Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

SLOODS: A Self-Learning/Organizing Object-Oriented Database System Based
on ObjectStore

Shian-Hua Lin and Yueh-Min Huang
Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, R.0.C.
E-Mail: tom@system.es.ncku.edu.tw

Abstract

In this paper, we propose a system, Self-Learning/
Organizing Object-oriented Database System (SLOODS),
to embed object-oriented design in an integrated
intelligent database system. To discover knowlecge from
the database, an automatic inductive self-learning
mechanism for OODB (Object-Oriented Database) is
designed to support the function. Then the knowledge,
stored in the persistent knowledge object network (KON),
is further used to self-organize the database schema to
adapt the versatile information. In this way, the induced
knowledge in KON can be reused to create KBS or
semantically optimize the database query. Thus, the
system can be applied to develop applications of DBS and
KBS simultaneously.

1. Introduction

Database systems (DBS) and Knowledge-based systems
(KBS or Expert systems) have developed for a long time.
From the functions of DBS and KBS, the former is used to
maintain and access a large amount of data efficiently, and
the latter is used to infer new knowledge from existing
knowledge and data. The knowledge (schema. or data
model) supports DBS to maintain and access data, while
the data (facts in working memory) support the inference
of KBS. Thus, the concepts for data and knowledge are
covered for each other so as the DBS and KBS.

The weakness of DBS is the maintenance of data
consistency and the search of desired information in a very
large database. For the consistency problem, some systems
[8] provided users to specify constraints or rules in the
schema for improving the semantics of data model. Also,
the problem of query optimization can be processed by
such knowledge. However, the specified rules can not be
modified for adapting the dynamic or temporal change of
the database. For example, the new and correct data may
violate the original schema so that it can not be inserted
into the database unless we reconstruct the database again.
Recently, many OODBs provided the function of schema
evolution [21,23] to dynamically change the database
schema. However, DBA/DBI (database administrators/

55

implementers) still needs to spend efforts to write the
evolution code. It means that such DBS can not reorganize
the schema automaticaily, to accommodate the evolution of
the database. As for the search problem, conventional
DBS use indices to indicate the search from large data
files. Unfortunately, indexed attributes are not always
involved in queries and DBS cannot make indices for each
attribute due to the complexity for ‘maintaining the
consistency. “Thus, -the conventional DBS techniques
revealed the deficiency in the future inforration system.
On the other hand, KBS also suffers from the overhead of
communication between knowledge engineers and experts
dyring the phase of knowledge acquisition. Hence, many.
learning systems based on DBS have been developed,
such as DBLearn [22], EXPLORA, Knowledge Diécovery
Workbench [14], etc. On the operational phase, the
maintenance and the inference for a very large knowledge
base are problems as well. To overcome the difficulty,
some systems have applied the DBMS techniques in the
maintenance of the large KB [16]. As for the efficient
inference, Rete [3] was a typical well-known approach.
Based on those concepts, we develop an intelligent
database system on ObjectStore [6,23]. In the rest of the
paper, we describe the relative research in section 2. The
overview and architecture of the system are specified in
section 3. Section 4 contains the implementation of each
component of the system, and the design flow of the
system’s application is introduced in section 5. Finally, the
conclusion and future work are stated in section 6.

2. Related works

Recently, many investigations have focused on coupling

KBS and DBS [20]. However, most of those investigations

do not take the advantages from each other to a certain

extent. Basically, those studies can be classified into three
types:

1. Extending Database Management System (8, 11]: One
approach is to embed the logic programming concept
into the DB programming language to form the
deductive DB. The other is to apply the inference
concept of trigger-action in DBS and to construct an
active DB such as POSTGRES [12]. Consequently,

