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Abstract

For an undirected graph G = (V, E), the k-
th power G* is the graph with the same vertex
set as G such that two vertices are adjacent in
G* if and only if their distance in G is at most
k. A set of vertices A C V is an asteroidal
set if for every vertex a € A, the set A\{a} is
contained in one connected component of G —
Ngla], where Ng[a] is the closed neighborhood
of a in G. The asteroidal number of a graph G is
the maximum cardinality of an asteroidal set in
G. The class of graphs with asteroidal number
at most s is denoted by .A(s). In this paper, we
show that if G¥ € A(s) for s > 2, then so is
GF+1. This generalizes a previous result for the
family of AT-free graphs. Moreover, we consider
the forbidden configurations for the powers of
graphs with bounded asteroidal number. Based
on these forbidden configurations, we show that
every proper power.of AT-free graphs is perfect.

Keywords: asteroidal triple, AT-free graphs,
powers of graphs, strong perfect graph conjec-
ture.

1. Introduction

Let G = (V, E) be a graph consisting of the
vertex set V and the edge set F, respectively.
For a positive integer &, the kth power G* is

the graph with the same vertex set as G such
that two vertices are adjacent in G* if and only
if their distance in G is at most k. Up to now
several results concerning the family of graphs
closed under power operations have been inves-
tigated. One of the first results in this field
is due to Duchet [15]: If G* is chordal (i.e.,
a graph with the property that every cycle of
length greater than three has a chord), then
so is G¥*2. Consequently, all odd powers of
chordal graphs are chordal, whereas this is not
true in general for even powers. In contrast,
Bandelt et al. [1] showed that all even powers of
a distance-hereditary graph (i.e., a graph G with
the property that the distance of any two ver-
tices in each connected induced subgraph equals
their distance in G) are chordal.

Let C be a class of graphs and k& a positive
integer. The assertion “G* € C = GF+2 ¢ ¢”
is therefore called the Duchet-type assertion.
Besides, two analogies of Duchet-type asser-
tion, called weakly-type assertion (G € C =
G* €C) and strongly-type assertion (G* € C =
G*+1 € C), are also concerned in other papers
(5, 6, 13, 14, 16, 21, 24, 25]. Table 1 summa-
rizes the existing results on the above three type
assertions for various classes of graphs. For an
overview of these classes of graphs, please refer
to [4, 17].
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Table 1: Three type assertions related to the power operations.

Classes of Duchet-type assertion
Graphs GkeC=GF?ecC

Weakly-type assertion

Strongly-type assertion

GeC=GrecC GrkeC=GFtlec

Chordal (15]
Strongly chordal
Circular arc
(Unit) interval
AT-free
Cocomparability
m-trapezoid
Dually chordal

HHD-free (6]
Weak bipolarizable (6]

[13, 21] [25]
[25]

)
=

= b
. NN

(14]

(5]

=2 =)

An independent set of a graph G = (V, E) is
a set of pairwise nonadjacent vertices. The open
neighborhood Ng(u) of a vertex u € V is the set
{v € V|(u,v) € E}; and the closed neighbor-
hood Ng[u] is Ng(u)U{u}. For a subset W C V,
we use G — W to denote the subgraph of G in-
duced by the vertex set V\W (ie., {v|jv eV
and v € W}).

An asteroidal triple (AT for short) of a graph
G is an independent set of three vertices such
that every two vertices are joined by a path
avoiding the closed neighborhood of the third.
Graphs without asteroidal triples are called as-
teroidal triple-free graphs (AT-free graphs for
short). Lekkerkerker and Boland [20] first intro-
duced the concept of asteroidal triples to char-
acterize the interval graphs. A graph is an in-
terval graph if and only if it is chordal and AT-
free. Recently, Corneil et al. [11] obtained a col-
lection of interesting structural and algorithmic
properties for AT-free graphs. Note that, the
class of AT-free graphs properly contains well-
known classes of graphs such as interval, per-
mutation, trapezoid and cocomparability. Fur-
ther results on AT-free graphs please refer to
(7, 10, 11, 12, 19, 22].

