Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Query Size Estimation using Machine Learning

Banchong Harangsri

John Shepherd “ Anne Ngu

School of Computer Science and Engineering,
The University of New South Wales, Sydney 2052, AUSTRALIA.
Telephone: +61 2 9385 3980

Abstract

We propose two novel notions in this paper: the
first is that machine learning technigues can be used to
-solve the problem of query size estimation and the sec-

ond is a new generic algorithm to correct the training
set of queries in resporise to updates. The main ad-
vantage for machine learning is that no database scan
is required to collect statistics for query size estima-
tion. The training set correction algorithm is useful in
that it allows us to “re-vitalise” some existing query
size estimation methods whose performance previously
deteriorated in the presence of high update loads. A
by-product of this is that the length of training sets can
be fized — the size of the training set determines the
level of error in query estimation. Our ezperimental
results show that (1) the machine learning technique
is superior to a recent curve. fitting method in approzi-
mating query result sizes and (2) the machine learning
technique still performs as well after the correction al-
gorithm is applied.

Keywords Query Size Estimation, Query Optimi-
sation, Machine Learning

1 Introduction :

Query optimisers for database systems aim to de-
termine the most efficient query execution plan to be
executed by the database system. Choosing an effi-
cient plan relies on cost estimates derived from the
statistics maintained by the underlying database sys-
tem. Work by [10] pointed out. that inaccurate esti-
mates derived from such statistics may cause the opti-
miser to choose a very poor plan. Although the initial
error might be negligible for the first subplan (such as
the first join/selection), the subsequent errors (errors

in the next subplans) can grow very rapidly (i.e., ex-

ponentially). Good estimates for the cost of database
operations are thus critical to the effective operation
of query optimisers and ultimately of the database
systems that rely on them. This paper proposes a
novel method to improve such cost estimation.

47

Fax: +61 2 9385 1813

Email: {bjtong, jas,anne}@cse.unsw.edu.au

There has been a considerable amount of work on
the issue of selectivity estimation over one and a half
decades [19, 5, 6, 16, 11, 9, 14, 15, 13, 7, 20, 4].
This previous work can be classified into four cat-
egories [20, 4], namely non-parametric, parametric,
sampling and curve fitting. Let us briefly describe
each of them, the reader can find- more details in the
references given above. :

'The non-parametric method is table- or histogram-
based [16, 15]. A histogram is built by dividing an at-
tribute domain into intervals and counting the num-
ber of tuples which fall into the ranges of the intervals.
The method requires scanning an entire relation to
build up the histogram and the performance (the ac-
curacy of the size estimation) will not be satlsfactory
if the number of intervals used is too small.

The parametric-method [19, 5, 6] is one which de-
pends upon underlying assumptions :about the data
distribution (e.g. - uniform, normal, Poisson, Zipf,
etc.). The method will' give accurate query ‘size es-
timates if the actual data distribution follows the a
priori assumption. In reality, data distributions in
real databases may not fit well with the assumptions
and, consequently, the quality of the size estimates
could be unreliable.

The sampling method [13, 7] has recently received
considerable interest. The accuracy of this method
depends upon the size of samples; the higher the sam-
ple size, the better the estimation. Given complex
queries which consist of several selection and j join op-
erations, the method may require a nontrivial amount
of time to do a number of samplings (perhaps one
for each operation). Compared with other estimation
methods which require no extra delay for the sam-
plings, this could be a significant disadvantage.

The curve-fitting method [20, 4] is based on poly-
nomial regression to find the best-fit set of coefficients
to minimise the criterion of least-squared error.

" The curve fitting method proposed by [20], scans
entire relations and uses regression to determine the

Proceedings of International Conference
on Artificial Intelligence

distributions of attribute values in each relation. This
approach is effective only for low-update database sys-

tems. That is, as long as the distributions of attribute

values remain fixed, the method performs satisfacto-
rily. However, if the distributions change consider-

ably, then the quality of the size estimates may dete- .

riorate significantly.

