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ABSTRACT

An edge dominating set D of a graph G = (¥, E) is a set of
edges such that every edge not in D is adjacent to at least
one edge in D. This paper gives an O(n*) time algorithm

which finds a minimum edge dominating set for a distance- '

hereditary graph where n =|V].

1. INTRODUCTION

In this paper, we consider only finite, undirected simple
graphs. Given a graph G = (¥, E), two vertices u and v of G
connected by an edge are called adjacent vertices and we
denote the edge by (u, v). Two edges having a vertex in
common or a vertex and its incident edge are also called
adjacent. If two vertices or two edges are adjacent, one
may say that they dominate each other. We also say that
vertex v and edge e cover each other if they are adjacent. A
matching of G is a set M of edges in which no two edges
are adjacent. A maximum matching of G is a matching of
maximum cardinality. The maximum matching problem in-
volves finding a maximum matching for the given graph. A
vertex cover of G is a set C of vertices such that every edge
of G is covered by at least one vertex in C. A minimum
vertex cover of G is a vertex cover of minimum cardinality.
The vertex cover problem involves finding a minimum
vertex cover for the given graph. An edge dominating set
of G is a set D of edges such that every edge not in D is
adjacent to at least one edge in D. An edge dominating set
D’ is independent if D’ is also a matching of G. D’ is also
called an independent edge dominating set of G. A mini-
mum edge dominating set of G is an edge dominating set of
minimum cardinality. A minimum independent edge domi-
nating set of G is an independent edge dominating set of
minimum cardinality. Specifically, a minimum independent
edge dominating set of G is a minimum maximal matching
of G. The edge domination problem has been studied by
several researchers {2, 3, 5, 7, 9, 10, 11, 12]. It involves
finding a minimum edge dominating set for the given
graph. Yannakakis and Gavril [2] showed that the size of a
minimum edge dominating set is equal to the size of a
minimum independent edge dominating set. Generally
speaking, finding a minimum independent edge dominating
set is easier than finding a minimum edge dominating set.
Therefore, we will focus on finding a minimum indepen-
dent edge dominating set of G. The distance d(u, v) be-
tween two vertices u and v of a connected graph G is the

minimum length of a u-v path in G. A graph is distance-
hereditary if each pair of vertices are equidistant in every
connected induced subgraph containing them. Howorka [1]
firstly introduced the class of distance-hereditary graphs
and studied characterizations of them. Bandelt and Mulder
[4] gave a constructive characterization of distance-
hereditary grapbs which is called one vertex extensions.
Hammer and Maffray [6] proposed a linear time recogni-
tion algorithm constructing a one vertex extension ordering
of the given distance-hereditary graph. Chang et. al. [13]
defined the one-vertex-extension tree and gave a new re-
cursive definition for distance-hereditary graphs. They are
useful for solving problems on distance-hereditary graphs.
For solving the edge domination problem on distance-
hereditary graphs, we solve a more general edge domina-
tion problem called the mixed edge domination problem
where the edge domination problem is a special case of this
problem. Then by using dynamic programming techniques
based upon the new recursive definition of distance-
hereditary graphs given by Chang et. al., we give an O(n*)
time algorithm for solving the edge domination problem on
distance-hereditary graphs.

2. PRELIMINARIES

We follow the notation and definitions given by Chang et.
al. [13]. For a graph G = (¥, E) and a subset X of V, define
G[X] to be the subgraph of G induced by X. We represent
the edge set of G[X] by E(G[X]).

Definition 2.1 For two graphs G, = (V}, E\) and G, = (¥,,
E)), we refer to the graph G = (V, v V,, E, U E,) as the
union of graphs G, and G, (denoted by G = G, U G,).

Definition 2.2 We say that two disjoint vertex subsets V|
and ¥, of ¥ form a join in graph G = (¥, E), if every vertex
of ¥, is adjacent to all vertices of 7.

Definition 2.3 (Chang et. al. [13]) The class of distance-
hereditary graphs and the twin set, denoted by TS(G) of a
distance-hereditary graph G can be defined as follows.

® X, is a distance-hereditary graph and the twin set
TS(K,) of K, is the only vertex of K.