Walter [26] generalized the concept of aster-
oidal triples to so-called asteroidal sets, and
used asteroidal sets to characterize certain sub-
classes of chordal graphs. A set of vertices

A C V is an asteroidal set if for every vertex
a € A, the set A\{a} is contained in one con-
nected component of G — Ng[a]. The asteroidal
number of a graph G is the maximum cardinal-
ity of an asteroidal set in G. It is easy to see that
each asteroidal set is an independent set and the
AT-free graphs are those graphs with asteroidal
number at most two. Kloks et al. [18] showed
that the asteroidal number can be computed by
efficient algorithms for some classes of graphs
such as claw-free, HHD-free, circular-arc and
circular permutation graphs, while the corre-
sponding decision problem is NP-complete even
when restricted to triangle-free 3-connected 3-
regular planar graphs.

Let s > 2 be a positive integer. The class
of graphs with asteroidal number at most s is
denoted by A(s). Obviously, all the classes of
graphs with bounded asteroidal number con-
stitute a hierarchy of families by set inclusion,
ie., A(s) C A(s +1). In this paper, we show
that the strongly-type assertion mentioned as
above holds on each class A(s) for s > 2 (i.e,
G* € A(s) = G**! € A(s)). This covers the
previous result of [24] for the family of AT-free
graphs. Besides, we consider the forbidden con-
figurations for the powers of graphs G € A(s).
We show that every proper power (G* for k > 2)
of a graph G € A(s) does not contain K sz,

. Ky 541 and Cos4q induced subgraphs. The first
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two forbidden configurations generalize a par-
tial result proposed in [14] that every proper
power of a cocomparability graph has no K4
and Kp3 induced subgraphs. Moreover, based
on these forbidden configurations, we show that
all proper powers of AT-free graphs are perfect.

2. Graphs with bounded asteroidal
number and their powers

All graphs considered in this paper are undi-
rected, simple (i.e., without loops and multiple
edges) and connected. For a graph G = (V, E),
the distance dg(u,v) of two vertices u,v € V is
the number of edges of a shortest path from u to
v in G. For convenience, we write G* = (V, EF)
where E* = {(u,v) |u,v € V and dg(u,v) < k}.
In particular, we call G? the square of G, and

- Gk for k > 2 the proper power of G.

A path joining two vertices u and v is termed
a u-v path. The union of two paths P and P’
with a common endvertex is denoted by P& P’.
A vertex u misses a path P if there are no ver-
tices of P adjacent to u; otherwise, we say that
u intercepts P. For any two vertices u,v € V,
we denote Dg(u,v) as the set of vertices that
intercept all u-v paths in G. Note that, a ver-
tex w € Dg(u,v) if and only if there exists a
u-v path P in G such that w misses P. For
graph-theoretic terminologies and notations not
mentioned here we refer to {17).

Kloks et al. [18] show that a set A with car-
dinality |4| > 3 is an asteroidal set if and only if
every triple of A is an AT. Based on this result,
we have the following.

Lemma 2.1 A set A with |A| > 3 is an as-
teroidal set of ¢ graph G if and only if ev-
ery three vertices u,v,w € A, u € Dg(v,w),
v & Dg(u,w) and w &€ Dg(u,v).

Lemma 2.2 For every-two vertices x and y of
a graph G = (V, E), Dgr(z,y) € Dge+1(z,y)-

Proof. Let w € V\{z,y}. We will prove that
if w & Dgr+1(z,y) then w € Dgi(z,y). Sup-
pose that w misses some z-y path P = (z =

‘u11u21"-)un = y) in

G**1. Without loss of
generality we assume that P is as short as pos-

sible. Clearly, w & {u;|1 <i < n} and
dor W, ui) 2 dgr+1 @, ug) >2 for i=1,...,n. (1)

Let F be the set consisting of edges of P that
belong to EFtI1\E*. If F is empty, then P is
still an z-y path in G*. In this case, since w
misses P in G¥, no further proof is necessary.
We now consider F' is nonempty as follows.

For each edge (uj,ui+1) € F, let P(uj, uiy1)
be a shortest path with length k + 1 joining
u; and u;4; in G. Let 2z be the vertex in
P(uj,ui+;) that is adjacent to u; in G. It is
easy to verify that z; cannot appear in P and
(ui, 2), (2, ui41) € E¥. We claim that for any
two edges (uj,Uit1), (45, uj+1) € F, the corre-
sponding vertices z; and z; are not the same
vertex of G. Suppose not, and without loss of
generality assume i < j. Since z; and z;j are the
same vertex of G,

do(ui,ujr1) < dolwi, z) + de(zi, ujq1)
= dg(ui,z) + dg(25, uj+1)
= 1+k.

