HERE\AEREH RS

A New Rendering Method: Scan Line Based Semi-Boundary Algorithm
DlFRilin RERNY Semi-Boundary B

S ZRE BRAEE
Tzu-Lun Weng Tong-Yee Lee Yung-Nien Sun
RIS E R TIERFERT

Department of Computer Science and Information Engineering, National Cheng-Kung University,
Tainan, Taiwan, ROC

THE

R 5 TR B P R iRE T a8
2 LIERBIE G EN TS P
FrEVRIE SEERER NBE AR
BB G FIreE AR AEER b
REZGEE P EEERR R Rl —E
PR T YIRERY T - BB SR SSB

Abstract

The computer graphics simulation system
has been used as a powerful tool in surgical and
therapeutic applications. In such system, it must
provide a real-time rendering performance as
well as flexible manipulation on 3D objects. In
this paper, we propose a new volume rendering
scheme, namely SSB (Scan-line Based Semi-
Boundary).

hIBREET ¢ IREEAR - RS REEE-

Keywords : SSB -~ SB -
simulation + volume rendering ~ pelvis.

surgical

1. Introduction

3D visualization technique has been exploited to
explore new discovery of science in many areas
such as engineering simulation, fluid dynamics
and medical applications [1,2,3,4]. In medical
applications, the clinics use computer-generated
images to assist in surgical diagnosis and therapy
planning. Three-dimensional arrays of digital
data representing spatial volumes are commonly
used in medical applications like sequences of
two-dimensional images derived from CT or

Supported by:(1) NSC-87-2213-E-006-062
(2) NSC-87-2213-E-006-012

MRI. These data are always very large. Several
storage mechanisms have been propose to reduce
the size of storage such as Semi-boundary [3,4]
and Oct-tree with run-length coding [3]. These
schemes are also exploited to speedup rendering
computation. In the past, many efforts have been:
proposed for volume rendering such as ray
casting [1,5,6], back-to-front and front-to-back
projection [9]. These techniques are only capable
of real-time rendering large volume data on
massively parallel computers. With these
schemes, it is hard to develop VR applications
for medical purposes in which require high
interactions. Recently, P. G. Lacroute proposed a
shear-warp scheme that exploits coherence in
both volume data and the image [1]. Their
solution achieves about 1 second rendering
performance for 256x256x167 Brain data set but
requires an expensive preprocessing step and
three copies of volume data is represented as SB
data structure. Our new scheme is termed SSB
(Scan-line Based Semi-Boundary) and is
currently being used in our virtual surgical
system. With this new algorithm, we achieve a
very fast rendering performance comparable to
those obtained on the state-of-art graphics
workstations.

In Section 2, we briefly overview SB
concept and its data representation. Our SSB
scheme will be introduced in Section 3. Our
implementation details and experimental results
will be presented in Section 4. In final, some
concluding remarks and future work are given in
Section 5.

2. Overview on Semi-bourdary (SB)

Our SSB (Scan-line Based Semi-Boundary)
derives from SB scheme [3].There is some
preprocessing work required to create SB data
structure as well as other useful data structures
such as a normal lookup table. The SB data
structure is represented by a two-dimensional
link-list (shown in Figure 1) and is used to

B-228

PERE\AEZEE e R

represent the surface information of volume data
{3]. In Figure 1, the P[i][;] is the starting position
of each linked-list, d is depth, m is neighboring
configuration, code # is normal vector index, and
link is a pointer to the next node in the same
linked-list. Each P[i][j] denotes a scan-line list
starting from location [][j] on YZ plane along the
X axis.

For the SB, the image data captured by an
imaging device such as CT scanners -can. be
considered as a pair C=(g, ¢), where C is called
the scene domain and g is a mapping of C into a
set of numbers.

C={c=(c,2,B)fol<i<3,1<¢; <}

Each ¢ is termed voxel and g (¢) is the
density of ¢. Segmentation is a mapping of a
scene to a binary scene C as denoted as
S(CY=C, = (g,,C) where it represents

the binary scene resulting from C using a
segmentation function s. A commonly used s
segmentation function is defined below, where T
is a fixed threshold.