® If G, and G, are distance-hereditary graphs, then the
graph G = G, U G, is also a distance-hereditary graph.
The twin set TS(G) of G is the union of the twin sets
of G, and G,. In this case, we say that the graph G is
formed from G, and G, by a false twin operation.

® If G, and G, are distance-hereditary graphs, then the
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graph G obtained from G, and G, by connecting every
vertex of the twin set of G, to all vertices of the twin
set of G, is also a distance-hereditary graph. That is,
TS(G)) and TS(G,) form a join in graph G. The twin
set of G is the union of the twin sets of G, and G,. In
this case, we say that the graph G is formed from G,
and G, by a true twin operation.

® If G, and G, are distance-hereditary graphs, then the
graph G obtained from G, and G, by connecting every
vertex of the twin set of G, to all vertices of the twin
set of G, is also a distance-hereditary graph. That is,
TS(G,) and TS(G,) form a join in graph G. The twin
set of G is the twin set of G,. In this case, we say that
the graph G is formed from G, and G, by a pendant
vertex operation. We also say that graph G is obtained
from G, and G, by attaching graph G, to graph G,.

3. AN O(n*) TIME ALGORITHM

Given a distance-hereditary graph G = (¥, E), a subset D of
¥ U E is called a mixed set if every edge in D is not adja-
cent to any vertex or edge in D and every vertex in D is in
TS(G). A mixed set is a matching if it does not contain any
vertex in V. We denote D ~ ¥ and D n E by (D) and
E(D), respectively. By P(D), we denote the set of vertices
in ¥(D) and vertices to which the edges in D are incident.
A mixed edge dominating set (MEDS) of G is a mixed set
D such that every edge of G not in D is dominated by an
edge in D or covered by a vertex in D. In particular, if an
MEDS D of G satisfying 7S(G) < P(D), then we call it a
simple mixed edge dominating set (SMEDS) of G. A
minimum MEDS of G is an MEDS of minimum cardinality.
Correspondingly, a minimum SMEDS of G is an SMEDS
of minimum cardinality. The mixed edge domination
problem involves finding a minimum MEDS of G. We
need more notation and definitions for clarity.

Definition 3.1 Let G = (V, E) be a distance-hereditary
graph. A p-vertices MEDS D of G is an MEDS of G such
that |[/(D)| = p. A minimum p-vertices MEDS of G is a p-
vertices MEDS of G of minimum cardinality. We denote a
minimum p-vertices MEDS of G by F(G, p) and |[F(G, p)|
by AG, p), respectively.

Definition 3.2 A minimum p-vertices SMEDS of G is a p-
vertices SMEDS of G of minimum cardinality. We denote a
minimum p-vertices SMEDS of G by F{G, p) and |[F; (G,
) by /7 (G, p), respectively.

Obviously, a p-vertices MEDS of G is an edge dominating
set of G if p = 0. If p = 0 then a p-vertices MEDS of G is
also a matching. Yannakakis and Gavril showed that there
exists a minimum edge dominating set which is also a
matching [2]. Therefore, a minimum p-vertices MEDS of
G with p = 0 is a minimum edge dominating set of G. So,
we can find a minimum edge dominating set of a distance-
hereditary graph G by finding a minimum p-vertices
MEDS of G with p = 0. The following two lemmas play
important roles.in solving the edge domination problem on
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distance-hereditary graphs.

Lemma 3.1 Suppose G = (¥, E) is formed from G, = (V,,
E)) and G, = (V,, E,) by a true twin operation or a pendant
vertex operation. Let D be an MEDS of G. Then, there ex-
ists an MEDS D’ of G satisfying that

() (D)= WND"),

(i) P(D)=P(D’),

(iii) |D| = |D’}, and

(iv) D’ A E(G[TS(G)]) = § or D’ A E(GITS(G)]) = ¢.

Proof. We prove the lemma by contradiction. Let D’ be an
MEDS satisfying that (i) (D) = V(D), (ii) P(D’) = P(D),
(i) P’} = D, and (iv) ID° N (E(G[TS(G)) v
E(G[TS(G,)1))| is minimum. Suppose D’ contains edges
from both E(G[TS(G))]) and E(G[TS(G]). That is, E(D’)
has an edges e, = (, v) from E(G[TS(G,)]) and another
edge e, = (s, £) from E(G[TS(G,)]). By definition, (u, s) and
(v, 1) are edges of G. Let W= (D’ - {e, e,}) W {(&, 3), (v,
H}. Since {(u, 5), (v, )} < E and P(W) = P(D’), we have
that ¥ is also an MEDS of G. Clearly V(W) = (D”), P(W)
= P(D), |W] = |D’| and W has less edges from E(G[7S(G,)])
v E(G[TS(Gy)]) than D’. This contradicts the assumption
that |D” ~ (E(G[TS(G))D v E(G[TS(G)I)} is mimimum.

