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ABSTRACT

Let G=(S, T, E) be a bipartite graph with vertex set S
U T and edge E < SxT. A typical convention for drawing
G is to put the vertices of S on a line and the vertices of T
on a separate parallel line and then represent edges by
placing straight line segments between the vertices that
determine them. In this convention, a drawing is biplanar
if edges do not cross, and a subgraph of G is biplanar if it
has a biplanar drawing. The maximum biplanar subgraph
problem is to find a biplanar subgraph with a maximum
number of edges. In general, this maximum biplanar
subgraph problem is NP-complete. In this paper, we show
the maximum biplanar subgraph problem belongs to not
only the class P, but also the class NC, when input graphs
are restricted to doubly convex-bipartite graphs which is
an important subclass of bipartite graphs. Moreover, our
sequential algorithm is optimal.

Keywords: Maximum biplanar subgraph, graph drawing,
doubly convex-bipartite graphs, P class, NC
class, crossing number

SECTION 1. INTRODUCTION

Let G=(S, T, E) be a bipartite graph with vertex set S
UT and edge £ < SxT. A typical convention for drawing
G is to put the vertices of S on a line and the vertices of T
on a separate parallel line and then represent edges by
placing straight line segments between the vertices that
determine them. In this convention, a drawing is biplanar
if edges do not cross, and a subgraph of G is biplanar if it
has a biplanar drawing (see Figure 1). The maximum
biplanar subgraph problem is to find a biplanar subgraph
with a maximum number of edges.

The maximum biplanar subgraph problem has been
investigated in three application areas: automatic graph
drawing of directed graph {8), global routing for row-
based VLSI layout {11], and computational biology {18].
Traditional methods for drawing directed graphs are
arranging nodes on levels, and apply a crucial crossing
reduction step to reduce the number of edge crossings in
between two successive levels [8]. But the crossing
~ reduction step is NP-complete. Instead, Mutzel suggested
the maximum biplanar subgraph problem could be used to
increase the readability of diagram [13]. In standard cell
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technology for VLSI, modules are arranged in rows with
wiring channels between each pair of rows. A planar
subgraph of the net list represents a subset of the set of
nets that can be routed in one layer [11]. In DNA mapping,
small fragments of DNA have to be ordered according to
the given overlap data and some additional information. If
the overlap data is correct, the maps can be represented as
biplanar graph. But, in practice, the overlap data may
contain errors. Hence, Waterman and Griggs [18]
suggested solving the maximum biplanar subgraph
problem.

A biplanar graph can be recognized in linear time
[17]. However, the maximum biplanar subgraph problem
is NP-complete, even for the case when each vertex in S
has degree three and each vertex in T has degree two [7].
Therefore, Eades and Whitesides suggested a heuristic
based on the search for a longest path [7}. When the
positions of all vertices are fixed, a maximum biplanar
subgraph C of G=(S, T, E) can be found in time O(mlog r

) +nlogn),wherem=3E|,r=|CI,n=lS|+I71.In [14],

Shahrokhi et al. computed the weighted maximum
biplanar subgraph of forest by using a linear time
algorithm. In [13], Mutzel gave an integer programming
formulation for the weighted maximum biplanar subgraph
problem. And by combing their cutting plane algorithm
with a branch and bound algorithm, they found a solution
that is close to the optimal one.

In this paper, we show the maximum biplanar
subgraph problem for an important subclass of bipartite
graphs, termed doubly convex-bipartite graphs, belongs to
not only the class P, but also the class NC (Nick’s class
[9]). More specifically, we can solve this problem in O(m)
sequential time, and O(log n) time using O(n’/log n)
processors- on the CRCW PRAM or O(log?n) time using
O(r*/log?n) processors on the CREW PRAM, where n, m
is the number of vertices and edges of input graph,
respectively. Note that the double convex-bipartite graph is
not a subclass of forest and our sequential algorithm is
optimal.

This reminder of this paper is organized as follows.
In the next section, we show some basic definitions and
properties. In section 3, the main theorem of this paper are

- shown, In section 4, our sequential and parallel algorithms

for the maximum biplanar subgraph problem are described
and analyzed. Finally, some concluding remarks are given
in Section 5.
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SECTION 2. DEFINITIONS AND PROPERTIES

There are some properties characterize biplanar
graphs. A caterpillar is a connected graph that has a path
called the backbone b such that all vertices of degree
larger than one lie on b. The edges of a caterpillar that are
not on the backbone are the legs of the caterpillar. See
Figure 2 for example.

