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Abstract

Radial basis function networks (RBFNs) have recently
attracted  interest, because of their advantages over
multilayer perceptrons as they are universal approzi-
mators but achieve faster convergence since only one
layer of weights is required. The least squares method
is the most popularly used in estimating the synaptic
 weights which provides optimal results if the underly-
wng error distribution is Gaussian. However, the gen-
eralization performance of the networks deteriorates
for realistic noise whose distribution is either unknown
or non-Gaussian; in particular, it becomes very bad
if outliers are present. In this paper we propose a
positive-breakdown learning algorithm for RBFNs by
applying the breakdown point approach in robust re-
gresston such that any assumptions about or estima-
tion of the error distribution are avoidable. The ez-
pense of losing efficiency in the presence of Gaussian
notse and the problem of local minima for most robust
estimators has also been taken into account. The re-
sulting network is shown to be highly robust and stable
against a high fraction of outliers as well as small per-
turbations.

KEY WORDS: Radial basis function networks; Ro-
bust learning; Breakdown point; Least trimmed
squares; Robust regression.

1 Introduction

Radial basis function networks (RBFNs), introduced
by Broomhead and Lowe [1], also known as net-
works with locally-tuned overlapping receptive fields
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[2], have increasingly attracted interest for engineer-
ing applications due to their advantages over tradi-
tional multilayer perceptrons, namely simplicity and
faster convergence. More importantly, RBFNs hav-
ing one hidden layer are capable of universal ap-
proximation [3] as well as “almost” best approxima-
tion [4]. Given an Np-observation data set D =
{(xi,%) [i{=1,---,Np}, an N;~Np-1 RBFN can be
regarded as a.function approximator which estimates
an unknown functional mapping A : R — R such
that y; = A(x;)+€;, ¢=.1,.--, Np, where ) is the re-
gression function and the error term ¢; is a zero-mean
random variable of disturbance. The hidden layer per-
forms a nonlinear mapping ¢ from the input space
& to an Ng-dimensional “hidden” space & spanned
by the transformed vector set {¢(x;) |2 =1,---,Np};
ie, $(x) = [¢1(x),- -, dny(x)]" , where each non-
linear basis function ¢;(x) is defined by some radial
basis function such as the Gaussian function. The
output layer performs a biased linear combination of
the radial basis functions ¢; to generate the function
approximation \:-

Ny
Ax,D) = wo + Y _ widsi(x). 1)

i=1

In general, training RBFNs involves two phases
[2]: clustering on the hidden layer and determinating
synaptic weights on the output layer in order to min-
imize the discrepancy between the desired response y
and the predicted response A for all inputs x with re-
spect to some performance criterion (cost function),

g: No No )
E(w) = Zp(ri) = Zp(yi —Axi,w)),  (2)
i=1 i=1
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where p is the loss function which is a real-valued mea-
sure function of the residual r. If the loss function is
defined by the popular squared-error Ls criterion,

U
gase(w) = E Z(yi - )\(X,‘, w))z (3)

i=1

a least squares (LS) training procedure based on the
average-squared error (ASE) criterion is obtained.

Since the output layer of RBFNs simply implements
a multiple linear regression’, the problem of optimiz-
ing Equation (3) can be solved by applying the singu-
lar value decomposition (SVD) procedure or by itera-
tive gradient descent methods like least mean squares
(LMS).

Training RBFNs based on the LS method provides
optimal results under the assumption that the error
term ¢ is Gaussian distributed?. However, this as-
sumption usually fails to hold in real-world applica-
tions since either a priori information about the error
distribution is generally unavailable or the data are
contaminated by non-Gaussian noise whereby some
data points fall far outside of the majority of the data
so that outliers are encountered. This leads to the
problems of reliability and stability of an LS estima-
tor since training RBFNs is interpolative in nature.

Outliers may be introduced in different ways. For
example, in computer vision, the outliers may be the
result of clutter, large measurement errors, or impulse
noise corrupting the data [5]. In general, there are two
kinds of outliers, namely, leverage points and vertical
outliers. Leverage points (often called horizontal out-
liers) result from contamination in the input space X
due to some of the inputs x failing to obey the en-
vironmental probability rule p(x). Contamination in
the output space Y leads to vertical outliers due to
the output y failing to obey the conditional probabil-
ity rule p(y|x). Both anomalies in the training set D
may result in an aberrant and biased estimator since
RBFN is trained to fit these significant fluctuations by
interpolation instead of approximating the underlying
model in an attempt to compensate for the outliers
with least squared residuals. That is, RBFN is greatly
sensitive to the presence of outliers.

Without doubt, outliers corresponding to large
residuals should be filtered out during the training
process. The problem is, given an Np-element obser-
vation set D and a network M with Ny weights, how

11t will be a multivariate multiple linear regression if multi-
output nodes are required.

