1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

A Memory Efficient and Fast Huffman Decoding
Algorithm

Hong-Chung Chen, Yue-Li Wang and Yu-Feng Lan

Department of Information Management, National Taiwan University of
Science and Technology, Taipei, Taiwan, R.O.C.
Email:ylwang@cs.ntust.edu.tw

Abstract

" To reduce the memory size and
speed up the process of searching for a
symbol in a Huffman tree, we propose a
memory-efficient array data structure to
represent the Huffman tree. Then, we
present a fast Huffman decoding
algorithm, which takes O(log n) time
and uses [3n/2]+ rn/2logn1 + 1 memory
spacé, where 7 is the number of symbols
in a Huffman tree.

Keywords: Data structures, Decoding
algorithm, Huffman code.

1. Introduction

Huffman Cods are a widely used

and very effective technique for
compressing data [2, 4, 5, 6, 7]
Huffman’s algorithm uses a table of the
frequencies of occurrence of each
character to build up an optimal way of
representing each character as a binary
string (i.e., a codeword). The running
time of Huffman algorithm on a set of n
characters in O(n log n).

-In [3], Hashemian presented an
algorithm to speed up the search procesé

for a symbol in a Huffman tree and to

reduce the memory size. He used a tree
clustering algorithm to avoid high
sparsity of the Huffman tree. However,
finding the optimal solution of the
clustering problem is still open.
Moreover, the codewords of a single-
side growing Huffman tree is different
from ‘the codewords of the original
Huffman tree. Later, Chung gave a
memory-efficient data structure, which
needs the memory size 2n - 3, to
represent the Huffman tree, where n is
the number of symbols in a Huffman
tree [1]. In this paper, we shall propose a
more efficient algorithm to save memory
space.

The remaining part of this paper is
organized as follows. In Section 2, for
easy understanding, we introduce our
basic concept without considering the
memory efficient problem. In Section 3,
a memory efficient version of our
algorithm is
contains our concluding remarks.

presented. Section 4

2. The Main Idea of Our
Algorithm

In this section, we introduce our
algorithm without saving any memory
space in order to present our idea simply.

7145'

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

Then, in the next section, we shall
describe how to implement our
algorithm so that the
requirement is extremely efficient.

Let T be a Huffman tree which
contains n symbols. The symbols (i.e.,
the leaves of T) are labeled from left to
- S,1- The level of a node

memory

right as sy, 5y, ..
with respect to T is defined by saying
that the root has level 0, and other nodes
have a level that is one higher than they
have with respect to the subtree of the
root which contains them. The largest
level is the height of the Huffman tree.
The weight of a symbol is defined to be
2™ where # is the height of the Huffman
tree and / is the level of the symbol. Let
w; be the weight of symbol s, for i = 0,
- 1, ..., n - 1. Define that count, = w, and
count,= count,, +w,fori=1,2,...,n-1.
For example, see Figure 1. The values of
w;,count;and s, i=0,1,...,n-1, in the
Huffman tree are shown in Table 1.
Notice that the height 4 of the Huffman
tree is 5.

level 0
level 1
level 2
level 3

level 4

level §

YA

Figure 1. An example of Huffinan tree.

Table 1. The values of s, w; and count,

A N R A R EA R R AR A KA
w, [414141111]2|814]4
count| 4| 8112]13|14{16(24(28|32

-146-

Now, we describe our decodin5g
algorithm as follows.

Algorithm A

Input: The values of s, w; and count,, i
=0,1, .., n-1, of a Huffman
tree T with height » and a binary
codewordc.
Output: The corresponding symbol s, of
c.

Method:

Step 1. Compute t = (¢ + 1) x 2#9 |
where d is the number of
binary digits in c.

Step 2. Search ¢ from array count, if t is
not in the array count, then ¢ is
not a codeword of T; otherwise
assume that count, =t.