Lemma 1. (Eades er al. [6]) A bipartite graph is
biplanar if and only if it is a collection of disjoint
caterpillars.

We call the graph shown in Figure 3 a double claw.

Lemma 2. (Eades er al. [6]). A bipartite graph is
biplanar if and only if it contains no cycle and no double
claw. ‘

Lemma-3. (Tommi et al. [17]). A bipartite graph is
biplanar if and only if the graph G that is the remainder of
G after deleting all vertices of degree one, is acyclic and
contains no vertices of degree at least three.

Now we define the doubly convex-bipartite graph.
Let G=(S, T, E) be a bipartite graph with vertex set SUT
and edge £ < SxT. Also, let Mv) denote the set of vertices
which are adjacent to v in G. An ordering of S(7) has the
adjacency property if for each vertex veT(S), N(v)
contains consecutive vertices in this ordering. The graph
G=(S, T, E) is called a doubly convex-bipartite graph if
there are orderings of S and T having the adjacency
property [12]. See Figure 4, where a doubly convex-
bipartite graph is shown. Glover [10] showed a practically
important application of doubly convex-bipartite graphs in
industry. Lipski and Preparata [12] solved the recognition
problem and the maximum matching problem on doubly
convex-bipartite graphs in linear time. In [19], Yu and
Chen proposed a parallel algorithm to recognize the
doubly convex-bipartite graph in O(log n) time using
O(r’Mlog n) processors on the CRCW PRAM, or O(log?n)
time using O(r’/log*n) processors on the CREW PRAM.

The combination of an ordering of S and an ordering
of T'is called a strong ordering if any two edges (s,, £,), (5,
) €E imply (s,, )€ E and (s,, t,)€E, where s,, 5,5, ¢,
t.€T, s, precedes s, in the ordering of S, and ¢, precedes ¢,
in the ordering of T. A graph is a bipartite-permutation
graph G=(S, T, E) if and only if there is a strong ordering
of S and T [16]. Other equivalent definitions of bipartite-
permutation graphs can be found in [16].

Suppose that U and V are nonempty subsets of S and
T, respectively. The subgraph of G whose vertex set is U U
V and whose edge set contains those edges of G that have
both ends in UU V is called the subgraph of G induced by
U and V, and is denoted by G, ;.

Notations and definitions not stated explicitly can be
found in [1].
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SECTION 3. MAIN THEOREM

In this section, we want to describe some properties
of doubly convex-bipartite graphs that will be used to
construct a maximum biplanar subgraph. Suppose that
G=(S, T, E) is a connected doubly convex-bipartite graph,
and sy, 5y, ..., Sig;-and £, &, , ..., § are orderings of S and T,
respectively, having the adjacency property. We call a
vertex veSUT is maximal if there does not exist ue SUT
such that N(v) is a proper subset of N(u). For example,
those maximal vertices of G (in Figure 4) are s, s, 54, £, 1,
t,, ts, and £,

Let Sy, and T, are sets of those maximal vertices in S
and T respectively. And let 5,and s, are the first and the last
maximal vertices (with respect to the ordering of S, that is
$1, 825 -+, 851) in S, Similarly, we can define ¢, and f; are
the first and the last maximal vertices(with respect to the
ordering of T, thatis ,, 1, , ..., §) in T},

Lemma 4 (Lemma 8 in [19]): Suppose that G=(S, T, E) is a
connected doubly convex-bipartite graph. Then, we have
GSM‘ r is a connected bipartite-permutation graph, and its
corresponding ordering is a strong ordering. (Note that, Yu
et al. use the symbol 4 to stand for Sy in [19].)

Lemma 5: Suppose that G=(S, T, E) is a connected doubly
convex-bipartite graph. Then, we have (s,, 1,) € £ and (s,,
) e E.