The curve-fitting method proposed by [4] uses o

query feedback to construct cost estimation functions.
It uses queries of the form low < al < high, where al
is an attribute, and the result sizes of the queries as
the basis for regression. An advantage of this method
over others mentioned above is that it requires no scan
over the database to build up-statistics. As more and
more queries have been processed and their feedback
becomes avallable to perform regression, the method
will give more accurate query size estimation. .

However, this second curve fitting method, adap-
tive selectivity estimation (or ASE) has problems in
dealing: with updates The method uses “fading
weights” to gradually reduce the significance of old
query feedback in query. size estimation. However,
fine-tuning for the best set of fading weights is a dif-
ficult optimisation problem

'The method that we propose in this paper aims
to overcome most of the difficulties mentioned above.
Our overall approach is to derive size estimation func-
tions using machine lea,rmng techniques. Specifically,
we proceed as follows

1. use feedback from a training set of queries to con-
struct a model tree (or regression tree) [3],

2. when we need to estimate the result size of a given
query, determine three most similar queries to the
given query from the training set.

3. approximate the result size of the given query by
using the model tree and the result sizes of the
most similar querles

The following advantages are common to both ASE
and our method:

¢ no relation scan: We do not need to scan rela-
tions to collect statistics on which to base query
‘size estimation. All of the methods above, ex-
cept the parametnc method, requlre scannmg of
relations: " e

. adaptiveness: The estimation accuracy im-
proves as more and more queries have been pro-
cessed and stored in the training set. In the-ASE
method, extra query feedback assists in adjust-
ing the data distribution curve to better fit the
actual distribution of attribute values. In our

48

method, the extra feedback is used to assist in
better picking up the three most similar queries.

*-.- However,.in the presence of very high loads of
updates, ASE and our method use different ap-
proaches to maintain. size estimation accuracy.
We believe that our approach is more effective,
and: more widely applicable than the approach

- used by ASE. Except for the sampling method,
the other schemes lose their accuracy as the
_database changes. '

Our method has the following advantages over the
ASE method:

e generic algorlthm for updates: The algo-
rithm we give in [8] with some slight modification
can also be used with the size est1ma,t1_on methods
proposed in [20, 4]. In other words, some size es-
timation methods proposed for retrieval-only or
retrieval-intensive environments can be adapted
for use with databases with high loads of updates.

Given a list of records affected by updates (either
inserts or deletes), the algorithm can correct:

— The distinct-value-frequency list (z;, f(z;)),
where z; is a distinct value in an’ attribute
domain and f(z;) is the frequency of z; be-
fore the original size estimation method can
be applied. -

The query feedback list (I;, ki, s;), Wh_ere U
and h; are lower and upper bounds of the ith
query (such as I; < b1 < h;) and's; is the
result size of this query. After the feedback
list has been corrected, then the original size
estimation method can be applied.

This ensures that the lists always reflect the fre-
quency f(z;) and size s;. Obviously, assuming
that the original size estimation methods are ac-
curate in query size estimation; the additional
approach to deal with updates proposed in. [4] .
- would be only ad-hoc and not necessarily as ef-
fective as the original size estimation method.

e static list: Since our algorithm for correct-
_ ing lists of query feedback and distinct-value-
frequency makes the current lists always up-to-
date, the length of the lists would not necessarily
-be extended. In other words, after the length of
lists has reached a certain size and the error in
query size estimation has dropped to a satisfac-
tory level, then the length remains constant. The
approach to deal with updates in [4] corbines the

outdated and up-to-date list of query feedback®,
and thus requires the old list to be retained.

This paper is structured as follows:

¢ notations and definitions (section 2): We
describe some notation which appears through-
out the paper and clarify some frequently used
terms.

¢ size estimation with retrieval queries (sec-
tion 3): This section establishes a framework for
using machine learning techniques for the query
size estimation problem.

