Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

A Comparative Study of Genetic Algorithms for Vehicle Routing
with Time Constraints

Wan-Rong Jih
jih@robot.csie.ntu.edu.tw

Ying-Ping Chen
ypchen@solab.csie.ntu.edu.tw

Jane Yung-Jen Hsu
yjhsu@csie.ntu.edu.tw

Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan

Abstract

In this paper we investigate genetic algorithms as a
search technique for obtaining near optimal solutions
to the "single-vehicle pickup and delivery prrblem
with time windows and capacity constraints” (single-
vehicle PDPTW). This work compares four crossover
operators, order crossover (0X), uniform order-based
crossover (UOX), Merge Cross #1 (MX1) and Merge
Cross #2 (MX2). The results of our ezperiments
show that UOX and MX1 are suitable for the single-
vehicle PDPTW, but OX and MX2 are not. In the
future, we will lay more emphasis on UOX and MX1
for searching better solutions.

1 Introduction

In the real life, a variety of vehicle routing problems
emerge in transportation systems, mail delivery rout-
ing, and jobshop vehicle scheduling situations. Con-
sider an autonomous vehicle in an automated factory.
There are usually many different requests for trans-
porting materials to and from a number of locations.
Moreover, each request may be associated with time
constraints on its pickup or delivery locations. In gen-
eral, the vehicle has a load capacity that cannot be
exceeded. The vehicle routing problem is to find the
optimal route such that the vehicle can complete all
the requests while satisfying all the constraints.

The problem was first formulated by Dantzig and
Ramser[2], and has been extensively studied by re-
searchers on distribution management problem in op-
erations research. Golden and Assad[6], Laporte[9],
Gendreau and Laporte and Séguinf[4] provided the
surveys of this problem. It is a hard combinatorial
problem, and to this day only relatively small VRP
instances can be solved to optimality. Heuristic algo-
rithms, are quite often faster and capable of obtain-
ing optimal or near-optimal solutions to much larger
problems in a reasonable amount of computer time.

17

In this paper we introduce genetic algorithms
(GAs) for solving the vehicle routing problem. We
compared four different crossover operators, includ-
ing the order crossover[12, 14], uniform order-based
crossover[3], and merge crossover #1 and #2[8]. The
rest of this paper is organized as follows. Section 2
gives the problem formulation, and Section 3 describes
our implementation of genetic algorithms. The exper-
imental results and discussion are in Section 4, fol-
lowed by the conclusion in Section 5.

2 Problem formulation
In this paper, we consider the single-vehicle pickup

.and delivery problem with time windows and capac-

ity constraints (single-vehicle PDPTW). Suppose that
the vehicle is at a depot initially, from which the ve-
hicle departs for its first destination and will visit
a number of locations. For each problem, there are
N customer requests, each of which is specified by a
pickup point and a delivery point. Let v; and vy
denote the pickup point and the delivery point of cus-
tomer i respectively, and :

V = {'U(),’Ul,...,’vgN}

be the set of vertices in the problem, where vg is the
depot. Each pickup or- delivery point is associated
with a time window [a;; b;] which is a time inter-
val representing the earliest and the latest processing
time of v;.

In the present work, we have the following assump-
tions:

o If the vehicle arrives at a destination earlier than
the lower bound of its time window, it has to
wait.

o The time needed to travel from one location to
another location is known a priori.

Proceedings of International Conference
on Artificial Intelligence '

¢ Fach location has an a priori time window for
service.

Our goal is to find a vehicle route starting from a
predefined depot, serving all N customers, and end-
ing at one of the delivery points, such that both the
traveling time and the waiting time of the vehicle are
minimized.

A solution to the single-vehicle PDPTW can be
represented as an ordered list of vertices such that

S = (Up(0), Up(1), Vp(2) 5+ - - s Up(2N))»

where p(-) is a permutation of integers from 1 to 2N,
and p(0) = 0. We define’ S(3), i = 0,...,2N, as the
ith component of S (i.e. §(i) = vp(;)) for convenience.
Thus, S is a vehicle route from v,y t0 vp(2n) through
Up(1)» Up(2)s + - +s Up(2N-1):

Let function T3(v;,v;) be the traveling time for the
vehicle to move from v; to v;, and function T,(S, 1),
i = 1,...2N, denote the arriving time of the vehicle
at v; according to the specific route S..We can define
the single-vehicle PDPTW as

min ¢(S),

where the objective function ¢(-) is defined as

wlth (i —1),8(3))

z.-l

+ WZ f(ai = Tu(S,1)),

=1

(1)

and function f is

@)= {

The first part of Equation (1) is the total traveling
time needed by the vehicle for completing the route,
and the second part of Equation (1) is the total wait-
ing time. Where q; is the lower bound of time window
[a:, b;], and wy, wo are the weights reflecting the rel-
ative importance of these two parts. This objective
function assumes that the vehicle ends at S(2N).