This implies that (u;, uje) € EF+1 Thys, (z =
Uiy ...y Uiy Ujqly -+ - Un = y) forms another z-y
path with length less than P in G¥*! such that
w misses the path. This leads a contradiction
to the assumption.

Next, we claim that for each edge (u;, uiy1) €
F, the corresponding vertex z; is not adjacent
to w in G¥. It can be derived from (1) by the
following implications: .

dgr+1(w, u;) > 2

dg(w,u;) > k+1

de(w, zi) + dg(zi,u;)) > k+1
dG(w,zi) >k

dgr (w, 2;) > 2. (2)

$ U

Hence, for each edge (u;, uiy1) € F in P, substi-
tute it by the edges (ui,2;) and (zi,uiy1). The
replacements of all these edges yield another z-y
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path P’ with length n — 1+ |F| in G**1. Since
(ui, 2;), (2, uis1) € EF, P’ remains in Gk. We
conclude by (1) and (2) that no vertices of P’
are adjacent to w in G¥. Thus w & Dgx(2,9)-
This completes the proof. O

Theorem 2.3 For any integer s>2, G*¥ € A(s)
implies GF*1 € A(s)

Proof.  Suppose that G¥t1 ¢ A(s). This
means that there exists an asteroidal set A with
|A] > s in G¥*!. By Lemma 2.1, every three
vertices u,v,w € A satisfy u & Dgr+i(v,w),
v & Dgrsi(u,w) and w & Dge+r (u,v). Also,
by Lemma 2.2 we know that u & Dgk(v,w),
v & Dgr(u,w) and w & Dgk(u,v). So {u,v, w}
forms an AT in G*. It follows from Lemma 2.1
that A is an asteroidal set in G¥. Thus, G* ¢
A(s). a

Corollary 2.4 If Gk is AT-free, then so is
Glc+1_

3. Forbidden configurations

In this section, the forbidden configurations
for the proper powers of graphs G € A(s) are
considered. For a graph G = (V, E), the fol-
lowing lemma can be used to test that a vertex
" € V misses a certain shortest path in G.

Lemma 3.1 Let G = (V,E) be a graph and
u,v,w € V. For any positive integer k > 2,
if dg(u,v) > 2 and dg(v,w) > k > dg(u,w),
then v misses every shortest u-w path in G.

Proof. The lemma is trivial for the case
(u,w) € E. We now consider dg(u,w) > 2. Let
P(u,w) be a shortest path joiningu and w in G.
Assume that there is a vertex z € Ng[v] which
is contained in P(u,w). Since dg(u,v) > 2 and
de(v,w) > k > dg(u,w), z € {u,v,w} and
de(z,w) < k. Thus, dg(v,w) < dg(v,z) +
dg(z;w) < 1+ (k- 1) = k, a contradiction.
O

A graph G is a cocomparability graph if its
complement G is transitively orientable. Re-
call the previous result proposed by Damaschke
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[14] that every proper power of cocomparability
graphs has no induced subgraphs isomorphic to
K14 or Ky 3. Since the cocomparability graphs
are properly contained in the class of AT-free
graphs, the following two lemmas generalize the
result of [14].

Lemma 3.2 Every proper power G* of a graph
G € A(s) for s > 2 does not contain K 512 as
an induced subgraph.

Proof. Suppose to the contrary. Let
W = {z,y1,¥2,---,Ys+1,Ys+2} be a set of ver-
tices that induces a Kjsy2 in Gk where y;
for 4 = 1,...,5 + 2 are independent vertices.
Then, for i,7 € {1,...,s +2} with ¢ # j,
de(yi,y;) > k > dg(yi,z). Because the sub-
graph induced by W in G* certainly does not
include any two adjacent edges belonging to E,
assume without loss of generality that ysyo is
the only vertex which may be adjacent to z in
G, and dg(yi,z) > 2fori=1,...,5s+ 1. Let
P(y;, ) be a shortest path joining y; and z in G
and let Y = W\{z,ys4+2}. We now show that ¥’
forms an asteroidal set of s+1 vertices in G. For
any two vertices y;,y; € Y, since dg(z, ;) > 2
and dg(yi,y;) > k > dg(z,y;), it follows from
Lemma 3.1 that y; misses P(z,y;) in G. Thus,
for every three vertices yp,%i,¥; € Y in G,
we conclude that y; misses P(yp,z) ® P(z,y;),
y; misses P(ys,z) ® P(z,y;), and yn misses
P(y;,z) & P(z,y;). By Lemma 2.1, Y is an as-
teroidal set of s+1 vertices in G. Thus G & A(s)
and the lemma follows. ‘a

Lemma 3.3 Every proper power G* of a graph
G € A(s) for s > 2 does not contain Ko 51 as
an induced subgraph.