¢ size estimation with updates: This section
provides the background of the relationship be-
tween queries and frequency distribution of at-
tribute values before we proceed to give an algo-
rithm to correct the list of queries in a training
set.

o experimental results: This section demon-
strates the performance of our method and com-
pares it to the ASE method.

¢ conclusions: We give some final remarks and
address some issues for future investigation.

Due to the space limit, the sections on size estimation
with updates and experimental results are not given
‘here; we refer the reader to the complete version of
the paper in [8].

2 Notations and definitions
The following notations and terminology either ap-
pears throughout the paper or needs clarification:

simple query g; A selection query on a single at-
tribute of the form: b relopt =, where b is an at-
tribute of relation R and relopt is one of the rela-
tional operators in {<, >, =, #}. Note that these
four relational operators are sufficient to cover
other types of simple queries, such as b < «z,
b > z orlow < b < high. For example, b < =z
can be replaced by (b < z) U (b = z). Similarly,
b > z can be replaced by (b > z) U (b = z).
And low < b < high can be replaced by (b <
high) N (b > low).

attribute The simple query above consists of 3 at-
tributes, b being counted as 1st attribute, relopt
as 2nd attribute, and z as 3rd attribute. The
term attribute will occasionally be used with its
normal meaning “attribute of a relation”. The

1and use the fading weights to reduce the effect of the out-
dated feedback in query size estimation

49

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

intended meaning is always clear from the con-
text.

continuous attribute The simple query above has

constant z which would generally be either nu-

meric or string. Numeric values have a natural

order. For string values, we sort all strings in

the training set in ascending lexicographic order,

- and assign a rank (i.e. 1,2,...) to each strmg to
convert them to numeric values.

discrete attribute The 51mp1e query above has b
and relopt as discrete attributes. Discrete at-
tributes have no natural ordering on their pos-
sible values. In other words, we cannot say at-
tribute bl of relation R is less than or more than
attribute b2 of the same relation. Likewise, we
cannot say that relational operator < is less or
more than relational operator >.

training set of queries Q A set of simple queries
which' have been’ collected from previous user-
submitted queries? and their result sizes; namely,
each query g; in the set is of the form:

g (b re_lopt; Tscaleds Sg)

where S, is the result size of ‘this quéry and
Tscaled 1S an z value linearly scaled by:
T — Tmin

Tscaled =

maz — Tmin

where %, is the minimum value in the domain
of attribute b and z,,,,, the maximum value in
the same attribute domain. Note that only values
of the continuous attribute will be scaled. Thus,
for any simple query, only the third attribute z is
continuous (while the other two attributes b and
relopt are discrete) so its = value will be scaled
by the formula above .

unseen query ¢, A simple query whose result size
we want to estimate. After this unseen query has
been processed by the database system, it may be
added to the training set of queries. .

sd(Q) This is the standard deviation of the result
sizes of queries in the training set @ computed

by:
— Elg! (S i T 5')

1l g
where S = —1|—1|——

2The user-submitted queries may have contained other sub-
queries such as join queries; we assume here that there are ways
to extract only subquery b relopt z out of its entire query.

Proceedings of International Conference
on Artificial Intelligence

3 Size estimation with retrieval
queries

In this section, we describe a machine learning
technique to solve the query size estimation prob-
lem. This technique was originally proposed by Quin-
lan [18] as a combination of model-based learning and
instance-based learning. Quinlan’s experimental work
suggested that the model tree approach to model-
based learning was the most effective. A model tree is
a regression tree and originated in work by Breiman
et. al. [3]. Instance-based learning herein on which
we are based was originally proposed in [12, 1, 2].
The instance-based learning technique can do either
a classification or regression task while the model-tree
learning technique does only the regression task.

To approximate the size of an unseen query, there
are two main steps. First, a model tree is constructed
through a training set of queries Q. Second, using (1)
the model tree and (2) three queries picked up from
the training set which are of the most similarity to
the unseen query, the result size of the unseen query
can be approximated. The details of each step are
described in Sections 3.1 and 3.2, respectively.