‘Besides minimizing ¢(-), solutions are subject to
three types of constraints associated with the single-
vehicle PDPTW:

o capacity constraints: The vehicle has a capacity
of C. The capacity constraint cannot be violated
(i.e. the total load allocated to a vehicle cannot
exceed its capacity) at any time. That is, the
equation

z ifx>0.
0 Otherwise.

2N »
> fleap(8,i) - C) =0 (2)

=0

18

has to be satisfied.

o time window constraints: Whenever the vehicle
arrives at vertex v; at time ¢;, the criterion t; < b,
must be satisfied. It can be formulated as

Zf

a(S,1) — b;) = 0. (3)

e precedence constraints: Vertex v; may have to be
visited before vertex v;. For example, the pickup
point must be visited before the delivery point

if they belong to the same customer. Such con-
straints are written as
It p(i) =k and p(j) =N +k, (4)
then 17 <j. Vk=1,...,N.

We have modeled the single-vehicle PDPTW as an
optimization problem that minimizes ¢(S) with con-
straints. To avoid minimizing the objective function
under the constraints directly, some of the constraints
in the problem are relaxed as follows.

The main idea is to permit violations of constraints
but with some penalties. First, we define functions
and v as

2N
= Z f(cap(S, 7’)

=0

- (), and’

2N
=3 F(Ta(S,3) - b).
i=1

The objective function of the relaxed problem éa,n now
be defined as

B(S) = ¢(S) + MY1(S) + 1292(S), ()
where 71 and v, are penalty coefficients for Equa-
tions (2) and (3) respectively.

And then, the relaxed single-vehicle . PDPTW is

min ®(S)
subject to
If pG)=k and p(j)=N+k,
‘then < j. Vk=1,...,N.

The precedence constraint will be elirninated by
the chromosome adjustment scheme discussed later in
this paper. In what follows, all the experiments are
designed to solve the relaxed single-vehicle PDPTW.

3 Genetic algorithm T

Genetic algorithms (GAs) are search algorithms
based on the mechanics of natural selection and nat-
ural genetics. “The survivals of the fittest” among
string structures are recombined with a structured
vet randomized information exchange to form such
a search algorithm. In every generation, a new set of
artificial creatures (strings) is created using bits and
pieces of the fittest of the old; an occasional new part
is tried for good measure.

John Holland and his collaborators at the Univer-
sity of Michigan have been the key developers of ge-
netic algorithms. Their approach has led to important
discoveries in both natural and artificial systems sci-
ence. Detailed and further information can be found
in many previous publications [5, 10, 11}.

A typical genetic algorithm contains

o some individuals which represent the solutions to
a particular problem coded by a proper chromo-
some encoding scheme (i.e. the population),

o a fitness function to determine the fitness of each
individual,

e a selection operator to select individuals for ap-
plying genetic operators, and

e recombination operators (crossover and muta-
tion) handling the evolution.

We summarize the genetic algorithm used in our
work in Algorithm 1.
3.1 Representation

Given a single—vehiclé PDPTW with N customer
requests, a.solution is encoded as a chromosome,
which is represented by a permutation of integers from
1 to 2N. For example, an individual I for a problem
of size N = 4 may look like

I=32487165.

The corresponding route of the vehicle starts at the
initial depot-vg, travels through vs, vg, ..., and stops
at vs.

The representation does not preclude infeasible so-
lutions that violate Equation (4). In all the genetic
operators defined below, a simple algorithm is used
to maintain the feasibility of the corresponding solu-
tions. Algorithm 2 below describes the chromosome
adjustment procedure.

The procedure removes all violations of the prece-
dence constraints by making the pickup point to ap-
pear before the delivery point for any specific cus-
tomer. Algorithm 2 runs in O(N) time using O(N)
space.