Proceedings of International Conference
on Artificial Intelligence

those systems are merely ‘enhanced rather than

integrated.
2. Extending Knowledge-based System [16]: Some
systems employ the techniques of DBS in KBS. ‘Also,
those systems are not tightly integrating systems with
KBS and DBS.
Integration of KBS and DBS [13]: The system usually
integrates KBS and DBS by the object-oriented
approach to accomplish a VLKBS (Very Large KBS).
However, the system never investigates the studies,
such as mining knowledge from database for the
semantic query optimization. Thus, although the
system combines the design of DBS and KBS, it does
not integrate both systems in a good manner.
On the aspect of object-oriented database systems, logic
predicates or rules have been integrated into databases to
form deductive/active object-oriented databases [8, 11]. In
such design manners, they lack of the flexibility of
dynamic insert/update knowledge. To rectify these
drawbacks, SLOODS is designed to take assets from both
KBS and DBS to achieve an intelligent and flexible
information system.
In our studies, knowledge discovery in database (KDD)
acts as a bridge to connect both systems. In KDD, the
learning engine regards the database as the training set so
that objects in OODB are training instances. In Han’s
Attribute-Oriented Induction (DBLEARN) system [9, 22],
the original data (accessed from SyBase) is inductively
generalized by using the concept hierarchy defined by the
user for each attribute. This generalization and induction
process are continued until the number of remaining tuples
is less than the defined table-threshold.
As for the query optimization, conventional techniques use
syntactic knowledge of operations and storage details of
relations to optimize queries [18]. Since the syntactic
optimization lacks of the entire semantic knowledge of the
state of a particular database, in many cases it produces
suboptimized queries. For instance, the syntactic optimizer
can not detect and eliminate semantically redundant
restrictions or joins in a query. Of course, it also fails to
introduce semantically redundant restrictions or joins to
reduce the overall cost of a query. On the other hand,
semantic query processing [10,17] introduces a new
perspective to query optimization. -Instead of re-
sequencing the operators or indexing data, it tries to
exploit possible semantically equivalent transformations
based on Query Transformation Rules (QTR) of the
particular database. QTR is different from (static)
semantic constraints in relational models. It is a dynamic
state of integrity constraints for a particular database,
which are useful for semantic query optimization- for
universally quantified queries [7]. By applying KDD in
SLOODS, induced knowledge will completely represent
the current state of a particular database; thus it is suitable

56

to be applied in semantic query transformation.

3. Overview of SLOODS

Based on the persistent programming environment of
ObjectStore, SLOODS has been developed, by taking
advantages of both KBS and DBS, to achieve an
intelligent and flexible information system. First, based on
the template, Integrated Knowledge/Data Model (IKDM)!
users can develop the schema of an application. Basically,
IKDM is the extension of a generic object-oriented data
model to accommodate both knowledge representations
(in the format of rules) and DB schema for coupling both
DBS and KBS. The kernel component of SLOODS,
Adaptive Knowledge/Data Manager (AKDM), is
developed to organize and manage the schema based on
IKDM.

Graphic User Interface (GUI) is used to direct the user to
construct the schema of database. Between GUI and
AKDM, Schema Learning Engine (SLE) is used to help
the user construct a correct IKDM schema. We employ
inductive learning in Inductive Learning Engine (ILE) as a
bridge to seal the gap between DBS (data) and KBS
(knowledge). Applying inductive learning in DBS, implicit
knowledge can be mined from the database. After learning
knowledge from the database, knowledge is represented as
a Knowledge Object Network (KON) in AKIDM for each
application database. The inference mechanism is also
embedded in KON. Thus, the user can also develop his
expert system based on the learned knowledge, or by
constructing/modifying extra/existing knowledge through
GUIL. Also, knowledge in KON can be applied to optimize
database queries by Intelligent Query Engine (XYQE).

Graphic User Interface (GUIL) Intelligence
/

Layer

" Inductive Learning
' Engine (ILE))

4

Intelligent Query
Engine (IQE)

SchemaLearning

Knowledge
Layer

Fig. 1. The architecture of SLOODS.

The architecture of SLOODS hierarchically consists of
three layers shown in Fig. 1. The top layer is Intelligent
Layer that provides users with a friendly interface and
replies to users’ requests intelligently by those components
under GUI. Knowledge Layer, in the middle, is the kernel
of the system. AKDM is the key component in the kernel.
Each component of SLOODS is executed on
ObjectStore’s persistent environment, Data Layer at the
bottom.