3.1 Constructing model tree (leaf node
functions)

Given in Figure 1 is the Partltlon algorithm to
construct a model tree — the tree with linear regres-
sion functions in its leaf nodes. The algorithm was
implemented to suit our own use in the query size es-
timation problem. Two major differences are that the
version we implemented has no pruning procedure and
no smoothing procedure. Furthermore, there may be
other different internal fine-tunings between our ver-
sion and the original version [18] such as the minimum
number of queries in leaf nodes, the minimum error
reduction to suppress the recursive partitioning, etc.

The idea to construct a model tree is similar to
growing a decision tree by C4.5 [17]. The difference
is that the latter is based on maximising information
gain while the former is based on minimising intra-
subset variation of class values, i.e., query result sizes
in our case. The minimisation of the intra-subset vari-
ation in the algorithm (see lines 13 and 25) is imple-
mented by:

partzition IQ:I
1Ql

i=1

)i)

where @) is a query set and @;,7 = 1..partition is each
query subset of Q. The fundamental rationale behind
in doing that is that the query result sizes in each
partitioned query subset @; will be most similar to
one another; in other words, the variation of the sizes
in the same query subset will be small.

50

The algorithm recursively partitions the
training set of queries @ into query sibsets
Q],Qz, ‘e 7Qpartition (see the ‘details of the al-
gorithm in Figure 1). The recursion stops in 2 cases
(see lines 1-and 33). The first case is when there are
not enough a number of queries in @%. The second is
when the standard deviation of result sizes of queries
in @ is too low. In other words, the variation of the
result sizes in each partitioned query subset Q; is
similar to one another, i.e.,

Sd(Q) Zpartztwn J_Q_,’l " Sd(Q)
((o)

The partitioning of) into its query subsets de-
pends upon whether the current ¢th attribute is con-
tinuous or discrete. If continuous, then do a bi-
nary partitioning on @) into @1 and @, (see line 11).
If not, then do a multi-way partitioning on @ into
Q1,Q2,...,Q4 (see line 21), where d is the number of
distinct values of ith attribute in query set Q.

Figure 2 shows an example of a model tree con-
structed by the Partition algorithm. Quéry subsets
after the algorithm has terminated reside in the leaf
(rightmost) nodes of the tree. The labels A, B, C,

.y L show all the leaf nodes of the tree.

Here is the description of how the model tree in
Figure 2 was built. Recall that query set @ contains
queries of the form b relopt z. Starting from the root
node, entire query set Q was first multi-way parti-
tioned (multi-way partitioning) into 4 query subsets,
i.e., the query subset with “=" only as its relational
operator, the query subset with “<” only as its oper-
ator, and so on. In the next level (after the relational
operator level), those 4 query subsets were then bi-
nary partitioned (binary partitioning) on their. con-
stant values, i.e., values of z. For instance; after the
“<” level, at node E the constant values of b1l must be
less than or equal to 0.27 while at node F those of bl
must be more than 0.27. It’s possible that any query
subset at this stage can still be recursively partitioned
further until the two stopping conditions of the algo-
rithm become true. For example, at node b1 < 0.36
the query subset at this node was binary partitioned
into 2 query subsets — the subsets with bl < 0.09 and
with b1 > 0.09.

3.2 Estimating query result sizes

) ¥ 100 < 1.0

3.2.1 Result size estimation function in leaf

node
Suppose we have an unseen query:
qu: 01,=,0.29

3In our implementation, we use 60 as a minimum number of
queries in a leaf node.