Proof. Suppose to the contrary. Let X UY
be a set of vertices that induces a K5 541 In GF
where X = {z1,z2} and Y = {y1,%2,.- ., Us+1}
are two independent sets. Then dg(zi,y;) <k
fori € {1,2}and j € {1,...,s+1}, dg(z1,22) >
k, and dg(yi,y;) > k for 4,5 € {1,...,s + 1}
with i $# j. We first consider the subgraph
K1 541 induced by the vertex set {z;}UY in
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Gk. By the same argument as the proof of
Lemma 3.2, we may assume that dg(y;, z1) > 2
fori = 1,...,8. Let Y = Y\{ys4+1}. Conse-
quently, Y forms an asteroidal set of s vertices
in G, and for every two vertices y;,y; € Y’ with
i # 4, i € De(yj,71) and y; € Dag(yi, 1)
The aim of the following proof is to show that
{z1} UY' is an asteroidal set of s + 1 ver-
tices in G. Hence, we only need to show that
z1 € Dg(yi,y;) for yi,y; €Y.

Let P(y;, z2) be a shortest path joining y; and
z9 in G for 1 <1 < s. For any vertex y; € Y/,
since dg(yi,z1) = 2 and dg(z1,z2) > k >
dg(yi, z2), it follows from Lemma 3.1 that z;
misses P(y;,z2) in G. So that for any two ver-
tices y;,y; € Y’, z1 misses P(y;, T2) @ P(z2,y;)
in G. Thus z; € Dg(yi,y;). Since {z;} UY’
forms an asteroidal set of s + 1 vertices in G, it
contradicts that G € A(s) and the lemma fol-
lows. O

Note that if a graph G is Cp-free (no chord-
less cycle of length n), it does not imply that
every proper power of G remains Cj-free. For
example, the square of a chordal graph is not
necessarily chordal. Since every cycle Cys45 for
s > 2 contains an asteroidal set of size s + 1,
a graph G € A(s) has no such a cycle. In the
following, we will show that every proper power
G* of a graph G € A(s) contains no chordless
cycle of length 2s 4+ 1.

Lemma 3.4 Every proper power G* of a graph
G € A(s) for s > 2 does not contain Cyssy as
an induced subgraph.

Proof. Suppose to the contrary. Let
C = (ug,u1,...,u2s,%0) be a chordless cycle
in G* for some k > 2. Clearly, dg(u;,u;) <
k for i — j| = 1 and dG(ui,Uj) > k for
|t — j| > 2 (where the indices of the terms
u; and u; are always taken modulo 2s + 1).
Since C does not include any two consecutive
edges belonging to E, without loss of general-
ity we assume that dg(ug,u;) > 2. Let W =
{u1,us,us,...,u2s—1,u0}. We will show that W

forms an asteroidal set of s + 1 vertices in G.
For any three distinct vertices up,u;,u; € W,
let Pc(ui,uj,un) denote the path joining wu;
and u; and avoiding up in C. Due to the in-
duced property of C, it follows that for ev-
ery three vertices un,u;,u; € W in G* with
h—il > 2 i—j > 2 and [h—j| > 2, u,
misses Pc(uj,uj,up), u; misses Po(uj,up,u;),
and u; misses Po(up, ui, uj). Thus, {up,u;, u;}
forms an AT in G*. By Lemma 2.2, {un, ui, uj}
is also an AT in G. To complete the proof,
we only need to verify that for every vertex
up € W\{ug,u1}, the set {up,u1,up} consti-
tutes an AT in G.

Let P(ui,u;) be a shortest path joining u;
and u; in G for © # j. TFor every ver-
tex up, € W\{uo,w1}, since dg(ug,up) > k
and dg(up,u1) > k > dg(ug,u1), it follows
from Lemma 3.1 that u, misses P(ug,u;) in
G. Using the same argument as above, a
similar proof shows that uy misses P(u;—y,u;)
for i = 3,...,h, and u; misses P(uj,ujt1)
for j = h,...,2s — 1, respectively, in G. In
particular, since dg(ug,u;) > 2, up misses
P(uy,uz), and u; misses P(uas,ug) in G. There-
fore, up misses the path P{uy,us) ® P(usz,u3) ®
-+ @ P(up-1,ur), and u; misses the path
P(up, ups1) ® P(upy1, uns2) @ - & Plugs, ug).
Consequently, {ug,u1,up} forms an AT in G.
This completes the proof. QO

We summary the above results as the follow-
ing theorem.