Step 3. If w, # 2", then c is not a
codeword of T, otherwise s, is
the corresponding symbol of

codeword c.
End of Algorithm A

Clearly, Algorithm A can be done
in O(log n) time. The memory required
in Algorithm A is 3n+1. That is, each of
the three arrays s, w and count needs n
elements and one for the height of 7. We
use three illustrate
Algorithm A.

Letc=0111.InStep 1,2=(7+ 1)
x 2°* = 16. In Step 2, count; = 16. In
Step 3, ws = 2°* = 2. Therefore, s, is the
corresponding
0111.

Letc=011.InStep 1,r=(3+1)
x 2°3 = 16. In Step 2, count; = 16.
However, in Step 3, w, # 2°7. Thus, 011

examples to

symbol of codeword

is not a codeword of T.

Letc=100.InStep 1, t=(4 + 1)
x 2°3 = 20. We cannot find 20 from
array count and 100 is not a codeword of
T.

The basic concept of Algorithm A
is described as follows. Imagine a full
binary Huffman tree. A full binary tree
of height 4 is a binary tree having 2" -
1 nodes in which there are 2* leaves.
Thus, the symbols in a full binary
Huffman tree are sy, $, ...5x,. [t means
that w, = 1 and count; =i+ 1 for i =0,
1, ..., n- 1. That is, given a codeword c,
the value of ¢ is the index of symbol s..
Assume that the given Huffman tree T
having height 4 is not a full binary tree.
Then, the weight of symbol s, at level [
is 2 which is the number of leaves of
subtree s, when s; is the corresponding
internal node of a full binary tree with
height 4.
the length (i.e., the number of binary

In searching a codeword c, if

digits) of ¢ is less than 4, then append
enough 1’s to get a codeword ¢’ with
length 2. Obviously, the weight of c,
denoted X; is ¢ + 1 if not appended (i.e.,
the length'of cis h) or ¢/ + 1 if
appended. Obviously, if X is not in
array count, then ¢ is not a codeword of
T. Since we append enough 1’ s to get
a binary string with length A, there may
be more than one binary string having X
as its weight. This is the reason why the
binary string with level / is the correct
codeword.

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

3. A Memory Efficient Version
of Algorithm A

In this section, we describe how to
save memory in the implementation of
Algorithm A. At first, since w; can be
obtained from the equation w; = count; -
count,, for i = 1, 2, .., n-1 and w, =
count,, the array w can be omitted. The
needed memory space becomes 2n + 1.
Now, we consider. how to decrease the
memory space needed by array count.
Let W,= wy, + wy,, fori =0, 1, .. L(n-
1)/2J. Note that W, = w,, if n is an
odd number. Let COUNT, = W, and
COUNT, = COUNT,, + W,i=1,2, ..,
L(n-1)/2]. Moreover, a bit b, is equal to 0
(respectively, 1) to indicate w, < Wy,
(respectively, wy, > w,,,,) fori=0, 1, ..,
L (n-l)/2_|. Since we can obtain W, i =1,
2, ..., L(n-1)/2] from array COUNT, it is
not necessary to store array W, either.
Now, we describe the memory efficient
algorithm as follows.

Algorithm B

Input: The arrays s, b and COUNT of a
Huffman tree T with height 7 and
a binary codeword c.

Output: The corresponding symbol s, of

c.

Method:

Step 1. Compute ¢ = (¢ + 1) x 2", where
d is the number of binary digits
inc.

Step 2. Find COUNT, such that
COUNT,, <t < COUNT,

Step 3. Compute x = COUNT -
COUNT,,.

Step 4. Decompose x into X, and x, such

~147-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

that x =x; +xp, X, =2, i= 1,2,
for some nonnegative integer e;
and assume, without loss of
generality, that ¢, <e,.

Step 5. Use b,, x, and x, to determine w,
and w, which are the weights of
5y and $,,,,, TEspectively.

Step 6. If t = COUNT, and wb = 2",
then s,;,, is the corresponding
symbol of c.