© B N e ! s W N e

10
1
12

13

14
15
16
17
18
i9
20
21
22
23
24

25

26
27
28
29
30

32

33
34
35
36
37
38

if |@| < 60 then
return
endif
Qbest = 0
Jpest = —00
partition =0
for each attribute i € {1...n} do
if attribute 7 is continuous then
Q@ = sort @ on ith attribute’s values in ascending order
for each sorted value v of attribute 7z in @ do

Joint Conference of 1996 International Computer Symposmm
December 19~21, Kaohsiung, Taiwan, R.0.C.

partition @ into @1 and Q2 where all values of attribute ¢ on @1 < v and on Q2 > v

compute an expected error reduction §:
2
§=sd(Q) -7, Ilel * 5d(Q;)

if § > Opest then
Qbest = {Q1,Q2}
Obest =
partition = 2
endif
endfor
" else
partition @ into Q1,Q2,..

., Qg where d is the number of distinct values

of attribute ¢; namely, in each query subset @Q; after partitioning,

the values of attribute 72 now will be the same
compute an expected error reduction §:

6= sd(Q) - Yoi, 5l sd(Q))
if 6 > dpest then
Qbeat = {Ql’ Q2’ ve st}
Opest =
partition = d
endif
endif
endfor partition |Q
if (sd(Q) Eiﬂsd(Q) -mirud(q.')) 100 < 1.0¢}0™% where each Q; € Qpest then
return .
endif
for each query subset @Q; € Qpeq: do
Partition(Q;)
endfor

Figure 1: Algorithm Partition (Q)

and we want to estimate its result size. The query will
be parsed down the constructed model tree towards
a leaf node. Shown in Figure 2, the path 1 —» 2 —
3 — 4 terminated in the oval leaf node C is the one
through which the query ¢, traverses. The traversal
proceeds as follows: path 1 stems from the fact that
this model tree is for attribute bl and the query has
“=” as its relational operator, path 2 is due to the

fact that the constant value 0.29 of bl is less than

0.36, path 3 is due to the fact that the constant 0.29
of bl is more than 0.09 and path 4 is due to the fact
that the constant 0.29 of bl is more than 0.27.

The oval and other leaf nodes with their own query
subsets ; have their own query size estimation (lin-

51

ear regression) functions; namely, each leaf node has:

M(q) 1)

where a;,i = 1..n takes on either (1) a value of ith
attribute if the ith attribute is continuous or (2) a
rank? of this value if the ith attribute is discrete. The
value of n in the case of simple queries (b relopt x)
is 3, b being counted as the st attribute, relopt as
the 2nd attribute, and z as the 3rd attribute. §;,i =
0..n is a coefficient of the least square error found by
minimising the least square error of the estimated and

= fo+ fiar + Paaz + .. . + Bran

“Here is how to give the ranks of a discrete attribute.
Supposing in the training set @, all the values of the sec-
ond attribute (containing relational operators) are either of
{=,<,>,#}, then the respective ranks of each of those values
can be given by: {1,2,3,4}.

Proceedings of international Conference
on Artificial intelligence

bl <

/

D

E: b1

\

F

G: bl

/

H

A

.
.

0.3

6/
0@

b1 > 0.36

A: b1 <£0.09

B: b1 <£0.27

3

CC: B> 027>

<0.27

b1 > 0.27

<0.27

e
&0

b1 > 0.36

/A

b1 > 0.27

I: b1 <0.09
J: 51 <0.18
> 0.0

K: b1 >0.18

Figure 2: A model tree constructed by the algorithm Partition

actual values, i.e.,:

(@i
(M(g5) = Sy,;)?
1

=

where S;; is the actual result size of the jth query in
query subset Q;.

In summary, after parsing a query g, to a leaf node,
its estimated result size can be approximated by the
function in equation 1 in that leaf node.

3.2.2 Choosing most similar queries

We compute a similarity value simval between the
unseen query g, and a query g¢; in the training set Q
by the algorithm shown in Figure 3.

Three queries from the training set Q which have
the highest similarity values will be chosen as the most
similar to the unseen query. The reason in choosing 3
.queries instead of other numbers can be described as
follows:

¢ Choosing any number has a tradeoff between bias
and variance (see the CART book [3]); namely,
higher numbers have higher bias but lower vari-
ance.