Theorem 3.5 Let G be a graph in the class
A(s) for s > 2. Then, every proper power G*
has no Ki 542, Kos41 and Cosyy induced sub-
graphs.

4. Perfection on powers of AT-free
graphs

A graph G is called perfect if for every in-

duced subgraph H of G, the chromatic number

of H (i.e., the minimum number of colours is

necessary to colour the vertices of H such that

any two adjacent vertices have different colours)
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equals the largest size of a clique of H. For back-
ground results on perfect graphs, see (3, 17]. A
hole is a chordless cycle of length at least four,
while an antihole is the complement of a hole.
We say that G is a Berge graph if it contains no
odd hole and no odd antihole. Berge [2] con-
jectured that a graph is perfect if and only if
it is a Berge graph. The “only if” part of this
conjecture is easy to check. However, the con-
verse remains open today and is referred to as
the Strong Perfect Graph Conjecture (abbrevi-
ated SPGC). In the past few years, the SPGC
has been proved to be valid by restricting it
to certain special classes of graphs defined by
forbidden induced subgraphs. For example, see
[23] for the case of the claw-free Berge graphs
(a Berge graph has no K 3 induced subgraph).

For a set S of vertices in a graph G, S is called
a star-cutset if G — S is disconnected and there
exists a vertex u € S such that S C Nglu]. A
graph is minimal imperfect if it is not perfect
and all of its proper induced subgraphs are per-
fect. The structure of minimal imperfect graphs
has been intensively studied. One of the most
useful properties of minimal imperfect graphs is
the Star Cutset Lemma which was proposed by
Chvéatal [9]. This lemma states that no mini-
mal imperfect graph contains a star-cutset and
is very useful for proving theorems on perfect
graphs. '

Because the odd antihole with at least five
vertices is AT-free, the AT-free graphs need not
be perfect. Let P(A(s)) denote the class of
graphs containing all proper powers of graphs
G € A(s) for s > 2. In the remainder, we
will show that every graph G € P(A(2)) has
no induced odd antihole. Using this prop-
erty together with the forbidden configurations
given in the previous section, we will show that
P(A(2)) is properly contained in the class of
perfect graphs. '

Lemma 4.1 Let G = (V,E) be an AT-free
graph and n > 5 be an odd integer. Then, ev-
ery proper power G* does not contain Cp, as an
induced subgraph.
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Proof. For the case n = 5, since Cj is isomor-
phic to its complement C, the result follows di-
rectly from Lemma 3.3 that every proper power
of AT-free graphs does not contain Cs as an in-
duced subgraph. For odd integer n > 7, we sup-
pose to the contrary. Let (ug,u1,---,%n—1,%0)
be a chordless cycle in the complement of G¥,
and let H be the subgraph of G* induced by
the vertices u; for 1 = 0,...,n — 1. That is, H
is isomorphic to C, in which any two vertices
u; and u; have the distance dg(u;,u;) < k for
li — j| > 2 or dg(ui,uj) > k for |i —j| = 1
(where the indices of the terms u; and u; are
always taken modulo n). Let P(u;,u;) denote a
shortest path joining u; and u; in G for 7 # j.
We consider the following two cases.

Case 1: at least one of edges (up,u2) and
(ug, Un—2) in H does not belong to E. With-
out loss of generality we assume that 2 <
de(ug,uz) < k. Clearly, the set {ug,u1,us} is
an independent set in G. Since dg(ug,u1) > &
and dg(ui,u2) > k > dg(uo,uz), it follows
from Lemma 3.1 that u; misses P(ug,u2) in
G. Similarly, we can show that uo misses
P(uj,u3) in G. Also, since dg(uo,u2) > 2
and dg(ug,uz) > k > dg(ug,us), it follows
from Lemma 3.1 that uo misses P(ug,us3) in
G. Thus, us misses P(ug,u3) ® P(u3z,u1) in
G. By the symmetric property of H, uo misses
P(ug,tn_1) ® P(up—1,u1) in G. So {ug,uy,uz}
forms an AT in G, a contradiction.