Q.E.D.

Lemma 3.2 Suppose G = (¥, E) is formed from G, = (¥,
E) and G, = (V,, E;) by a true twin operation or a pendant
vertex operation. Let D be an MEDS of G. Then either
TS(G,) or TS(G,) is a subset of P(D).

Proof. Suppose neither 7S(G,) nor TS(G,) is a subset of
P(D). Then there exist two vertices u € TS(G)) and V <
TS(G,) with {u, v} "~ P(D) = ¢. By definition, (u, v) € E.
Obviously, D does not dominate the edge (v, v) € E. This
contradicts the assumption that D is an MEDS set of G.
Consequently, the lemma is correct.

QED

Note that a p-vertices MEDS D of G with TS(G) ¢ P(D) is
also a p-vertices SMEDS of G. For technical reasons, we
let G, p) =  if G has no p-vertices MEDS. Similarly, we
let f{G, p) = w if F{(G, p) does not exist. For example, if p
> |TS(G)}, then f{G, p) = = and F{G, p) does not exist. We
now show how to compute G, p) and f{G, p) for a dis-
tance-hereditary graph G = (¥, E) as follows. Moreover, we
can find F(G, p) and F{(G, p) when we compute AG, p)
and (G, p). It is easy to see that (i) F(G, p) = ¢ and F{(G,
D) =0, (G, p)=0,and f{G,p) =0if G =K, and p = 0; (i1)
F(G, p) =V and F{G, p) = Vif G=K, and p = 1; and (iii)
both F(G, p) and F{G, p) do not exist if G = K; and p >1.
If G is not K, then G is formed from two induced sub-
graphs G,(V,, E,) and G,(V;, E,) by one of three operations
given in Definition 2.3. So we consider the following three
cases. For simplicity, .let [TS(G))| = n, and |[TS(Gy)| = n,.

Case 1. G is formed from G, and G, by a false twin opera-
tion. In other words, G = G, U G, Let D = F(G, p) be a
minimum p-vertices MEDS of G. Assume that i vertices of
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V(D) are from T'S(G,) and the other p-i vertices of ¥(D) are
from TS(Gy). Let P, = D N TS(G,)), P, =D N TGy, M, =
DANE, and M, =D E, Clearly, |P|| =i and |P;| = p-i. It
is not hard to see that M, U P, is a minimum i-vertices
MEDS of G, and M, U P, is a minimum (p-i)-vertices
MEDS of G,. Thus,

f(G.p)= (E_j;{f(G]’i) +f(Gyp-i)}

where g = min{p, n,}. Correspondingly, let § = F(G, p) be
a minimum p-vertices SMEDS of G. Suppose that i verti-
_ces of WA(S) are from TS(G)) and the other p-i vertices of
V(S) are from IS(G,). Let P, = S N TS(G), P, =S N
TS(Gy), M, =S N E,, and M, = S N E, where |P,] =i and
|P,| = p - i. Obviously, M, U P, is a minimum i-vertices
SMEDS of G, and M, U P, is a minimum (p-i)-vertices
SMEDS of G,. Thus,

fr(G,p) = (g.igl{fr(Ghi)*'fr(Gz,P—i)}

where ¢ = min {p, n,}.