Proof: Since G=(S, T, E) is a connected doubly convex-
bipartite graph. By Lemma 4, we have GSM‘ ris a
connected bipartite-permutation graph. Because the
induced subgraph of the bipartite-permutation graph is
also a bipartite-permutation graph, we have GSM,TM is a
bipartite-permutation graph. The connectivity of GSM:TM is
discussed as follows. Suppose to the contrary, GSM T is
disconnected. Then S,, can be partitioned into S,,,, S, ...,

Sy, Where x 22, and each of which is contained in a
distinct component of GSM’ . Then there must exist edges

v
(s5 t) and (s, 4) in the edge set of GSM‘ 7» where s5;€ 5,4,
5€ Sy j2k, y#w, and € T-T,,. But there must exist r,e 7},
such that N(£)CN(.). So (s;, ) and (s, £,) are in the edge
set of GSM,TM' Then we have Sy, and S,,, are contained in
the same component of GSM,TM' A contradiction occurs. So
GSM’TM is connected. Based on above discussions, we have
GSM:TM is a connected bipartite-permutation graph.

Let E,, is the edge set of GSM,TM' Suppose (s, ;) g E.
Then (s, ;) ¢ E,. By the definition of s, and #;, and the
fact that GSM:TM is connected. We can assume there is an
edge (s, )eEy and j > L, and (s, 1,)€E,, and &> [ (see
Figure 5). We have (s, £) crosses (s;, #,). Because GSM Y is
a bipartite-permutation graph, we have (s, #,) € E,, and
then (s, 1) € E by the definition of the strong ordering,.
This is a contradiction. So, we have (s, ¢,) € E.

Similarly, we can conclude (s, £5) € £. O



Suppose sy, S, «oey Spp oeny Sy vnny S5y @nd 8y, L,
t, ..., g ..., tipare the orderings of § and T which have
the adjacency property. Let G* =(S", T", E°), where S$"={ s,,
Spis s Spb T={ 1y, tyey ..., tg} and E'=ENSxT". That is,
G is the induced subgraph of G by the vertex set S'U
T’(see Figure 6). Where /=4, /=7, L=2, and R=6.

Lemma 6: Suppose that G=(S, T, E) is a connected doubly
convex-bipartite graph. Then, G’ is a connected bipartite-
permutation graph.

Proof: To show G’ is a bipartite-permutation graph, it is .

sufficient to prove that Gy  is a bipartite-permutation
graph. The connectivity of G is assured by the facts that
Gs,, 1, is an induced subgraph of G' and Gy r is
connected by the discussions in the first paragraph of the
proof of Lemma 5.

To show Gs ; is a bipartite-permutation graph, we
transform a convex bipartite graph to a rectilinear polygon.
We only need to place a square at the position (1, s) for
each edge (s, £,) €E. The polygon can be partitioned into
three parts: bottom region, middle region, and the top
region. Moreover, the middle region consists of three parts:
upper part, center part, and lower part (See Figure 7 for
example). It is easy to see that the corresponding part of
G- ris the center part of the middle region [19]. And the
corresponding subgraph(that is, the graph G, ¢ r in [19])
of the middle region is shown to be a connected bipartite-
permutation graph by Lemma 9 in [19]. So the
corresponding subgraph of the center part of the middle
region, that is G p, is also a bipartite-permutation graph.

Finally, we conclude that G" is a connected bipartite-
permutation graph. O

Here we say a path is noncrossing if it is a path
without any crossing when embedding in the orderings of
Sand T, thatis sy, 55, ..., S5 and 1, & , ..., 44, having the
adjacency property.

Lemma 7(Claim in [16]): Let G=(S, T, E) be a bipartite-
permutation graph which contain a Hamiltonian path
beginning at vertex s in S. Then s, £, Sy &y ovy Sio I
(followed by s,,, if it exists) is also a Hamiltonian path in
G, where the orderings of Sand 7, that is s, 53 ..., 5
(followed by s,,, if it exists); #,, &, ..., &, IS a strong
ordering of G.

Note that this Hamiltonian path is noncrossing.

Lemma 8: Suppose that G=(S, T, E) is a connected doubly
convex-bipartite graph. Then, there is a noncrossing path
in G” which connects (s, 7,) and (s,, 15).

Proof: The existences of (s, #,) and (s,, ;) are assured by
Lemma 5. Since G’ is connected (by Lemma 6), there is a
path P=(S,, T,, E,) connected (s, #;) and (s, t;). Suppose P
has some crossings in the drawing of G'. We try to
augment P by the following method. Then we may find
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"another path which is noncrossing in G* and connects (s, ¢,)

and (s, 2p).