Data
Layer

Persi Object Envir {ObjeciStore OODBMS Server)

3.1 Intelligence Layer (Self-léarning)

On the upper level of Intelligent Layer, GUI is designed to
provide an intelligent interface which guides the novel
user to construct his object-oriented database schema,
database query, and expert system. First, during the
construction of schema, the user (DBI) can construct an
object-oriented schema for application database according
to the message suggested by SLE. The design of SLE is
based on the knowledge extracted from analyzing the
object-oriented data model [1,2,15] to classify the ill-
construction of OO schema. In the study, we observe that
properties (attributes) and behavior (methods) in a class
can be used to detect such ill-construction. Then, SLE
suggest that users adjust the relationship such as
generalization/specialization in the class hierarchy or
lattice based on the knowledge. '
After modeling the schema correctly, users can build the
database. ILE is started by DBA or by the system
automatically during the system idle time. It extracts
implicit knowledge from the database. We have proposed
an automatic and efficient learning method applied in ILE
to learn knowledge from OODB [4,5]. Through employing
the same concept associated with Han’s DBLEARN, ILE
extends the concept of RDB to OODB as follows:
e Objects in OODDB are regarded as examples.
e Attributes in DB are the features of training instances.
* The generalization/specialization relation in OODB can
be treated as the G/S concepts of version-space [24].
e Complex objects are partitioned into relevant training
sets according to aggregation/association relationships.
After SLE and ILE have supplied schema and inductive
rules related to the database, the user can construct the
expert system associated with the problem domain of the
application database. IQE uses the knowledge to provide a
friendly query interface and to perform the semantic
(intelligent) query optimization.

3.2 Knowledge Layer (Self-organizing)

AKDM provides the representation/storage/management
of knowledge (schema) in this layer. In addition to
providing traditional features of OODM, AKDM regards
knowledge as objects in the database. Thus, the system can
dynamically change knowledge of a class to accommodate
the database updating due to inductive learning or user’s
edition. The data model (IKDM), knowledge
representation, is defined as follows:
// Definition of Class:
class <class_name> [: <class_name} +] {
[key (<attribute_name> : <primitive_type>
<Constraint>*)]// Key must be primitive types.
[attribute (<attribute_name> : <type> <Constraint>*)]//
Restricts the attribute domain,
[aggregation (<attribute_name> : <type> <Constraint>*)+}//
Aggregation Attribute.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

[method (<type> <method_name> (<argument>*))]

}
// Definition of Constraint:

Constraint ::= [if LHS then RHS]*// Active rules
| Range // Restrict the attribute range
// Definition of Rule:
[<event>] rule <rule_name> :: <class_narne> {
[RHS] | [if LHS then RHS]

/I Definition of Method: The same with C++.

// Note: * means zero or more; + means one or more; [... } is optional; <
... > is the non-terminal symbol; (..) means a definition clause.
Knowledge base is stored as a complex object net in
ObjectStore called knowledge object network (KON), and
knowledge inference is transformed into navigation among
the network by taking the advantages of ObjectStore’s
persistent environment. Thus, objects in the network are
not only the knowledge repositories but also active agents
taking the partial responsibility of inference.

In addition to storing and inferencing knowledge, AKDM
also automatically maintains the semantic of database
schema, based on knowledge induced by ILE and
ObjectStore’s schema evolution mechanism, to keep the
schema up-to-date. We term the schema as self-organizing
schema. For example in Fig. 2, we can ‘promote the
schema up to a richer semantic schema, if the following
classification rules are induced. o

IF (manufacture = BMW) & (body = streamline) & (Engine =
SportsCarEngine) THEN Car is SportsCar.

IF (body = ~streamline) & Engine = SedanEngine THEN Car is Sedan.
IF (body = ~streamline) & Engine = BusEngine THEN Car is Bus.

1F (power = High) & (C.C. = ~Low) THEN Engine is SportsCarEngine.

IF (power = ~High) & (C.C. = ~High) THEN Engine is SedanEngine.

IF (power = High) & (C.C. = High) THEN Engine is BusEngine.

manutacture
hody
Engine ~—

3.3 Data Layer (ObjectStore)

In this layer, currently, we use ObjectStore [6,23] as a

testbed for the following reasons:

1. Persistent programming environment: ObjectStore
provides persistent DB classes, based on its virtual
memory mapping architecture, to establish an efficient
persistent C++ programming environment. All system
components of SLOODS are persistent objects of on it.

2. Metatype object of schema: The schema of a database
application is also stored as objects in ObjectStore, thus
users can get schema information by retrieve these

Proceedings of International Conference
on Artificial Intelligence

objects. Naturally, the information is very important to
the system. For example, during inductive learning, ILE
needs the information of schema such as types of
attributes and relationships between classes.