19

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Algorithm 1 The genetic algorithm for the single-
vehicle PDPTW

1: Initialize the parameters;

2: Generate a population P randomly;

3: Let generation = 1;

4: repeat

5: Clear the new population P’;

6: Use ®(-) as the fitness function to evaluate each

individual in P; N
7. while |P'| < population_size do

8: Select two parents from P using the tourna-
ment selection ([7, 1]) with the tournament
size = 2;
9: Perform crossover;
10: /* Four crossover operators are tested and
compared in this paper. */
11: Place the offsprings into P';
12: end while
13: Replace P with P’ (i.e. P' — P);
14: Let generation = generation'+ 1;
15: until (generation = maz_generation) or
o(P) ,
(m(P) < 0.005);

16: /* o(P) and m(P) are the standard deviation and
the mean value of the fitness of P respectively. */
17: Output the solutions;

Algorithm 2 Chromosome adjustment scheme

Require: p(-) is the permutation representing the so-
lution to be adjusted.
Ensure: p/(-) is the permutation that forms a feasible
solution.
Create an array A with 2N elements;
for i =1to 2N do
Ap()) =4
end for
fori=1to N do
if A(i) > A(N +1) then
Swap(A(i), AN +3));
end if
: end for
: fori=1to 2N do
p'(AQ) =4

: end for

R e B A i s i v

T = e
R

Proceedings of International Conference
on Artificial Intelligence

3.2 Crossover Operators

The chromosomes representation we designed is
order-based and research has been done on crossover
operators for such chromosomes ([5, 12]). In the
present work, we compare the performance of four
crossover operators on the single-vehicle PDPTW
problem. These operators are order crossover (0X),
uniform order-based crossover (UOX), Merge Cross
#1 (MX1) and Merge Cross #2 (MX2)[8]. The first
two operators are traditional crossover operators, and
the last two operators use a global precedence vector
to be the guidance of crossover. The crossover opera-
tors are described below.

3.2.1 Order crossover (OX)

Order crossover operator was developed in [12] and
studied in [14]. The algorithm for OX is shown in
Algorithm 3, and an example is given as follows:

Algorithm 3 Order crossover
1: Choose two cut points randomly;
2: Copy genes between cut points of P, to Cy;
3: Start from the point immediately after the sec-
-ond cut point and fill the missing genes into C;
according to their order in P;; '
4: Repeat line 2 to line 3 to generate Co;

Cut points: ¥
P 1 2 3 4 5 7 8
Py 3 51 8 4 7 2 6
After step 2: -
Ci: - -1 8 4 7 - -
Cs: - - 3 4 5 6 - -
After step 3:
Ci: 6 6 1 8 4 7 2 3
Ca: 8 7 3 4 5 6 2 1

3.2.2 Uniform order-based crossover (UOX)

Uniform order-based crossover operator is originally

> described in [3], pp.79-81. UOX is the analog of uni-
form crossover, translated into the order-based realm.
We show it in Algorithm 4.

The following is an example of UOX:

20

Algorithm 4 Uniform order-based crossover
1: Generate a bit string that is the same length as
the parents;
2: Fill in some of the positions on C; by copying
_them from P; wherever the bit string contains a
“1”; (Now we have C; filled in wherever the bit
string contained a “1” and we have gaps wherever
the bit string contained a “0”.)
3: Make a list of the elements from P; associated
with a “0” in the bit string;
4: Permute these elements so that they appear in the
same order they appear in on Py;
5: Fill these permuted elements in the gaps on C; in
the order generated in line 4;
6: Carry out a similar process to make C,.

Binarystring: 0 1 1 0 1 1 0 0
P;: 1 2 3 4 5 6 7 8
Py: 3 56 1 8 4 7 2 6
" After step 2:
Cll - 2 3 b 5 6 - -
Cs: 3 - - 8 - - 2 6
After step 5: '
Ci: 1 2 3 8 5 6 4 7
Cy: 31 4 8 5 7 2 6

3.2.3 Merge cross #1 (MX1)

Most traditional crossover operators for order-based

.GAs do not have strong connection to the constraints

of the problems they are applied to. If we apply tradi-
tional crossover operators to single-vehicle PDPTW,
it may not be conducive to the searching process of
optimal solutions because the information of the con-
straints is not used by these operators. On the other
hand, the merge crossover operators are based upon
the notion of a global precedence among genes in-
dependent of any chromosome, rather than defining
a local precedence among genes specific to a chromo-
some as the traditional recombination operator. That
is, each gene in the chromosome has a precedence re-
lationship to every other gene. From the characteris-
tics of constraints of single-vehicle PDPT'W, a global
precedence relation probably exists among genes. The
global precedence vector is formed by such relation-
ship and could be the guidance of the generation of
offsprings.

