej2 Sf...’ then

C; is

the degree of covering instance e by a complex i

evaluated as
uc,(e)= ush(e) A usjz(e) A A "s,m(e)
or more generally
e (€)= ug, ()T ug, (@7 T, (€),

where 7 is a f-norm operator.
The concept description R is the disjunction
of the complexes, say (), Cy,:+,Cy, denoted as
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R=CUC, U, The degree of covering instance
e by concept description R is evaluated as .
ux(©) =u, @V u,@Vv--vuy,le)
or more generally '
ur(€)=u, @ pu, € p-pu,e),
where P is a t-norm operator.

Here, we propose a fuzzy AQR leaxmng
algorithm to induce fuzzy concepts from a set of
"soft" training instances. In the proposed method, the
concept descriptions no longer necessarily

include/exclude all positive/negative  instances
presented, since fuzzy information exists in the

training set. Fuzzy measure functions ug*(C) and
G (©) are used to evaluate the "goodness" of C.

The fuzzy measure function 4g* (C) used to evaluate

the degree of mcludmg "soft" positive instances by C
is defined as follows.

ug (€= Z (p@ e/ T up(@),

Similarly, uz+(®) used to evaluate the degree

of including "soft" positive instances by complex R
is defined as follows.

ug«f(ﬁ)=e§8 (up(@ 7 ur(eN/ T up(®),

-(C) used to

evaluate ‘the degree of excluding "soft" negative
instances by C is defined as follows

uy (€)= §E(uﬁ(e) 7 (1-u (e)/ E)Euﬁ(e).

The fuzzy measure function ug

Correspondingly, uy-(R) used to evaluate the

degree of excluding "soft" negative instances by
complex R is defined as follows

ug-(R)= EIE(un (@ 7 (1—ug(eN)/ ZEun @

If the concept description R is a disjunction of
complexes Cy, Ca,**+» Ci, then

Z (up @7 (g, (€) p--- pug,(e)
eEE up(e)
Z (up@7ug(e) p-p(upe) Tu, ()

= geE

Z u;,(e)
Z (uz@r uc,(e))p P Z (uz(e) 7 ug, ()

eEEup (e)

=ugy* (CD puy (CD P Pug (Ch)

ug ()=

= ek
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T @ t(-uy@p pug, @)

g (R) =45

Z uN (e

T (uN(e)r(l U (@ p(uN(e)ra o)

B Tuile)
eeck
Z (uz(eyr(—u, (@Np---p EE (ug(e)r (-u,, (e)
Zuﬁ(e).

=ug~(CY Pug-(C) P Pug-(Cr)

However, a complex C with a higher

membership value #3*(C) possesses more truth to
include "soft" positive training instances; a complex
C with a higher ug (C) possesses more truth to

exclude "soft" negative training instances. A
complex that includes much positive information
may possibly include much negative information.
Correspondingly, a complex that excludes much
negative information may also possibly exclude
much positive information. Clearly these kinds of
complexes are not sure to be better than the
complexes that include both less fuzzy positive and
also less fuzzy negative information, or than the ones
which exclude both less fuzzy negative information
and less fuzzy positive information. Which complex

C are suitable then depends on both %y*(C) and
ug(C).
purpose, which is defined as follows.

ui§~ (O =uz+(C) puy-(C),

where P 1is a union operators.

ugry-(C) is then used to achieve this

Similarly, uv+~—(R) is used to evaluated the

performance of the derived concept description R
which is defined as follows.

ugy R = ug+ R pug-R).

If R= Cl UCy+-UC;, then uyrg-(R) = U+ Copy-
Pug+(COP (”7- Cpy - Poug-(C)

where p Py and P, are union operators.

The fuzzy AQR learning strategy consists of
two main phases: generating and testing. The
generating phase generates and collects . possible
complexes into a large set; the testing phase then
evaluate each element of this set according to the

value of wuy*g-. The best complex as an extra

disjunct is added to the set of concept description.
The same procedure is repeated until all "soft"



positive instances have been probably covered by the
set of concept description. The fuzzy AQR learning
algorithm is stated as follows:

INPUT:
(1) A set of "soft" positive training instances,

denoted as P, each "soft" positive instance e
with class membership value uy(e").

(2) A set of "soft" negative training instances,
denoted as ¥, each "soft" negative instance e

with class membership value y,(¢7).

OUTPUT:
Find a fuzzy concept description R that
includes almost all of "soft" positive instances
and excludes almost all of "soft" negative ones.

Fuzzy Inductive Learning Algorithm: ;
Initially, R is an empty set that can not cover any
"soft" positive instances.