52

e Generally, the instance-based learning or KNN
(K Nearest Neighbor) methods avoid even num-
bers, since that is more likely to lead to ties. Us-
ing 1 neighbour (query) is generally considered
to have too high variance. '

3.2.3 Combining leaf node functions and
most similar queries

We then adjust the actual result sizes S,, of the three
queries of the most similarity to the unseen query g,
by:

‘§Qi = Sqi - (M(ql) - M(q'll-)) ;i = 112)3

prior to combining them to produce the estimated
value Sy, of the result size of query ¢,. The com-
bination of the adjusted values S,, is done by:

3) :
A Z & simvalg,
SQu = Sqi *wq:'

i=1

) We; =

—_. (2
SL simoaly,)

At this point, it is valid to ask:

® Why don’t we use M(gy) in equation 1 as the
query size estimate S, ?

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

input: unseen (juéry g and query ¢; in the training set @
output: . simuvel similarity value of query g; to gu

distance = 0
for each attribute 2 € {1...n} do
if attribute 7 is discrete then
“if ith attribute’s value of the unseen query g, is different from that of query g; then
distance = distance + 1
endif
else
A = the dlﬂ’erence between ith attrlbute s values of the unseen 1 query and query g;
distance = distance + A2
endif ’

endfor
1

simual = —————
Vdistance

Figure 3: Algorithm Compute Simval(Q)

e Why don’t we use: ' e In [8] (the complete 'version of this paper), we
- 3 ’ ' have given a novel generic algorithm to correct
_ Z S xw W = simualg,) the distinct-value-frequency list ,(‘7:"’ f(z:)) [20],
@ I Ele simucly, the query feedback list (I;,hi,s;) [4] and our

training set of queries. This "algorithm re-

as the query size eétimate S'qu? . validates the original query size estimation meth-
The answer is twofold:

e The author described in {18] that equation M (q) very high loads of updates.
allows taking into account the difference bétween

the unseen query g, and a most similar query g;, The following is what we plan to do:

Le.: o extend the current machine learning technique to
_ M(g:) — M(gu) deal with join queries.
and 1f the equation M(q) is correct, then the ad- ‘ ‘

justed value (S): ‘ e perform more experiments to demonstrate the

ods in [20, 4] which otherwise will be invalid, i.e.,
poor in query size estimation in the presence of

performance of M5 in approximating sizes of

— (M(q:) — M(qu)) more complicated selection queries such as ones

specifying on more than one attribute.
should be a better value in favour of the un-

seen query than the quantity Sy, alone. However, Acknowledgements

since each most similar query g; is not the unseen We appreciate Dr. Andrew Taylor for pointing us
query g, itself, the combination of their adjusted t0 the learning machine M5. Zijian Zheng helped us a
values in equation 2 based on their weights (this lot at the beginning of this project to enable us to un-
is the main principle of KNN) would produce a derstand how M5 constructs a model tree. Lastly, the
good estimate for the size of the unseen query. very nice line numbering in all the algorithms appear-

e The second answer is pragmatic: both the ex-
periments in [18] and our own experiments show
that equation 2 yields the best results.

ing in the paper comes from the great help of Stephan
Béttcher. Stephan spent his valuable time modifying
his original package lineno.sty to enable the line

numbering in figure environment, while running out

4 Conclusions of time in writing his PhD dissertation.
The following is what we have achieved in this pa- References
per: [1] D. W. Aha. A Study of Instance-Based Algo-
e We have proposed a machine learning technique rithms for Supervised Learning Tasks: Mathemat-
to solve the problem of query size estimation. ical, Empirical, and Psychological Evaluations. PhD
The learning machine M5 has demonstrated its thesis, Department of Information and Com-
superior performance to the ASE method (see the puter Science, University of California, Irvine,
results in [8]). CA 92717, Nov 27 1990.