In our single-vehicle PDPTW, each gene is either a
delivery point or a pickup point and has an associated
time window. Therefore, we can make use of the time
window [a;, b;] of v;, and a precedence relationship
among the earliest processing time ;. Given a; and
aj, if a; less than a;, let v; appear before vj in the

global precedence vector because it will be a reason-
able solution to serves v; before v;. In other words,
we can sort all a; in ascending order, and the sorting
result will be a global precedence vector.

In the following example, it is suppose that vg has
the highest precedence and v, is the lowerest. The
MX1 operator on two chromosomes (say P, and P;)

results in a single offspring, as shown below: ®
P: 4 2 8 6 1 3 7 5
P:5 3 1 6 8 2 7 4

Global Precedence Vector:
8 7 6 5 4 3 2 1

The underlined genes are the ones under consider-
ation in the current step. At the first step. we com-
pare the precedence of vs and vs according to the
global precedence vector. By definition of this vector,
it shows that the precedence of vs is higher than that
of vs. Therefore, the first gene of the offspring inher-
its from the gene of P,. As for Pj, the first gene was
swapped with vs so that we can maintain the validity.
We show the genes swapped in bold face.

P: 5.2 8.6 1 3 7 4
P: 5.3 1 6 8 2 7 4
C: 5 - - - - - - -

Again the gene with the earlier precedence is placed
into C, and genes are swapped to maintain validity if
necessary. We continue the process until C is filled
with genes. The final result is shown below.

C: 5 3 8 6 1 2 7 4

Effectively, it produces a child which is close to the
order of the global precedence.

3.2.4 Merge cross #2 (MX2)

The MX2 operator on two chromosome (say P; and
P,) also results in a single offspring, as shown below:

P: 4 2 8 6 1 3 7 5
P: 5 3 1 6 8 2 7 4
Global Precedence Vector:

8§ 7 6 5 4 3 2 1

The process is similar to merge two sorted vectors.
The first gene of P, is found to be prior to the one
of P, according to the global precedence vector. The
prior gene is placed in offspring (C). Now the first
gene of P, is removed in both individuals.

P: 4 2 8 6 1 3 7 -
P - 3 16 8 2 7 4
C: 5 - - - - - - -

21

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The next .gene of each chromosome is compared
and the second gene of P, is found to be the prior
gene. Again the prior gene is placed into the child,
and removed from both chromosomes.

P: - 2 8 6 1 3 7 -
P: - 3 1 6 8 2 7 -
c: 5 4 - - - - - -

And the next iteration produces

P: - 28 6 1 - 7 -
P: - - 16 8 2 7 -
c: 5 43 - - - - -

Continuing the process in this fashion,
C shown below.

we can get

cC. 5 4 3 2 8 6 1 7

Note that when gene 1 of P; is encountered, the rest
gene of P, are filled into the offspring. This operator
will move the gene with lowest precedence to near the
end of the. chromosome.

3.3 Mutation

We don’t use the mutation operator in this work in
order to study the pure relative performance of differ-
ent crossover operators on the single-vehicle PDPTW.

4 Experimental results and discussion
We have tested the above crossover operators on
five problems consisting of 10, 20, 30, 40 and 50 cus-
tomers, respectively. In these problems, the pickup
and delivery points are randomly placed in a rect-
angular grid, and for each point we randomly add
time window constraints. The Euclidean distance is
used to measure the distance between a pair of points.
For any two points v; and v;, let d(v;,v;) denotes the
distance between v; and v;. We define the value of
Ty(vs,v;) same as the value of d(v;,v;), without con-
sidering the units. This section describes the experi<*”
ments, parameters and results.
4.1 Parameters and experiments

The parameters used in our algorithm are listed in
Table 1. These parameters are not changed when we
deal with different problems.

The population size of each problem is the number
of customer multiplied by 2.5. For the five problems
we test the four crossover operators associated with
three different crossover rates (0.45, 0.6, and 0.75).
That is, we have 5x4x3 = 60 experiments. Each
experiment is executed for 30 times. Note that each
customer is associated with two points, one pickup
point and one delivery point.