. Schema evolution: ObjectStore’s schema is defined by
C++ classes. Moreover, It also provides the schema
evolution with transformation function specified by
users. Thus, AKDM can generate the required functions
to achieve the self-organization of schema.

. Object version: The property eliminates the cost of
reconstructing knowledge gbjects if the system and
application are required to be updated.

4. The implementation of SLOODS

In this section, we describe the implementation of
SLOODS according to components shown in Fig. 1.
ObjectStore 3.0.2 is installed in NT Server 3.51 and the
system is implemented with Virtual C++ 4.0.

4.1 Schema Learning Engine (SLE)

During the development of a database application, the
design of a schema is the critical factor for the quality and
the life time of the application. For OODB users, it is not
realistic to expect DBI of relational DB to provide an
adequate OO schema due to the different concepts in two
data models. Thus, we investigate and analyze the
properties of OOD [1, 2, 15] and develop rules to detect
the ill-construction of OO schema. Those rules are
classified into two types shown in Fig. 3.

Inter-class
ntr-clags @

Class
Fig. 3. Relationships among classes and attributes.
Intra-class: The rule revises the ill-relationship between a
class and its attribute with M-to-N relationship. If some
attributes must be included in the relationship, it should be
represented by another class type to keep extra necessary
information to reduce the data redundancy and avoid the
update anomaly. Thus, if an M-to-N attribute is detected
in a class, SLE will inquire the user whether extra
members are necessary to be included. If they are
necessary, the M-to-N attribute is regarded as an attribute,
and a new class is generated to link the M-to-N
relating/related classes. Otherwise, M-to-N relationship
remains the same without extra information. The same
case is also occurred in ER-schema of relational DB [18].
The rule is applied in the schema construction time.
Inter-class: The inadequate relationships among classes
can be detected according to common members:
1. Attributes: name, type, and relation (1-to-1, 1-to-N, and
M-to-N).
2. Methods: name, argument type, and return type.
3. Rules: event, LHS, and RHS.

.

58

Basically, there are four rules to remedy those inadequate
relationships. The first three rules are applied during the
construction of the schema. The last one is an example of
self-organizing schema and is employed at the run-time of
database. Those rules are summarized as follows:
1. Combine two identical classes with the same members.
2. Construct a parent-child link for subsuming classes.
3. Generalize a superclass for classes with common
members. .
If there is an attribute whose values are sparse in a class
(i.e., most objects have NULL values for the attribute
field), specialize a subclass which contains the attribute
for those objects to reduce the data redundancy.
According to the relevance between those heuristic rules,
the rule of intra-class should be applied in advance since
the decision of inter-class rules depends on the class's
members. While members of intra-class are consistent,
similar members of inter-class can be discovered in the
next step. Since a schema may be constructed by different
DBI, the similar member is adopted in the detection. To
unify the similarity, the SLE needs to inquire the user to
redefine members which are summarized below according
to their priorities. Since the attribute may be referred by
methods or rules, the highest priority is assigned to it.
1. Redefine name, types, or relationships of those similar
attributes so that they are consistent in relevant classes.
Inquire the user if the similar method is the same for
relevant classes, then select a method as the unified
version.
. After attributes and methods have been unified, the
similarity among rules can be precisely determined.
After similar members have been unified, those identical
classes are combined. Then the parent-child link can be
constructed between two subsuming classes. Finally, a
new- superclass is generated. The superclass will be
inherited by similar classes which have common members
after applying the above processes.

4.

2.

4.2 Inductive Learning Engine (ILE)

ILE is implemented according to the generalization/
specialization concept from version-space [24] and the
entropy of learning attribute from ID3 [19]. The learning
method [4,5] is divided into three stages. First, ARCH is
used to generate the concept hierarchy of each learning
attribute. Next, OGL is used to search an optimal
generation level for each attribute's concept hierarchy.
Finally, ASE is applied to guarantee the accuracy of
induced rules. Due to the limited paragraph, we briefly
describe those three mechanisms and the details can be
referred in [4].

ARCH (Automatic geneRation of Concept Hierarchy)

ARCH is a systematic method to construct the concept
hierarchy of each attribute automatically. There are three

kinds of attributes in OODB: numerical (continuous or

discrete), symbolic (unstructured), and objectified
attributes. The first two kinds of attributes are defined with
primitive types whose concept hierarchies can be
constructed by using the fuzzy theory. The last attribute
refers to non-primitive type whose concept hierarchy is
constructed according to its relation (association,
aggregation, or inheritance).