For any two edges (s,, ) and (s,, ¢) in E, which
form a crossing, we add (s,, t,) and (s, t,) to E,. Note that
(Sw, t.) and (s,, ) are in E” by Lemma 6 and the strong
ordering property of bipartite-permutation graphs. Then
we check if there exist two edges in the new E, which
form new crossings. If so, add more edges by the similar
approach. Eventually, no new crossing occurs. Let the
resulting graph is G.=(S,, T., E.). Then G. is a subgarph of
G and G, is a bipartite-permutation graph by the strong
ordering property. Note that G, and P share the same
vertex set. Because P is a Hamiltonian path in G, G, is
hamiltonian. And by Lemma 7, We can obtain a
noncrossing path in G” which connects (s;, ¢, ) and (s,, fp).
g

Next, we want to construct a subgraph C of G, and
finally prove that it is a maximum biplanar subgraph of G.

Suppose P is the noncrossing path which connects
(s, t,) and (s,, #p). Without loss of generality, let P=((s,=
Sogty It =tay)s (o2 La)s (Sop Lya)s -+ (Soeery Lorny)s C Sugays
takay)s  Soy=Sr Lywy=tr)). You may view P as the backbone
of the caterpillar. Then, we want to append legs to the
caterpillar by the following edge sets. Note that all the
following edge sets belongs to the edge set E.

Let EP is the edge set of P. And let
ES={(s,0y= 53 )| where 15j<L-1},
ES={(sx9 )| Where g(i-1)<j<q()}, for all 1<i<k-1,
ES={(sq= 5, t)lwhere g(k-1)<j<g(k)=R or q(k) =R
<<lrly. .
Similarly, we define
ET,={(s,, t,=t )| where 1<i</-1 or [= o(1) <i<0(2)},
ET={(s,, t,) | where o(i)<i<o(i+1)}, for all 1<j<k-1,
ET={(s, tR=tq(,,))| where r<i<|S|}.
Finally, let C=EPU (U ES,, for 1<i<k) U (U ET, for 1<j<k).
See Figure 8 for example. The edge set EP of the
noncrossing path P is {(s,, ), (S5, £2), (S5, ), (54, t5), (51,
t)}. And ES\={(s,, 1,}), ES;={(ss5, )}, ES;={(s7, t5), (53, 1),
(S7) tx)}, ET1={(SD 12)’ (‘5'2) tz): (Sl’ tz)}» ET2={(S6: t4)},
ET3={(38’ 16)’ (SQ’ té)v (SIO’ ts)}~

Theorem 1: Suppose that G=(S, 7, E) is a connected

doubly convex-bipartite graph. Then, C is a maximum
biplanar subgraph of G.

Proof: At first, we prove C is the biplanar subgraph of G.
Then, we show its edge size is maximum. The existence of
P is assured by Lemma 8. Since EPCE, ESCE for 1<i<k,
and ETCE for 1<j<k, we have C is a subgraph of G. And
the remainder of C after deleting all vertices of degree one,
that is all ES, and ET}, is a path. A path is acyclic and
contains no vertices of degree at least three. So by Lemma -
3, C is a biplanar subgraph.

Since a biplanar subgraph is a tree. And the size of
its edge set is the size of vertex set minuses one. So the
size of vertex set of any maximum biplanar subgraph of G
are not greater than the size of SUT. The vertex set of C is
exactly SUT, so C is a maximum biplanar subgraph of G.

_gg_
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SECTION 4. ALGORITHM AND
COMPLEXITIES -

According the discussions of previous_section, the
following algorithm can solve the maximum biplanar
subgraph problem on the connected doubly convex-
bipartite graph.

Input: A connected doubly convex-bipartite graph G=(S, T,
E).

Output: Find the maximum biplanar subgraph C of G and
its biplanar drawing.

Step 1. Determine the orderings of S and T that have the
adjacency property.

Step 2. Find these two edges (s, #,) and (s, #z).

Step 3. Find a noncrossing path P which connects (s, t;)
and (s, 1) in G,

Step 4. Construct C and its biplanar drawing,.

By Theorem 1 C is a maximum biplanar subgraph of
G. Complexity of the algorithm is analyzed as follows. Let
n and m denotes the numbers of vertices and edges,
respectively, in G. Step 1 can be completed in O(m)
sequential time by Booth and Lueker’s work [2]. If Yu and
Chen’s algorithm is applied, Step 1 can be completed in
O(log n) time using O(7/log #) processors on the CRCW
PRAM, or O(log’n) time using O(n*/log?n) processors on
the CREW PRAM.