2The RBFN is referred to as the LS-based network,
henceforth.
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can one decide what percentage of outlying observa-
tions should be omitted? Choosing this percentage too
low can make the estimator tune to the gross errors in
D (overfitting), whereas choosing the percentage too
high may cause some good observations to be left out
(loss of ‘efficiency). Both situations will diminish the
RBFNs’ generalization performance and training effi-
ciency. Therefore, it is of great importance to justify a
trade-off between robustness and efficiency and deter-
mine the the upper bound of gross errors that RBFNs
can handle.

In the past decades, the theory of robust regression
has provided a sound basis for dealing with deviations
from the general assumption on the distribution of er-
rors; see for example [6]. In contrast to most work
on robust learning in the literature which applies the
approach of an influence function that gives a local
accurate assessment of a single outlying observation,
we adopt the breakdown point approach that gives a
global measure of stability in terms of the fraction of
outlying data it can tolerate. We chose the approach of
breakdown points mainly because of its sitnplicity; no
a priori information about the error is required. It al-
lows one to design estimators with a given breakdown
point, to quantitatively compare estimators with each
other, and to know what is the fraction of outliers that
the estimator can handle under all conditions [7]. One
notes that the breakdown point £* of RBFNs is one
when horizontal outliers are encountered since RBFs
are bounded in general; however, they do diminish
the estimation accuracy because significant residuals
are produced. On the other hand, RBFNs are extreme
sensitive to vertical outliers since one such outlier is

sufficient to break the networks down; ¢* = —11—3- [8].

2 Positive-Breakdown RBFNs

In order to keep RBFNs from breaking down be-
cause of vertical outliers and improve the estimation
accuracy in the presence of horizontal outliers, the
least trimmed squares (LTS) method, known as an
estimator with the highest possible breakdown point
& ~ 50% which was proposed by Rousseeuw [9], is
applied in ‘estimating the weights in the output layer;
this results in a positive-breakdown RBFN or robust
RBFN (R?BFN). Instead of minimizing the average of
all squared residuals, R2BFNs only consider the aver-
age of the smallest ordered squared residuals up to the
rank ¢ by minizing the cost function of the average-



trimmed-squared error (ATSE):

13
Eatse(W) = 52""(2:')’ (4)
i=1
where 7)) < ..o < rfy < oo < 77y are ordered

squared residuals and ¢ is the number of residuals that
needs to be taken into account at the true weight vec-
tor w. It follows from theoretical analyses of RBFNs
[8] and of robust regression [9, 6] that R2BFNs reach
their optimal breakdown point '

[Tegte | +1

f;izBFN(jU D) = Np (5)

when ¢ = 22| + |¥%tl| ) where Nw = Ny +11is
the number of weights including the one between the

biased unit and the output unit.

The cost function in Equation (4), as for most high-
breakdown estimators, is non-convex and can have
several local minima [6]. To improve the performance
in terms of learning speed and probability of conver-
gence, R?BFNs are enhanced by applying a normal-
ized steepest descent method [10] with the following
weight update rule:

AW —n 6gatse / ” aga.t.«xr-:

, (6)

where 7 is the learning rate. In order to accommo-
date both requirements of robustness against outliers
and of efficiency in the presence of Gaussian noise,
R?BFNs are further improved by adaptively adjust-
ing ¢ according to
gt +1) = [r(@®)Np] + |1 - (@) (Nw +1)], (7)
“where 7 € [, 1] determines the proportion of observa-
tions involved in error backpropagation and is a func-
tion of the commonly used criterion normalized root-
mean-squared error (NRMSE) on an uncontaminated
test set V since it keeps track of the generalization
ability of the network:

7(e) = 0.5exp(— ) +0.5, (8)

where v is a small positive real number.

These two modifications of R?BFNs together re-
sult in a new network, the so-called adaptive RZBFN
(AR?BFN for short).
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3 A Robust Dichotomizer

In order to validate the effectiveness of the proposed
network, we discuss some experimental results. We
first consider dichotomies on two-dimensional fea-
ture spaces defined by the robust dichotomizer, our
AR?BFN network, in the presence of vertical and hor-
izontal outliers.

3.1 Vertical Outliers

In this experiment, a two-dimensional feature (or in-
put) space over the rectangle [—1,1] x [—1,1] is as-
sumed. The decision boundary is defined by the dis-
criminant function

(sin(rz1) + cos(mzy))

. (9

which separates the feature space X into two non-
overlapping regions

Rl = {(:L‘l,a?g) |£(m1,m2) Z 0}

C(ml) 1“2) =2 —

and
Ra = {(.’El,xz) I,C(:el,:vz) < 0}

An uncontaminated training set D = {(x;, %) |i =
1,---,120} is constructed by uniformly sampling 60
data points from each region, with y; = 0.5 and y; =
—0.5, defining the classes C; and Cy. A 220-element
validation set V is similarly formed. Figure 1 plots
the scatter diagram for the input patterns in D.
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Figure 1: The scatter diagram for feature vectors in
the uncontaminated training set D with 60 points in
each region separated by the discriminant function L.