Case 2: both the edges (ug,uz) and
(ug,un—2) in H belong to E. Since the degree
of ug in H is even and no two vertices u; and
uip (2 = 2,...,n — 3) are adjacent to ug in
G, an easy argument shows that there exist at
least two vertices u,, and un,4+; for some m =
3,...,n — 4 such that (ug,um), (vo, Um+1) € E;
i.e., 2 < dg(uo, um), dc(uo, tms1) < k. Clearly,
the set {ug,Um,um+1} is an independent set in
G. Since dg(up, um) > 2 and dg(¥m, Um+1) >
k > dg(uo,um+1), it follows from Lemma 3.1
that u,, misses P(ug,um+1) in G. Similarly,
we can show that w,,.; misses P(ug,un) in G.
Also, since 3 < m < n —4, dg(um,u) < k and
dg(ums1,u1) < k. Thus, for j € {m,m + 1},
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we have dg(uj,uo) = 2 and dg(ug,u1) > k >
dg(uj,u1). This follows from Lemma 3.1 that
ug misses P(um,u1) ® P(u1,um+1) in G. So
{9, Um,Um+1} forms an AT in G, a contradic-
tion. : a

Corollary 4.2 Every proper power of AT-free
graphs is a Berge graph.

Proof. Corollary 2.4 shows that every proper
power of AT-free graphs remains AT-free. Since
every chordless n-cycle for n > 6 contains an
AT, AT-free graphs have no such a cycle. Thus,
the result follows directly from Lemma 3.4 and
Lemma 4.1. 0O

Theorem 4.3 Every proper power of AT-free
graphs is perfect.

Proof.  Suppose to the contrary. Let G =
(V,E) be an AT-free graph, and assume that
there is a proper power G¥ which is not perfect.
Then, G* has an induced subgraph H that is
minimal imperfect (in fact, every graph with no
more than four vertices is perfect). By Corol-
lary 4.2, G* is Berge and so is H. Since claw-
free Berge graphs are perfect [23)], it follows that
H contains a claw. Let u,z,y,z induce a claw
in H with edges (u,z),(u,y) and (u, z). Since
the set Ng[u]\{z,y} is not a star-cutset in H,
it follows that there is a chordless path P(z,y)
joining z and y in H whose inner vertices are
all nonadjacent to u. Since H contains no hole
with at least five vertices, P(z,y) has exactly
two edges.

Let 2’ be the vertex of P(z,y) joining z and
y. By Lemma 3.3, GF is K 3-free and so is H.
Thus, z and 2’ are nonadjacent in H. A similar
argument shows that there exist two chordless
paths P(y, z) = (y,2',2) and P(z,2) = (z,¥, 2)
in H such that z' is adjacent to neither u nor z,

and y' is adjacent to neither u nor y. It is easy’

to see that (z',1') & E*; otherwise, z,u,y,2',y’
induce a Cs in G*. By the same argument as
above, (y',2') € E* and (2',2') ¢ E*. There-
fore, z,y,z,2',y', 2 induce a Cs in G¥. How-
ever, this is impossible for AT-free graphs. 0O

5. Conclusion

In this paper, we show that the class of graphs
with bounded asteroidal number is closed under
power operations. In addition, we show that a
graph in P(A(s)) for s > 2 does not contain
K1 s+2, Ka,541 and Cos4 as induced subgraphs.
In particular, we show that every proper power
of AT-free graphs has no induced odd antihole.
Consequently, P(.4(2)) is contained in the class
of perfect AT-free graphs. Since Kj 4 is a per-
fect AT-free graph and every graph in P(A(2))
has no K} 4 induced subgraph, we conclude that
P(A(2)) is strictly contained in the class of per-
fect AT-free graphs.

A previous result proposed in (8] showed
that the class of cocomparability graphs is also
strictly contained in the class of perfect AT-
free graphs. Since the class of cocomparability
graphs is the largest well-known subclass of per-
fect AT-free graphs, a natural question to ask is
whether every graph in P(.A(2)) is a cocompa-
rability graph.

References
(1] H.-J. Bandelt, A. Henkmann and F. Nico-
lai, Powers of distance-hereditary graphs,
Discrete Mathematics 145 (1995) 37-60.

[2] C. Berge, Les problémes de coloration en
theéorie des graphes, Publ. Inst. Statnt.
Univ. Paris 9 (1960) 123-160.