Let k= 2k+1 and stop.

Step 7. If t = COUNT, - wb and wa =2"

4 then s, is the corresponding

symbol of c. Let k=2kand
stop; otherwise ¢ is not a
codeword of 7.

End of Algorithm B

Step 2 of Algorithm B takes O(log
n) time. In Stép 4, the decomposition of
x can be done as follows. Determine
whether 2Y°¢) is equal to x or not. If
they are not equal, then x, = 2*¢* and x,
= x — x,; otherwise x, = x, = x/2. Thus,
Step 4 takes O(1) time. The other steps
can be done in O(1) time. Therefore, the
time complexity of Algorithm B is O(log
n). The needed memory space for the
arrays s, COUNT, and b and the height
of T are n, [n/2], Tn2logn| and 1,
respectively. :

We also give three examples on
the Huffman tree of Figure 1 to illustrate

Algorithm B. The arrays COUNT and b

are shown in Table 2.

Table 2. The values of COUNT,and b,
i 0j112(13])4
COUNT;| 8 |13|16(28(32]:
b, |ol1]o]1]

-148-

Letc=0111.InStep 1, t=(7+1)

x 2°* = 16. In Step 2, COUNT, < 16 <

COUNT, and k=2.In Step 3, x=3. In
Step 4, x is decomposed to x; = 1 and x,
=2. InStep 5, wa=1 and wb =2 since
b, = 0. In Step 6, since t = COUNT, =
16 and wb = 2™ = 2, s, is the
corresponding symbol of 0111 and stop.

Let ¢ = 011. All the results are the
same as the previous example except
Step 6. In Step 6, wb =2, but 2" =2 =
4. Thus, 011 is not a codeword of T.

Letc=100.InStep 1,t=(4 + 1)
x 253 = 20. In Step 2, COUNT, < 20 <
COUNT; and k=3.In Step 3, x=12. In
Step 4, x is decomposed to x, = 4 and x,
= 8. In Step 5, wa = 8 and wb = 4 since
b, = 1. However, t = 20 is not equal to
either COUNT; or COUNT, - wb in
Steps 6 and 7. Therefore, 100 is not a
codeword of T.

4. Concluding Remarks

We conclude that our algorithm can
be done in O(log ») time and needs
memory space n + [7/2]+{ n/2logn]+ 1.
Moreover, our algorithm can also be
parallelized easily. Since Step 2 of
Algorithm B can be done in O(1) time by
using O(n) processors in EREW PRAM
model. Therefore, the running time of
the parallelized implementation of
Algorithm B is O(1) by using O(n)
processors in EREW PRAM model.

References

[1] K. L. Chung, Efficient Huffman
Decoding, Information Processing
Letters, Vol. 61, 1997, pp. 97-99.

[2] T. J. Ferguson and J. H. Rabinowitz,
Self-synchronizing Huffman Codes,
IEEE transactions on Information
Theory, Vol. 1T-30, 1984, pp. 687-
693. |

[3] R. Hashemian, Memory Efficient
and High-Speed Search Huffman

IEEE
Communications, Vol. 43, No. 10,
1995, pp. 2576-2581.

[4] D. A. Huffman, A Method for the
Construction of
Redundancy Codes, Proceedings
IRE, Vol. 40, 1952, pp. 1098-1101.

Coding, Transactions on

Minimum

-149-

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C.

[5] S. M. Lei and M. T. Sun, An Entropy
Coding System for Digital HDTV
Applications, IEEE Transactions on

Systems and Video
Technology, Vol. 1, 1991, pp. 147-
155.

[6] M. E. Lukacs, Variable Word Length
Coding for a High Data Rate DPCM
Video Coder, Proceedings on Picture
Coding Symposium, 1986, pp. 54-56.

[71 K. H. Tzou, High-order Entropy

IEEE

Transactions on Circuit Systems and

Vid.

Circuit

Coding for Images,

	
	145
	146
	147
	148
	149