Since the output component y of each training da-
tum differing from z is discrete, a suitable vertical
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outlier model is randomly mislabelling training data
as in [11, 12]. For this, a corrupted training set D’
is constructed by deliberately flipping the labels for
six and seven sample points in region R; and R3 as
shown in Figure 2.
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Figure 2: The scatter diagram for the contaminated

training set D in which six and seven points in regions
R4 and Rq are deliberately mislabelled.

The. conventional RBFN  and the robust di-
chotomizer AR?BFN are trained by the set D’ and
validated by the set V' with network topology 2-10-1,
learning rate 0.005 and v = 0.06 for AR?BFN. There-
fore, the maximal number of outliers that can be toler-
ated by this AR?BFN is 54 since £* = 0.458 according
to Equation (5). Figure 3 depicts the evolution of
the classification rate on the validation set in termnds of
learning epochs in which our ARZBFN achieves 97%
in 4250 epochs in comparison to 90% in 9000 epochs
for the RBFN. Figures 4 and 5 illustrate the general-
ization performance for RBFN and AR?BFN.

One can see that the influence of vertical outliers
has been successfully diminished by AR?BFN, com-
pared to RBFN. It is worth noting that the outliers
appearing in region R, are scattered more densely
than other neighboring points (see Figure 2) and hence
have stronger impact; this causes a few of the points in
Region R close to the boundary to be misclassified.
Therefore, the impact of moderate outliers depends on
their scattering density and location.

3.2 Horizontal Outliers

For horizontal outliers, we use two lightly overlapping
classes C; and Cy. Both classes are represented by two

140

1.00 . : . ; J
095 | T
i
° 7 '
§ oso ]
c i
S
g 085 1
&
5-080 | .BBFN —
(3]
ARPBIN —
0.75
0.70 . . . .
0 1000 3000 5000 7000 9000

Learning epochs

Figure 3: The evolution of classification rate in terms
of learning epochs for AR?BFN and RBFN in the pres-
ence of vertical outliers for the pattern classification
problem.

bivariate normal distributions with the idéntity covari-
ance matrix, N ([0, 0]7,I) and N (]2, 2]7,I). An uncon-
taminated set D and validation set V are created by
uniformally sampling 60 and 110 points respectively
from each class as shown in Figures 6 and 7.

To introduce realistic outliers, the class C; is as-
sumed to be contaminated by outliers with Tukey’s
contaminated normal distribution [13], which has a
mixture density

(1-¢)N(0,T) +¢N(0,3%T). (10)

In other word, each point in C; is contaminated with

probability . Figure 8 plots the scatter diagram of
the contaminated training set D’ composed of class
C; with ¢ = 33% and C,. Notice that 20 points in C;
have been spread out toward the region of class Cy.

For comparison, RBFN and AR?BFN are trained
with. 2-5-1 network structures, learning rate 5 =
0.0001 and v = 0.06. Both networks rapidly achieve
good learning performance with a classification rate of
91% for RBFN and 93% for AR?BFN within 350 and
160 epochs, respectively. Figures 9 and 10 show the
scatter diagrams of the classification results for both
networks. One notes that the difference between both
networks in generalization performance is quite small
in the area close to the classification boundary since
protection is provided by bounded Gaussian hidden
units as we pointed earlier. On the other hand, the
misclassification made by RBFN on the comparably
far removed points confirms our conjecture (e.g., the
pattern at (4.89,0.19)); that is, the impact of outliers
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Figure 4: The classification result obtamed by RBFN,
with a 90% cla551ﬁca.t10n rate.
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Figure 5: The classification result obtained by
AR?BFN, with a 97% classification rate.

is determined by the location and density of outliers.
A more comprehensive study on the effect of sample
density affecting the performance of learning by locally
tuned networks can be found in [14], in which the fac-
tors of unit noise and receptive field size, shape, and
- overlap are also considered.

4 Conclusions

The work presented in this paper was motivated by
the need for developing a robust radial basis func-
tion network (RBFN) that can handle more realistic
noise in which outliers or gross errors may occur. Un-
like most studies which use the influence function ap-
proach, we applied the breakdown point approach in
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Figure 6: The scatter diagram for a 120-element un-
contaminated training set D for classes C; and C; uni-.
formly sampled from two equiprobable bivariate nor-
mal distributions N ([0, 0]7,I) and N([2, 2], 1).

developing robust RBFNs such that neither a prior
information about the error distribution nor estimat-
ing it is required. In particular, an adaptive robust
learning algorithm based on the least trimmed squares
method was proposed in order to improve the robust-
ness against gross errors, probability of escaping lo-
cal minima, and training efficiency in the presence
of Gaussian noise. The effectiveness of the resulting
positive-breakdown RBFN has been validated by per-
forming experiments on pattern classification.
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Figure 9: The classification result obtained by RBFN
on the test. data shown in Figure 7, with a 91% clas-
sification rate. Notice that the pattern at (4.89, 0.19)
has been misclassified.
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Figure 10: The classification result obtained by
AR?BFN on the test data shown in Figure 7, with
a 93% classification rate. Note that the pattern at
(4.89, 0.19) has been correctly classified.
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