[3] C. Berge and V. Chvétal (eds.), Topics
on Perfect Graphs (North-Holland, Ams-
terdam, 1984).

[4] A. Brandstddt, Special graph classes —
a survey, Schriftenreihe des Fachbere-
ichs Mathematik, SM-DU-199, Universitat
Duisburg, 1991.

[5] A.Brandstidt, F. F. Dragan, V. D. Chepoi
and V. 1. Voloshin, Dually chordal graphs,
in: Proc. of WG’93 Conference, Lec-
ture Notes in Computer Science, Springer-
Verlag, Vol. 790 (1994) 237-251.

-110-



(6]

[12]

[13]

[14]

[15]

A. Brandstidt, V. B. Le and T. Szym-
czak, Duchet-type theorems for powers of
HHD-free graphs, Discrete Mathematics
177 (1997) 9-16.

H. Broersma, T. Kloks, D. Kratsch and
H. Muller, Independent sets in asteroidal
triple-free graphs, in: Proc. of ICALP'97
Conference, Lecture Notes in Computer
Science, Springer-Verlag, Vol. 1256 (1997)
760-770.

F. Cheah, A recognition algorithm for II-
graphs, Doctoral thesis, Department of
Computer Science, University of Toronto,
1990.

V. Chvéatal, Star-cutsets and perfect
graphs, Journal of Combinatorial Theory
(B) 39 (1985) 189-199.

D. G. Corneil, S. Olariu and L. Stewart, A
linear time algorithm to compute a domi-
nating path in an AT-free graph, Informa-
tion Processing Letters 54 (1995) 253-257.

D. G. Corneil, S. Olariu and L. Stewart,
Asteroidal triple-free graphs, SIAM Jour-
nal on Discrete Mathematics 10 (1997) 399-
430.

D. G. Corneil, S. Olariu and L. Stew-
art, Linear time algorithms for dominat-
ing pairs in asteroidal triple-free graphs,
in: Proc. of ICALP’95 Conference, Lec-
ture Notes in Computer Science, Springer-
Verlag, Vol. 944 (1995) 292-302.

E. Dahlhaus and P. Duchet, On strongly
chordal graphs, Ars Combinatoria 24B
(1987) 23-30.

P. Damaschke, Distances in cocomparabil-
ity graphs and their -powers, Discrete Ap-
plied Mathematics 35 (1992) 67-72.

P. Duchet, Classical perfect graphs, Annals
of Discrete Mathematics 21 (1984) 67-96.

(16]

[17]

[20]

-111-

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

C. Flotow, On powers of m-trapezoid
graphs, Discrete Applied Mathematics 63
(1995) 187-192.

M. C. Golumbic, Algorithmic Graph The-
ory and Perfect Graphs (Academic Press,
New York, 1980).

T. Kloks, D. Kratsch and H. Miller, As-
teroidal sets in graph, in: Proc. of WG’97
Conference, Lecture Notes in Computer
Science, Springer-Verlag, Vol. 1335 (1997)
229-241.

T. Kloks, D. Kratsch and J. Spinrad, On
treewidth and minimum fill-in of aster-
oidal triple-free graphs, Theoretical Com-
puter Science 175 (1997) 309-335.

C. G. Lekkerkerker and J. C. Boland, Rep-
resentation of a finite graph by a set of in-
tervals on the real line, Fundamenta Math-
ematicae 51 (1962) 45-64.

A. Lubiw, I-free matrices, M. S. Thesis,
Department of Combinatorics and Opti-
mization, University of Waterloo, 1982.

R. H. Mohring, Triangulating graphs with-
out asteroidal triples, Discrete Applied
Mathematics 64 (1996) 281-287.

K. R. Parthasarathy and G. Ravindra, The
strong perfect graph conjecture is true for

K 3-free graphs, Journal of Combinatorial
Theory (B) 28 (1976) 212-223.

A. Raychaudhuri, On powers of interval
and unit interval graphs, Congressus Nu-
merantium 59 (1987) 235-242.

A. Raychaudhuri, On powers of strongly
chordal and circular arc graphs, Ars Com-
binatoria 34 (1992) 147-160.

J. R. Walter, Representations of chordal
graphs as subtrees of a tree, Journal of
Graph Theory 2 (1978) 265-267.



	
	104
	105
	106
	107
	108
	109
	110
	111