Proceedings of International Conference
on Artificial intelligence

| Parameter [Value |

maz_ generation | 2000
population size 50
tournament__size 2

w1 1

wa 2

Y1 50

Y2 100

Table 1: Parameters

4.2 Results and discussion

In our experiments, the global precedence vector of
MX1 and MX2 is based on the lower bound of time
windows. We implement our single-vehicle PDPTW
in the programming language C, and the experiments
are running on the operating system SunOS 4.1.4.

cus. | cr. crossover operators optimal
no. {rate [OX | UOX | MX1 | MX2 | value
+45 | 1.117 | 1.000 | 1.000 | 1.000 |
10 | .60 - 1.000 | 1.000 | 1.000 811
.75, - 1.000 | 1.000.}| 1.000
.45 - 1.015 | 1.022 -
20 |-.60 - 1.010 | 1.018 - 1926
.75 - 1.000 | 1.018 -
45 - - 1.008 -
30 | .60 - 1.000 | 1.008 - 2785
' .75 - 1.000 { 1.008 -
45 - - 1.000 -
40 | .60 - - 1.000 - 4063
.75 - 1.000 | 1.000 -

Table 2: Relative optimality of the solutions

Table 2 describes the ratios of best costs (found
in 30 runs) to the optimal cost of the 10, 20, 30 and
40 customer problems. The solution cost is based on
Equation (1) where w; = ws = 1. A dynamic pro-
gramming algorithm[13] produced the optimal solu-
tion of our single-vehicle PDPTW. The optimal value
of 10, 20, 30 and 40 customers problems are listed in
the last column. A ‘-’ means that all solutions have
been found (in 30 runs) are infeasible. That is, at
least one of capacity and time window constraints is
violated. ‘

According to Table 2, OX is not a good operator
for the single-vehicle PDPTW on the three crossover
rates, neither is MX2. OX creates offspring which in-
herits subtours of its parents. Such a new route is
analogous to its parent routes. The solutions were

22

traped to similar routes, and therefore feasible solu-
tions may not be found. As to MX2, a point with
the lowerest precedence is moved to near the end of
the routes, and the solution may be stuck to a local
minimum. Higher crossover rates are more suitable
for UOX, especially on larger problems. Only MX1
obtains feasible solutions in all of the four problems.

crossover opemtors

crossover
. rate OX | UOX | MX1 | MX2
0.45 - - 4904 -
0.60 - - 4909 -
0.75 - 4867 | 4902 -

Table 3: Solution cost of 50 customers problem

Values in Table 3 are solution costs, and each of
them is the minimal cost in 30 runs. Most of exact al-
gorithms applied to vehicle routing problems can not
solve relatively larger problems, and we can not obtain
the optimal values either. Hence, the optimal values
are not listed in this table. UOX on crossover rate
0.75 obtains the minimal cost in Table 3, while MX1
can find feasible solutions on all the three crossover
rates. OX and MX2 can not produce any feasible so-
lution.

Figure 1 shown the convergent behavior of UOX.
Offsprings of OX and UOX both keep subtours of their
parents. However, offsprings of OX tend to reserve
only a subtour, which is relatively longer, of one par-
ent, but offsprings of UOX are composed of several
shorter subtours from both of their parents. UOX en-
ables new routes to find other feasible solutions. For
UOX, it is possible that the higher crossover rates will
lead to the more feasible solutions.

UOX in 20 customers problem {average of 30 runs)
T T T T T T T

3400 |

3200
3000

2800

solution cost

2600 |

2400

2200

2000
0

"
80
generation

2 "
20 60 140

Figure 1: A comparison of crossover rate (UOX)

In Figure 2, MX1 converges faster than the other
operators. MX1 produces a new route which is closer
to the order of the global precedence vector. The new
route has a great possibility that it can be a feasi-
ble solution. It is why MX1 alway produces feasible
solutions. After operation of MX1, more feasible so-
lutions are produced and the average cost drops down
dramatically. So MX1 converges faster.