OGL (Optimal Generation Level)

OGL is proposed to improve the performance of ID3 and
Version Space by determining the optimal generalization
level of each attribute according to the entropy. We
applied OGL in ID3 (modified ID3) and simulated the
method with Version Space according to the complexity
and accuracy of induced rules in [4]. The result shown in
Fig. 4, 5 proves that modified ID3 effectively reduces the
complexity of induced knowledge with only litt.e loss of
the knowledge accuracy. -

ke Compleaity (Bytu)
20000

Version Space

10000

Modified ID3 (ARCH + OGL + ID3)
Stze of Tralning Set

Fig. 4. Simulation result of modified ID3 (the rule’s complexity).

Rule Accuracy

08 —

Modetled ID3 (ARCH + OGL + 1D3)

0.4 —

Stze of Tralntng Set

o0 T T v 1
o 2000 4000

Fig. 5. Simulation result of modified ID3 (the rﬁles’ accuracy).
ASE (Attribute Selection by Entropy)

While learning from a larger training set by modified ID3,
the accuracy of induced knowledge may become less: than
0.8 according to Fig. 5. Thus, another approach, ASE, is
proposed to get the trade-off between Version Space (high
rule accuracy) and modified ID3 (low induction cost).

In ASE, the greedy and hill climbing approaches are used
to find optimal classification rules. Entropies calculated in
OGL are sorted in an ascending order. Then, the two
smallest attributes are selected and combined into a new
attribute. If the entropy of new attribute is smaller than the
original two attributes, the two attributes are substituted by
the new combined one. Otherwise, the third small attribute
is selected instead of the second one, and vice versa.
Hence, the greedy implies that the smallest one is the first
choice and hill climbing refers to the situation in which the

59

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.O.C.

entropy of combined attribute cannot be increased.

The process continues until all attributes have been tried,
or the combined entropy is less than the entropy-threshold,
which is the minimal accuracy (probability) of inductive
knowledge input by the user.

Combining with ARCH, OGL, and ASE, our learning
process is called AGE. Under the same cases, the
simulation results shown in Fig. 6. proves that AGE can
control the accuracy (probability = 0.9) by the threshold
(entropy = 0.469), if the user wants a higher accuracy of
induced rules.

(S —— Rube Accaracy
L (]
e Space
Ace
10006 .~
AGE
Uaddod 03 ARCH o 0GL + %)
Uoied 103 ARCH + 00+ 03) :
A Size ol TralaagSet &8 [y} S Tt
® 2000 “ .) o~

Fig. 6. Comparisons of Version Space, modified ID3, AGE.
4.3 Intelligent Query Engine (IQE)

In object-oriented database systems, the query acts as the
navigation among complex objects rather than the join
among tables in RDB. To minimize the navigation cost in
the complex tree (or lattice), a semantic query optimizer is
required. In SLOODS, IQE supports intelligent query
processing based on knowledge in KON, such as
constraints of attributes, semantic rules defined by users,
and transformation rules induced by ILE.
The query graph in IQE is represented by the tuple of (N,
P, E), which corresponds to nodes (classes), predicates
in.a node, and edges (navigation path) connected to nodes.
For Object SQL of ObjectStore, the information
corresponds to FROM-clause (classes), WHERE-clause
(predicates), and SELECT-clause (destination of the
navigation). Predicate is represented by (M1 op M2),
where M1 and M2 refer to members (attribute or method)
of a class. IQE focuses on predicates and defines its cost
model based on the member type and the predicate’s
selectivity. There are four types of members: SVA/M
(Single Value Attribute/Method), MVA/M (Multiple
VA/M). Since the method invocation cost is higher than
the data retrieval cost, we can define the order of cost:
cost(SVA) < cost(MVA) < cost(SVM) < cost(MVM). The
selectivity - is defined by which operation
(=,>,<,#,2,<) is applied in the predicate.
Under the assumption of IO-dominance, the cost model of
a forward navigational query (without any indexes and
path reduction) shown in Fig. 7 is:

' Cost(Q) = Cost(I0)
Assume that objects in database are uniformly distributed,
the number of page I/O is linear to the number of objects
for the same class. Thus, the /O cost will be