While "soft" positive instances in P have not been

probably covered by K (i.e. 3 ctep , et & R),do
{

Select a "soft" positive one as a SEED that is not
probably covered by R but having the highest

positiveness uz(e”).
Generate a set of complexes, C,,, that probably
covers SEED but that covers no instances in A
(i.e. VCieB,y Ve eN,SEEDEC;& e &N ) as
-foltows:
{

Let G, be a set of selectors that probably

cover SEED. (i.e., Gy = {515, is a selector,
SEED =015, })
While any complex in ¢, probably covers

negative instances in N (ie. 3 ¢ €N, 3
Cj S é&!’ e-EC,-), do

{
Select a complex CJ with the smallest

value ug-(C)) in Gy
Select a negative instance e~ covered by C,

with the highest negativeness uy(e").
Specialize complex Cj as C;, to exclude

e as follows:

{
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a. Let S be a set of selectors that
probably cover SEED, but not any
negative instances.

b. Let C'“betheset{c'jlc'j=Cj/\
Sk,Cje C’“’Sk e S}

¢. Remove all complexes in G,
subsumed by other complexes.

}
}

}
Select the best complex Cbest that has the highest

value of sy g-(Ches) in G-
AddC, asan extra disjunct to X .
(eR=Ry C,..0

Fuzzy AQR performs a heuristic search
through the hypothesis space to determine the fuzzy
concept descriptions that include almost all of "soft"
positive instances and exclude almost all of "soft"
negative ones. It induces the rules in stages; each
stage generates a rule ( a complex). When the
learning process terminates, the complexes are
output to form a set of rules. If the concept

description J is a disjunction of complexes

Ci15 C25** s Ci, then the description is represented as
the form of rules shown as follows.
Rule 1: IF C; Then positive class, with the

membership value ug+5-(CD,
Rule2: IF Cy Then positive class, with the

membership value ug+g-(C2),

Rulek: IF C; Then positive class, with the

membership value ug+3-(C).

S. Experiments

To demonstrate the -effectivencss of the
proposed fuzzy AQR learning algorithm, we applied
it to classify Fisher's Iris Data which contain 150
training instances. The data are inconsistent, so the
original AQR learning algorithm yields wrong
concept descriptions.

The Iris problem is as follows. There are three
species of iris flowers to be distinguished: Sefosa,
Versicolor, and Verginica. There are 50 training
instances for each class. Each training instance is
described by four attributes: Sepal Length (S.L.),
Sepal Width (S.W.), Petal Length (P.L.), and Petal
Width (P.W.). All four of the attributes are numerical
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domains. Assume the membership functions of each
attribute as shown in Fig. 1. -

u(S.L.)
Short Medium  Long
_-W S.L.
43 52 61 70 79
@
u(S.W.)
Narrow Medium Wide
W S-W‘
20 26 32 38 44
®
u(P.L.
Short Medium  Long
1.0 24 39 54 69
uP.w.) '
: ' Narrow Medium Wide
v j : i T PW.
01 07 13 19.25 .
' d

Figure 1. The given membership functions
of each attribute

Since the training set includes only 150
instances, a method called N-fold cross validation 4]
was adopted for this small set of samples. All
instances were randomly divided into N subsets of as
nearly equal size as possible. Foreachn,n=1, .., N,
the n-th subset was used as a test set, and the other
subsets were -combined into a training set. In the
experiments, the data were partitioned into ten
subsets, each with fifteen instances composed: of five
positive training instances and ten negative training
instances. The fuzzy learning algorithm then ran on
training instances to derive promising rules. Finally,
the most promising rules derived were then tested on
the remaining data subset. Classification rates were
then averaged across all possible groups.

The fuzzy AQR learning algorithm was
implemented in C language on a SUN SPARC/2
workstation. The algorithm was run 100 times, using
different random partitions on the sample set. The
classification accuracy .converged to 1 for Sefosa,
0.92 for Versicolor, and 0.96 for Virginia. The
accuracy of some other learning algorithms on the
Iris Flower Classification Problem was examined in
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[12] by Hirsh. The methods studied were Hirsh's
Incremental Version Space Merging [12], Aha and
Kibler's noise-tolerant NT-growth [1], Dasarathy's
pattern-recognition approach [9], and Quinlan's C4
[20]. The generalized version space learning
algorithm (GVS) was examined in [13] by Hong and
Tseng. Table 1 compares the accuracy of our
learning algorithm with that of the others. It can
casily be seen that the accuracy of our method is as
high as or higher than the other learning methods.

Table1 Accuracy of six learning algorithms

on the iris flower problem
l_g ~~class| Setosa | Viginica Versicolonl Average
al pnthm
FAQR 100 92 9% 96.00
GVS 100 94 94 96.00
IVSM 100 93.33 94.00 95.78
NTgrowth | 100 | 9350 | 91.13 94.87
Dasarathy 100 98 86 94.67
c4 100 91.07 90.61 93.89

7. Conclusion

In this paper, we propose a fuzzy AQR
learning algorithm to generate fuzzy rules from
numerical data. This approach can overcome
problems conventional learning methods have with
noisy and fuzzy information, and find promising
inference rules. These inference rules can be applied
to infer the classes of input data by the inference
process in Fuzzy Set Theory. Experimental results
show that our method yields accuracy as high as or
larger than that of some other learning algorithms.
The proposed method is then a flexible and efficient
fuzzy inductive learning method.
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