1ifg(CHY=2T

S8 C = .
7, () {0 otherwise

And | |

U (O)={ceQg,(c)=1},N,(O)={cellg,(c)=0}
, where [/ represents the SB structure we want
to visualize, and p _represents the background.

For the SB, we define neighboring nodes of a
voxel ¢ as: '

n(e)={d1j, 1S <3)¢; ~d,\=1 ande, =d, ifi # j)

We can encode these neighboring nodes in a

single neighboring configuration code as
A(ey=) g, (d)ym(d)>
den(c)

where m(d)=2",2",2%,2% 2*,2°. This
code is very useful to determine a voxel’s
potential visibility [3].

3. SSB Algorithm (Scan-line Based Semi- -

Boundary)

Our SSB method derives from the fact that
the parallel lines are still parallel after a parallel
projection transform. We can- exploit this
property to speed up rendering computation.
Note that our SSB can do not work correctly for
the perspective projection. However, in general
medical applications, the image is always

generated in a parallel projection manner. So, our
scheme is still very promising in medical
applications. The SSB scheme is described as
follows.

As shown in Figure 3, let X, ¥, Z be axes
for reference frame O, where its origin is located
at the center of volune data, and the world
reference frame W is defined by X°, ¥°, Z° axes.
The volume data is parallel projected into an
image plane that is on O’s XV plane. To view an
object in any orientation can be achieved through
a sequence of rotations. We find these three

-rotation angles regarding the reference frame O’s

X,Y,Z axes, say the angles ¢ about the X axis,
[} about the Y axis, and ¥ about the Z axis,

respectively. In our scheme, the image projection
plane is on the X-Y plane and the linked-list
orientation of SB data structure is created along
the X-axis. All linked-lists can be thought as
parallel lines along the JX-axis. Im such
arrangement, after a sequence of rotations plus a
parallel projection, all parallel scan-lines are still
parallel on the image plane. In case that only X-
axis rotation is required, it is obvious to know
that the projected lines are still parallel and they
also preserve their length. However, in case that
the Y-axis rotation is required, each parallel line
has to be scaled by the value of ¢og(g) as shown

in Figure. 2

When the angle ¥ is not zero, the parallel

lines in the SB are still a sole parallel projection
onto the image plane. However, the image plane
must rotate with the same angle ¥ about the Z-

axis in a reverse direction to obtain correct result
(illustrated in Figure 3). With above concept, we
can only multiply each starting node of each list
on the YZ plane by a parallel projection matrix.
For the remaining nodes in each list, we multiply
each node’s depth by a constant value, ¢o5(), t0

obtain its relative offset to the starting node, and
thus to obtain its exact location on the image
plane without need of a parallel projection
transform. In contrast, the original SB algorithm
must perform a parallel projection matrix
multiplication for all nodes in the SB data
structure. Therefore, the complexity of SSB is
O(MN) plus a 2-dimensional rotation, but SB is

ordered by O(LMN), where [j7, N are the SB
nodes in X, ¥, Z axes, respectively.

To fill in the detail, a pseudo-code version
of the SSB algorithm is listed below:

Procedure scan-line_semi_boundary;

B-229

TEREN A EZEHEROH

begin
12
//Part I: initial parameter and get lookup table
I
I/get image coordinate transform configuration
spin=trans->spin; tilt=trans->tilt;
COSX=trans->Cosx; cosy=trans->cosy;
sinx=trans->sinx; siny=trans->siny;
/1 get lookup table
SetConfigLookup();
SetNormalLookup();
SetPhoneLookup();
for i :=0 to number_of_height do begin
for j := 0 to number_of_width do begin
cur = &sb[i][j];
I
// part III-A : compute the starting position of each
" linked-list
I
do transformation of the start position of linked-list -
while (cur!=NULL) .
{
I
// Part 11: lookup configuration table
/I :
if configuration of SB node is visible do begin
Il
// Part I11-B: computation other nodes along scan-line
I

x=x1 + cur->depth*cosy ;
z =1z1-+ cur->depth*siny ;

"
// Part IV: Z-buffer, lookup normal and shading table
I

if depth less than the depth in Z buffer do begin
Z-buffering;
do lookup normal vector table;
do lookup shading table;
end;
end;
}
cur ;= next link-list node;
end; // end of if '
end; // end of j
end; // end of i
if y & ¢ doimage rotation;

end ; // end of procedure

Fig. 4 Pseudo-code of scan-line semi-boundary
algorithm

In this procedure, Part I setups all initial
parameters and all related lookup tables, Part 11
checks the visibility of each SB node, Part III-A
computes parallel projection of the starting node
for each linked-list, Part IT1I-B calculates offsets

for the remaining nodes, and Part IV performs Z-
buffering for the removal of the hidden-surface
and illumination shading.