Proceedings of International Conference
on Artificial Intelligence

|Oi| x UIO(C;) , where |Oi| is the number of the retrieved
objects from C;,and UIO(C;) is the unit of I/O cost to
retrieve an object from C; . If we scan all objects from C;,
then |Oi| = ICi| . We also assume that the selectivity factor
Sel(RCi) of a restriction (predicate) in a class C; can be

estimated from database statistic information. Thus the I/O
cost of forward navigation is:

Cost(I0) = [|01|><UIO(C,)]+[|02|><.UIO(C2)]
+..+ [0 x UTO(C,)

|Ol| = _IC[IXZ]}ISC](ch)X reij,j+lj, i>1

Assume there is a common (virtual) root class Cg with
Sel(R¢,) =1 and with relg ; =1. EQ (2) becomes:

n i-1
Cosi(I0)= X {|cl| x T (Sel(Re, el 1) X UIO(C;)}

By performing semantic-equivalent query transformation,
restrictions in a classR¢, are transformed to R, and
1

the query cost becomes:

Cost(Q) = i§I{|c1|>< ;E;(Sel(g'cj)x el o1)x UI0(C;)}
The semantically optimized query is the transformed query
with minimal Cost(Q") , or the original query (if
Cost(Q') > Cost(Q) , for transformed queries).

Fig. 7. Chaining navigation path.

After analyzing the cost model of string query (forward
navigation), the cost of other query types, star and hybrid
shown in Fig. 8, can be estimated by being transformed
into the summation of costs of several string queries. The
remaining. problems are to collect semantic rules for
transformation and to develop an efficient SQO algorithm.
In the beginning, IQE applies knowledge and inference
mechanism of KON to obtain all implied predicates based
on predicates in FROM/WHERE-clause. IQE uses the
greedy approach, by using the forward navigation, to
select predicates with minimum cost from root to target
class nodes. Once a predicate was selected, IQE checks if
the semantic of those selected predicates is the same as the
semantically equivalent state is achieved. The process
continues subsequently to achieve semantic equivalence.

60

b A

é (b). Star
(¢). Hybrid
(a). String

Fig. 8. Types of navigation paths.
4.4 AKDM

Since the quality of schema will affect the life cycle of a
database, we propose IKDM as the template to represent
the schema and knowledge of the application based on the
schema. AKDM manages the database and reorganizes the
schema based on the knowledge (KON). Thus, we
illustratet KON and self-organization mechanism . of
AKDM in detail.

KON

Both knowledge and inference mechanism are
implemented in the persistent object, KON, in ObjectStore.
The object model of KON is shown in Fig. 9. The pattern
matching process is partitioned into the recursive sequence:
Class > Attribute > Condition Test > Action. Initially,
constraints and rules in classes of a schema are inserted
into KON. In other words, an application schema of
SLOODS corresponds a KON in AKDM. Rules induced
by ILE or inserted by users from GUI are also added into
the associated application’s KON during the run-time.

Attribute Node

Fig. 9. The schema of KON.

KON takes advantages of the fast matching algorithm,
Rete [3], which is efficient for a large KBS due to the
same test condition (predicate) is matched only once.
Taking the example from Fig. 9, the process of forward
Inference behaves is shown in Fig. 10. Hence, the
inference process is transformed into the object-navigation
in ObjectStore, and both of the knowledge and the
inference engine are embedded in KON.

KON includes events in the if-part of the rule, thus the
number of predicates (Counter in ActionNode) in a rule
equals to the number of events and predicates in LHS.
Initially, KnowledgeNet receives facts and then sends them
to their relative classes. In ClassNode, it matches those

facts (events or predicates) and sends them to
corresponding EventNodes or AttributeNodes. The
AttributeNode . continues the matching process and passes
the required information to its related TestNodes if
matched. If Event/Test Nodes are matched, they decrease
the Counter of their respective ActionNodes. ActionNode
checks its Counter until the value is zero (the situation
implies that all conditions are satisfied). Again,
ActionNode’s rule is fired to KnowledgeNet, and the same
process is processed until all facts are matched once.
SetTag in Event/Test Nodes is used to avoid to decrease
ActionNode’s Counter again, if Event/Test has been triggered.
In this way, the problem of infinite inference due to the
cyclic rule chaining is also resolved by SetTag. For
instance, if “a = b” and “b = a” form the cyclic chaining.
The firing operation of the both rules is guaranteed only
once due to SefTag in the TestNode of “a” and “b”.