Step 2 can be solved by the following substeps. Let
us define Lefi(s; )—mzn{j|te N(s)} and Right(s) =
max{/lte N(s))}, where 5,€8.

Step 2.1 Compute Lefi(s;) and Righi(s,), for all s, in

S.

Step 2.2 Find 4={s, I Lefi(s,) is the smallest i in S}.

Step 2.3 Find B={s,] Righu(s;) is the largest in A}.

Step 2.4 Find 5, where I=min{i| S,e B}.

Similar steps can be used to compute s,, #,, and ;. And all
this four substeps can be implemented in O(m) sequential
time, and O(log #) time using O(n*) processors on the
CREW PRAM.
Step 3 can be solved by the methods described in
Lemma 8.

Step 3.1 find an arbitrary path in G* which connects
(s 1) and (s, 1)

Step 3.2 augments this path into a bipartite-
permutation subgraph by the following
method. Let E, be the edge set of this path.
For any two edges (s, £,) and (s, £,) in E,

which form a crossing, we add (s, ) and
(s,» 1) to E,. Then we check if there exist
two edges in the new E, which form new
crossings. If so, add more edges by the
similar approach. Repeat this step until no
new crossing occurs.
Step 3.3 construct a Hamiltonian path in this
resulting graph.
Step 3.1 can be executed parallelly by applying

Chen’s all pairs shortest paths algorithm [4] which takes
O(log n) time using O(n*/log n) processors on the CREW
PRAM. Because G is a bipartite-permutation graph by
Lemma 6, Step 3.2 can be computed by finding a subgraph
induced by the vertex set of the path, which takes O(log n)
time using O(s*) processors on the CREW PRAM. Step
3.3 can be implemented easily according to Lemma 7 in
O(log n) time using O(n/log n) processors on the EREW
PRAM. So Step 3 can be implemented in O(log n) time
using O(n*) processor on the CREW PRAM. Similarly,
Step 3 can be implemented in O(m) sequential time.

Step 4 can be implemented easily in the same
complexity as Step 3.

Totally, this algorithm need O(m) sequential time,
and O(log ») time using O(n’/log n) processors on the
CRCW PRAM or O(log’n) time using O(r/login)
processors on the CREW PRAM. Note that our sequential
algorithm is, optimal.

Theorem 2: If G is a connected doubly convex-bipartite
graph, the maximum biplanar graph problem belongs to
not only the class P, but also the class NC. More
specifically, we can solve the problem in O(m) sequential
time, and O(log ») time using O(n’/log n) processors on
the CRCW PRAM or O(log’n) time using O(r*/log?n)
processors on the CREW PRAM, where n is the size of
vertex set and m is the size of edge set.

SECTION 5. CONCLUSION AND FURTHER
RESEARCHES

In Section 3, we have assumed that the input graph
is connected. In fact, the restriction to be connected graphs
can be removed. If the input graph is not connected, we
simply execute the proposed algorithm for each of its
component. If we apply Shiloach and Vishkin’s connected
component algorithm [15], the time and processor
complexities required remain the same for a disconnected
input graph.

The containment relationships for some subclasses
of bipartite graphs are known as follow [3]: bipartite-
permutation graphs < doubly convex-bipartite graphs c
convex-bipartite graphs < chordal bipartite graphs
perfect elimination bipartite graphs < bipartite graphs. The
maximum biplanar subgraph problem has been proved to
be NP-complete for the bipartite graph. In this paper we
further show that it belongs to the class P and class NC for
the doubly convex-bipartite graph. The immediate open
problem behind this paper is to decide whether the
maximum biplanar subgraph problem is solvable in
polynomial time for convex bipartite graphs.
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Figure 1. A biplanar graph.

Figure 2. A caterpillar.
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Figure 3. A double claw.

) 8§32 53 §4 855 Sg 59 53 §g 5y

Figure 4. A doubly convex bipartite graph.
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Figure 5.
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Figure 6. The corresponding G of Figure 4.
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Figure 7. The rectilinear polygon constructed from the graph of Figure 4.
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Figure 8. The corresponding C of G in Figure 4.
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