4, Implementation Details and Experimental
Results

In our implementation, the normal vector
n(x,y,z) is computed by the moment-based edge
operator [8]. The normal vectors of objects can
be pre-computed and stored in a lookup table to

B-230

reduce the rendering time. Instead of storing all
three components of the normal as floating point
numbers we use an encoded representation that
tequires less storage and provides a convenient
integer index for lookup table. The general
method for encoding normal vectors is described
below:

1. Tessellate a sphere uniformly to 1280
triangular faces in-which their unit normal
vectors, denoted as N, are approximately
uniformly distributed over all directions.
Note that from our experience, the normal
vectors generated from these 1280
triangular faces are sufficient enough to
represent the entire surface normal vectors
for our tested medical images.

2. Assign a unique index to each unit normal
vector.

3. Foreach n(xy,z) of ¢, in N, find the closest
unit vector with a unique index n, and
substitute n(x,y,z) by n.

In our previous work [7], we proposed a
MSB scheme (Modified Semi-Boundary) which
performs better than the original SB algorithm.
In this section, we will study performance
comparisons between MSB and SSB. For the
completeness, we outline the MSB algorithm in
Figure 5.

Procedure modified semi_boundary();
begin
1l
// Part I: initial
/I
//get imagé coordinate transform configuration
spin=trans->spin, tilt=trans->tilt;"
COSX=lrans->cosx; Cosy=trans->cosy;
sinx=trans->sinx; siny=trans->siny;
/I get lookup table
SetConfigLookup();
SetNormalLookup();
for i :=0 to number_of_height do begin
for j == 0 to number_of width do begin
cur = &sbfi][j1;
while (cur!=NULL)
t
/I
// Part II: lookup configuration table
/i
if configuration of SB node is visible do
begin
I
// Part I1I: paraltel projection
/.
do transformation of each semi-boundary

PEREN\ AR EHES S

/
// Part IV: Z-buffer, lookup normal vector
/ltable , and phone shading
i
if current depth less than the depth in
buffer do begin
do Z_buffering;
do lookup normal vector table;
do lookup shading table;
end;
end ;
}
cur ;= next link-list node;
end; // end of if
end; // end ofj
end; // end of i
end ; // end of procedure

Fig. 5 Pseudo-code of modified semi-boundary
algorithm

We implemented both MSB and SSB
algorithms on SUN Sparc station-20 with 64 M
memory workstation, and evaluate their
performance difference in rendering of a
512x512x245 pelvis volume data with a 512x512
image resolution. =~ Our experimental
measurements both use wall clock execution time
of each algorithm on the pelvis data set. The
primary sources of overheads in both algorithms
can be classified into four categories listed
below:

1. Looping: It includes overheads spent on
control overheads such as updating loop
counters, advancing pointers and traveling
the linked-list structure.

2

Neighboring configuration tests: Time spent
checking visibility of nodes . using
neighboring configuration code. This test is
very essential to the overall performance and,
in general, cuts off the half number of nodes
in the linked-list and thus reduces rendering
time. Our tested pelvis volume data consists
of approximately 450,000 SB nodes. The
half number of nodes is culled after the
neighboring configuration tests.

Parallel projection transformation: Time
spent parallel projecting nodes in the linked-
list structure. This work is the most time-
consuming part compared with the other
overheads.

)

4. Z-buffering and shading: Time spent
removing the hidden-surface and shading the
volume data.

B-231

For other miscellaneous fixed overheads
such as lookup table initializations (about 2~3
milliseconds) is less significant than the above
listed overheads. The total rendering time for
MSB and SSB are 1742 (1.0 frame/sec.) and 957
(0.57 frame/sec.) milliseconds, respectively. The
SSB is faster than the MSB by a factor of 1.82
times. To further analyze the performance
difference, a breakdown of the total execution
time for MSB and SSB are shown in Tables 1
and 2. Both show the exact timings and the
percentages of the total execution time for each
category of overheads.