Forward

Inference
Knowledge Class " Attribute Test Action
Net . Node Node Node Node

Match
Class Match
- wibute /. Match
4 Match
Event Event STy Trigger
. Node K

DescreseCounter

Y

‘Counter'
=07
FireAction

Fig. 10. Forward inference in KON (AKDM).

Thus, by applying KON framework, objects existing in top
layer invoke the objects at the lower layer without waiting
for the returned results, and the pipeline inference can be
achieved by multithread in Windows NT. Furthermore, the
inference model is easy to be port in distributed
environment for experiments of distributed AI (DAI).

Self-organization

In AKDM, the self-organization of schema is easily

achieved by detecting classification rules from KON, and

then by reorganizing the schema by ObjectStore's schema

evolution mechanism. For example, the corresponding

self-organizing process of the schema shown in Fig. 2 is

carried out by the following evolution processes:

1. SedanEngine, SportsCarEngine, and BusEngine: inherit
Engine.

2. SportsCarEngine overrides attributes: power = High
and C.C. = ~Low.

3. SedanEngine overrides attributes: power = ~High and
C.C. = ~High. ‘

4. BusEngine overrides attributes: power = High and C.C.
= High.

5. Sedan, SportsCar, and Bus: inherit Car.

61

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

6. SportsCar overrides the attribute: body = Streamline.
7. Sedan and Bus override the attribute: body =
~Streamline.

5. Developing applications on SLOODS

The application based on SLOODS begins with
constructing a database, i.e., the design of schema. The
user can design the schema based on IKDM'’s format with
DDL, or construct the schema through GUI with the assist
from SLE. After constructing the schema, the schema file
is processed by Schema Generator (S-Gen) which elicits
knowledge from schema and adds into AKDM by creating
KON for the application. (The design and implementation
of S-Gen and parser in Fig. 11. are beyond the scope of
our discussion in this study, thus we skip them in sections
4, 5.) Then, the ObjectStore C++:compatible program.is
generated by S-Gen, compiled by Virtual C++ compiler,
and linked with ObjectStore's Class Library. In the same
way, The DML, i.e., queries on the schema are optimized
by IQE and translated into C++ program by S-Gen. The
process is shown in Fig. 11. (Note: The query is optimized
at compile-time, rather than run-time. Since ObjectStore
only provides compile-environment instead of interpreter-
environment, and SLOODS is just it’s applications.)

After constructing the schema and database, users can
assign/trigger the learning task from GUI. Building an
expert system application in SLOODS is also simple by
assigning learning tasks for the knowledge acquisition or
inserting knowledge into AKDM.

1. DDL Program 2.GUL(OO Data Model design tool)

DML, Program (Query Linguage of SLOODS)

ObjectStore Databasc Schema
Application
Using DDL in SLOODS Using DML in SLOODS

Fig. 11. Develop an intelligent database application on
SLOODS.

6. Conclusion and future work

In this paper, we described a system, SLOODS, to support
the development of DBS and KBS applications by
mutually taking asset from both systems. The design of
AKDM combines the knowledge and the inference
mechanism with Rete’s efficiency in KON. It also supports
dynamic modification of knowledge objects and the self-
organization of schema to enhance the semantic of DB
schema. ILE, with efficient learning AGE, induces

Proceedings of international Conference
on Artificial Intelligence

knowledge from the database on behalf of the process of
knowledge acquisition, intelligent query optlmlzatlon and
self-organizing schema.

Database mining is one of the most promising fields for
the integration of Al and database systems. For the field,
Learning Method and Knowledge Representation are the
kernel techniques. In this study, we investigate both fields
and develop an integrated intelligent information system.
In the future, there are several facets can be enhanced the
system such as porting the system to a distributed
computing environment, or applying fuzzy concept in
KON. The former can investigate the performance of
concurrently or parallel inference of KON which is known
in the filed of DAI (Distributed AI). As for the later
research, currently, the fuzzy concept was applied in ILE
only. The FKON (Fuzzy KON) is an interesting study
which ‘covers the filed of fuzzy object model. How to
- integrate the forward/backward inference in KON (or
'FKON) efficiently is also an interesting area to us.

Reference

[1]J. R, Kent, R. C. Thomas, and I. S. Torsum, "Concept
Classifier for Knowledge Acquisition in Frame-Based
Systems", in Knowledge Base Systems, Vol. 1, No 5,
Dec., 1988.