Case 2. G is formed from G, and G, by a true twin opera-
tion. Let D be an F(G, p). By Lemma 3.2, we know that
either TS(G,) < P(D) or TS(G,) < P(D). First we consider
how to compute fG, p) in this case. Suppose T'S(G)) <
P(D). Note that |(D)| = p, ID| = G, p), and TS(G)) <
P(D). Since every vertex of I.5(G,) connects to all vertices
of TS(G,) and TS(G)) < P(D), the edges between TS(G))
and TS(G,) are covered by I'S(G)). Assume that P, = V(D)
N IS(G)), P,= V(D) " TS(Gy), M, = E(D) N E|, M, = E(D)
N E,, and J = E(D) N (E - (E, L E,)). By definition, every
edge of E - (E, U E,) connects a vertex in 75(G,) and a
vertex in TS(G,). Thus every edge of J connects a vertex in
7S(G,) and another vertex in T5(G,). Assume that O, = P(J)
N TS(G), @, = PU) N IS(GY), IP\| =1, |P,| = p-i, and U] = k.
It is straightforward to verify that P, U Q, U M, is a mini-
mum (i+k)-vertices SMEDS of G, and P, w O, U M, is a
minimum (p-i+k)-vertices MEDS of G,. Thus, in this case
we have that
fG.p)=  min {fr(Gui+k)+f(Gylp=D)+k)~k}
0<i<q,0<k<h
where ¢ = min{p, n;} and A = min{ n- i, n, - (p — i)}. On
the other hand, suppose I5(G,) < P(D). By similar argu-
ments, in this case we have that
f(G,p)= min {f(GLi+k)+ [ (G (p-i)+k)-k}
0<i<q,0<k<h
where g = min{p, n} and 2 = min{ n;- i, n, — (p — i)}.
Therefore we have that f{G, p) = min{f;, f;} where

A= min {fr(GLi+k)+ f(Gp(p-i)+k)-k}
0<i<q,0<ksh

and

f2= min {S(GLi+k)+ fr (G (p~i)+ k) ~k}
0<i<q,0sksh

where ¢ = min{p, n,} and A = min{ n,- i, n, — (p — i)}. Next
we consider how to compute f{G, p). By arguments similar
to those for obtaining recursive formula for computing AG,
p), we have that

Sr(G,p)= min

0<igq,0<k <A

Ur(Gi+k)+ fr(Gy, (p—i) + k) —k}

where ¢ = min{p, n,} and 2 = min{ n,- i, n,— (p — i)}.

Case 3. G is formed from G, and G, by attaching G, to G,.
Let D be an F(G, p). By Lemma 3.2, we know that either
IS(G)) < P(D) or TS(G,) < P(D). This case is similar to
Case 2. The difference between Case 2 and Case 3 is that
an MEDS of G does not contain any vertex of TS(G,) if G
is formed from G, and G, by attaching G, to G, but it may
contain vertices from both 7S(G,) and TS(G,) if G is
formed from G, and G, by a true twin operation. In other
words, V(D) c TS(G)) in Case 3. It is easy to see that F(G,
p) and Fy(G, p) do not exist if p > n,. In the following we
assume that n, > p. By arguments similar to those for Case
2, we have that G, p) = min{f,, f;} where

S = min {f7(Gi,p+k) + f(Gy, k) ~k}
0sksh

and
fo = min {f(G,,p+k) + fr(Gy,k) -k}
Osks<h

where & = min{ n,- p, n,}. Similarly, we have that
fr(G.p)= min {/r(Gr.p+K)+ £(Gos )~}

where 2 = min{ n,- p, n,}.

With the above discussions, we have the following results.

Lemma 3.3 Givenf(Gh p)’fT(Gla P): ﬂGZ’ P), andfT(GZy P)
for n 2 p > 0, it takes at most O(n°) time to compute AG, p)

and f{G,p) forn=2p20.

Proof. For a particular value p, the most time-consuming
step to compute G, p) and f{G, p) is when G is formed
from G, and G, by a true twin operation. In the worst case,
it takes at most O(#%) time to obtain the results. Therefore,
it takes at most O(r*) time to compute f{G, p) and f{(G, p)
forallp,n2p20.

QED

Theorem 3.1 The edge domination problem on distance-
hereditary graphs G can be solved in O(n*) time.

Proof. A one-vertex-extension tree of a distance-hereditary
graph G can be computed in linear time. Once this has
been done, we can obtain a recursive definition of the
given graph in O(n) time. Since a distance-hereditary graph
can be obtained by performing O(n) operations given in
Definition 2.3, and it takes at most O(r*) time to compute
AG, p) and f{G, p) for n > p > 0 after each operation is per-
formed. Consequently, the minimum edge dominating set
AG, 0) of a distance-hereditary graph G can be obtained in
O(n*) time.
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