A i of ‘gent speed (40
T T g T T T

7000

solution cost

5000 £

4500 [}

4000 - 1 1 i i 2
] 50 100 150
generation

Figure 2: A comparison of convergent speed

Comparison of UOX and MX 1 (50 customers)
9000 T T T T T

T T
UOX(0.75) —
MX1(0.45)
MX1(0.60)
MX1(0.75;

8500 |-

8000
7500

7000

solution cost

6500

6000

5500

5000 b

4500 -L.
0

2 L L) L
50 250 300 350 400 450
generation

. L)
100 160 200 500

Figure 3: A comparison of UOX and MX1

Since UOX on 0.75 crossover rate and MX1 on
the three crossover rates obtain feasible solution of
our single-vehicle PDPTW. We make a comparison of
these two operators in Figure 3.

From Figure 3, it is clear that the convergence
speed of UOX is slower than that of MX1. If the
computation time is the major concern, MX1 will be
a good operator. The near-optimal or optimal so-
lutions can be produced by MX1, and this operator
converges fast.

23

Joint Conference of 1996 {nternational Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.O.C.

5 Conclusion

In this paper, a genetic algorithm to solve the ve-
hicle routing problem is proposed, and four crossover
operators are compared. Genetic algorithms can solve
the single-vehicle PDPTW well if the right genetic
operators-are employed. From the experiments, it is
clear that UOX and MX1 are more suitable for our
single-vehicle PDPTW ptoblem, but OX and MX2
are not. We can lay more emphasis. on UOX and
MX1 in the future research because they outperform
OX and MX2 overwhelmingly in almost all our exper-
iments. However, since MX1 converges more rapidly
than UOX, if the computation time is mainly con-
cerned, MX1 will be a better choice.

Further experiments on UOX and MX1 with prob-
lems of different sizes should be done in the future
to understand the relative performance of UOX and
MX1 with various problem sizes. The appropriate
crossover rate is another important subject for re- -
search, which is dependent on different problems and
different crossover operators. Additionally, we don’t
apply mutation operators in our work, and it is also
another research direction. The performance of some
of the crossover operators may be improved if muta-
tion operators are applied.

. References

[1] T. Blickle and L. Thiele. A mathematical anal-
ysis of tournament selection. In Proceedings of
The Sizth International Conference on Genetic
Algorithms, pages 9-16, 1995.

[2] G. B. Dantzig and J. H. Ramser. The truck dis-

patching problem. Management Science, 6:80-

91, 1959.

L. Davis, editor. Handbook of Genetic Algo-
rithms. Van Nostrand Reinhold, New York, New
York, 1991.

(31

[4] M. Gendreau, G. Laporte, and R. Séguin.
Stochastic vehicle routing. European Journal of

Operational Research, 88:3-12, 1996.

D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley Publishing Company, Inc., Reading, MA,
USA, 1989.

(5]

[6] B. L. Golden and A. A. Assad, editors. Vehicle
Routing: Methods and Studies. North-Holland,

Amsterdam, 1988.

[7] G.R. Harik. Finding multimodal solutions using
restricted tournament selection. In Proceedings of

Proceedings of International Conference
on Artificial Intelligence

8]

[9]

[10]

The Sixth International Conference on Genetic

. Algorithms, pages 24-31, 1995.

J. L. Blanton Jr. and R. L. Wainwright. Multi-
ple vehicle routing with time and capacity con-
straints using genetic algorithms. In Proceedings
of The Fifth International Conference on Genetic
Algorithms, pages 452-459, 1993.

G. Laporte. The vehicle routing problem:
An overview of exact and approximate algo-
rithms. FEuropean Journal of Operational Re-
search, 59:345-358, 1992.

Z. Michalewicz. Genetié Algorithms + Data
Structures = Evolution Programs. Springer-Ver-
lag, New York, USA ; Berlin, 1992.

24

[11]

(12]

[13]

[14]

M. Mitchell. An Introduction to Genetic Al-
gorithms. The MIT Press, Cambridge, Mas-
sachusetts; London, England, 1996.

I. M. Oliver, D. J. Smith, and J. R. C. Holland.
A study of permutation crossover operators on
the traveling salesman problem. In Proceedings of
The Second International Conference on Genetic
Algorithms, pages 224-230, 1987.

Harilaos N. Psaraftis. A dynamic programming
solution to the single vehicle many-to-many im-
mediate request dial-a-ride problem. Transporta-
tion Science, 14(2):130-154, 1980.

T. Starkweather, S. McDaniel, K. Mathias,
D. Whitley, and C. whitley. A comparison of
genetic sequencing operators. In Proceedings of
The Fourth International Conference on Genetic
Algorithms, pages 69-76, 1991.