53

Proceedings of International Conference
on Artificial intelligence

[2] D. W. Aha, D. Kibler,
Instance-Based Learning Algorithms.
Learning, 6(1):37-66, 1991.

and M. K. Albert.
Machine

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and. Regression Tress.
Chapman & Hall, Inc., 1984.

[4] C. M. Chen and N. Roussopoulos. Adaptive
Selectivity Estimation using Query Feedback.
In Proceedings of 1994 ACM-SIGMOD Interna-
tional Conference on Management of Data, 1994.

[5] S. Christodoulakis. Estimating Block Transfers
and Join Sizes. In Proceedings of the ACM SIG-
MOD Conference, pages 40-54, 1983.

[6] S. Christodoulakis. Estimating Record Selectiv-
ities. Information System, 8(2):105-115, 1983.

[7] P. Haas and A. Swami. Sequential Sampling Pro-
cedures for Query Size Estimation. In ACM SIG-
MOD Conference on the Management of Data,
pages 341-350, 1992. a

B. Harangsri, J. Shepherd, and A. Ngu. Query
Size Estimation using Machine Learning. Tech-
nical report, The University of New South Wales,
School of Computer Science and Engineering,
Sydney 2052, AUSTRALIA, 1996.

(8]

[9] W. Hou, G. Ozsoyoglu, and B. K. Taneja. Sta-
tistical Estimators for Relational Algebra Ex-
pressions. In Proceedings of the ACM SIGACT-
SIGMOD Symposium on Principles of Database
Systems, pages 276287, 1988.

[10] Y. E. Ioannidis and S. Christodoulakis. On the
Propagation of Errors in the Size of Join Results.
In Proceedings of the ACM-SIGMOD Intl. Conf.
on Management of Data, pages 268277, 1991.

N. Kamel and R. King. A Method of Data Dis-
tribution Based on Texture Analysis. In Proceed-
ings of the ACM SIGMOD Intl. :Conf. on Man-
agement of Data, pages 319-325, , 1985..

[11]

D. Kibler, D. W. Aha, and M. K. Albert.
Instance-Based Prediction of Real-Valued At-
tributes. Computational Intelligence, 5:51-57,
1989.

[12]

[13] R. J. Lipton, J. F. Naughton, and D. A. Schnei-
der. Practical Selectivity Estimation through
Adaptive Sampling. In Proceedings of ACM SIG-
MOD, pages 1-12, 1990. '

54

(14] M. Mannino, P. Chu, and T. Sager. Statistical
Profile Estimation in Database Systems. ACM
Computing Surveys, 20(3):191-221, september
1988.

[15] M. Muralikrishma and D, DeWitt. Equi-depth
Histograms for Estimating Selectivity Factors for
Multi-Dimensional Queries. In Proceedings of the
ACM SIGMOD Conf. on Management of Data,
pages 28-36, 1988.

[16] G. Piatetsky-Shapiro and C. Connell. Accurate
Estimation of the Number of Tuples Satisfying a
Condition. In Proceedings of the ACM SIGMOD
Conference, pages 256-276, 1984. Boston, Mass,
June, ACM, New York.

[17] J. R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, Cali-
fornia, 1993.

(18] J. R. Quinlan. | Combining Instance-Based and
Model-Based Learning. In Proceedings of Ma-
chine Learning. Morgan Kaufmann, 1993.

[19] P.G. Selinger, M.M. Astrahan, D.D. Chamber-
lin, R.A. Lorie, and T.G. Price. Access Path
Selection in a Relational Database Management
System. In ACM SIGMOD, pages 23-34, 1979
Boston, MA, June 1979.

[20] W. Sun, Y. Ling, N. Rishe, and Y. Deng. An In-
stant and ‘Accurate Size Estimation Method for
Joins and Selection in a Retrieval-Intensive En-
vironment. In Proceedings of ACM SIGMOD,
pages 79-88, 1993.