[2] Qing Li and Dennis McLeod, "Conceptual Database
Evolution - through' Learning", in Object-Oriented
Databases with Applications to CASE, Networks, and
VLSI CAD, edited by Rajiv Gupta and Ellis Horow1tz
Prentice Hall, 1991.

[3] C. L. Forgy and S. J. Shepard, “Rete: A Fast Maich
Algorithm”, in AI Expert, pp. 34-40, Jan., 1987.

(4] Y. M. Huang and S. H. Lin, "An Efficient Learning
Method for Object-Oriented Database Using Attribute
Entropy" , accepted by IEEE Trans. on Knowledge
and Data Eng., Dec., 1996. ,

[5]1S. H. Lin, Y. M. Huang, and Y. S. Duan, "The
Design of a Learning Algorithm for Object Oriented
Data Model" , National Computer Symposium, 1993,
Taiwan,

[6] ObjectStore Reference Manual.

[7] Shashi Shekhar et al., "Learning Transformation Rules
for Semantic Query Optimization: A Data-Driven
Approach”, in IEEE Trans. on Knowledge and Data
Eng., Vol. 5, No. 6, Dec. 1993, pp. 950-964.

[8] Herve Gallaire et al. "Logic and Database : A
Deductive -Approach”, in ACM Computing Surveys,
Vol. 16, No 2, June 1984,

(9]1]. Han, Y. Cai, and N. Cercone, "Knowledge discovery
in databases: An attribute-oriented approach”, in Proc.
18th VLDB Conf., 1992, pp. 547-559.

[10] S. T. Shenoy and Z. M. Ozsoyoglu, "Design and
Implementation of a Semantic Query Optimizer", in

62

IEEE Trans. on Knowledge and Data Eng Vol. 1, No.
3, Sep. 1989, pp. 344-361.

[11] Michael J. Carey and David J. DeWitt "Extensible
Database Systems", in On Knowledge Base
Management Systems, edited by Michael L. Brodie and
John Mylopoulos, Springer-Verlag, 1986.

[12] Michael Stonebraker et. al. "The

. POSTGRES", in ACM SIGMOD, 1986.

[13] Christoph F. Eick and Makolm Taylor, "Integrating
Sets, Rules, and Data in an Object-Oriented
Environment", in IEEE Expert, Feb. 1993.

[14] C. J.. Matheus, P. K. Chan, and G. P. Piatetsky-
Shapiro, “Systems for Knowledge Discovery in
Databases”, in IEEE Trans. on Knowledge and Data
Eng., Vol. 5, NO. 6, Dec., 1993.

[15] James Rumbaugh et. al. "Object-Oriented Modeling
and Design", Prentice-Hall, 1991. .

[16] Mark S. Fox and John McDermott "The Role of
Databases in Knowledge-Based Systems", in On
Knowledge Base Management Systems, edited by
Michael L. Brodie and John Mylopoulos, Springer-
Verlag, 1986.

[17]1H. H. Pang, H. J. Lu and B. C. Ooi, "An Efficient
Semantic Query Optimization Algorithm", in Proc. of
Seventh Intl. Conf. on Data Eng., 1991, pp. 326-333.

[18]R. Elmasri and S. B. Navathe, “Fundamentals of
Database Systems”, Benjamin/Cummings Publishing
Company Inc., 1989.

[191J. R. Quinlan, "Induction of Decision Trees", in
Machine Learning, Vol. 1,1986, pp. 81-106.

[20] E. A. Rundensteiner, “The Role of AI in Databases
Versus the Role of Database Theory in Al: An
Opinion”, in Artificial Intelligence in Database System
and Information Systems, North-Holland, IFIP, 1990.

[21]Jay Banerjee and Won Kim, "Semantics and
Implementation of Schema Evolution in Object-
Oriented Databases”, in ACM SIGMOD, 1987.

[(22] Y. J. Fu and J. W. Han, “DBLearn: A .System
Prototype for knowledge discovery in relational
databases”, in ACM-SIGMOD, 1994.

[23] ObjectStore User Guide: LI.

[24] P. Choen and E. A. Feigenbaum, "Learning and
Inductive Inference", in The Handbook of Artificial
Intelligence (Vol. III), Chapter XIV, Heuristic Press
and William Kaufman, 1983.

Design of