Recall that the algorithmic details in both
MSB and SSB are all the same except Part IIL
The MSB executes parallel projection
transformation (i.e., 9 multiplication and 6
addition operations) for all SB nodes in Part III,
however, the SSB executes parallel projection
for the starting node only and calculate less
computations (i.e., 2 multiplication and 2
addition operations) for the remaining SB nodes.
Difference between two kinds of transformations
is approximately 5 times. For Part III, the ratio of
improvement for the SSB over MSB can be
approximately formulated as (SL)/(5+L). The
average number (L) of the SB nodes in each list
(i.e., X dimension) for the pelvis volume data is
approximately 4.9. Thus, the improved ratio is
about 2.43 in theoretical respect. Tables 1 and 2
show that in Part I1I the improved ratio is 2.73 in
experimental respect. Both ratios match well, and
thus our formula can serve as an approximate
predictor of the improved performance. The
percentage results show the most time consuming
overheads are incurred in Part ITI. Some future
work can be done to improve performance of
other time killers such as looping, Z-buffering
and shading.

Rendering time depends on viewing angles,
the number of SB culled in Part II may vary with
view-points. Figures 6 and 7 show rendering time
versus viewing angle for the MSB and SSB
algorithms. Recall that un-culled SB nodes will
execute the Part ITI and thus make difference in
rendering time. In both figures, we see some
variations in rendering time as the rotation angle
increases. To verify our claim (i.e., variations are
mainly due to the number of un-culled SB nodes),
we plot an extra Figure 8 for the un-culled SB
nodes executing the SSB algorithm. Refer to
both Figures 7 and 8, we see clearly that
variations in both figures behaves in the same
manner. Finally, we present one slice of our
rendered results for the pelvis data in Figure 9.

5, Conclusion and Future Work

PERE\+AEREH S

In this paper, we present an efficient
volume rendering iechnique termed SSB. The
SSB can achieve an interactive performance for
large volume data such as a 512x512x245 pelvis
data. We carefully analyze our SSB algorithm
and compared with the original SB and MSB
algorithms. The SSB performs better than SB
and MSB both in theoretical and experimental
respects. Many future works will be done as
follows. We plan to enhance our SSB with the
morphing technology to perform surgical
simulation for the pelvis system. Some user-
friendly manipulation tools with the SSB will be
developed soon.

Acknowledgement
This research is supported in part by NSC-87-2213-E-
006-062 and NSC-87-2213-E-006-012.

References:

{1] Philippe G.Lacroute “Fast Volume Rendering
Using A Shear-Warp Factorization of the
Viewing Transformation” PhD. Thesis.
September 1995.

[2] R. Anthony Reynolds Dan Gordon and Lih-
Shyang Chen “A Dynamic Screen Technique
for Shaded Graphics Display of Slice-
Represented Objects. Computer Vision,
Graphics and Image Processing 38,pp.275-
298, 1987

[3] Jayaram K. Udupa and Dewey Odhner “Fast
Visualization, Manipulation, and Analysis of
Binary Volumetric Objects” IEEE CG&A.
pp.53-62 Nov. 1991.

[4] Jayaram k.Udupa and Dewey Odhner “Shell
Rendering” IEEE CG&A. pp58-67 Nov.
1993.

[5] Andrew S. Glassner. “Space Subdivision for
Fast Ray Tracing” IEEE CG&A ppl5-22
Oct. 1984

[6] Akira Fujimoto, Takayuki Tanaka, and
Kansei Iwata “ARTS:Accelerated Ray-
Tracing System” IEEE CG&A pp.16-26 1986

[7] Yuh-Hwan Liu , Chi-Wu Mao and Yung-Nien
Sun “Three-Dimension Reconstruction,
Registration and Fusion For Multimodality
Medical Images” , PhD. Thesis. Of
Department of Electrical Engineering
National Cheng Kung University, Tainan,
Taiwan. May 1997. '

[8] L.M. Luo, C.Hamitouche, J.L. Dillenseger,
and J.L. Coatrieux, “A moment-based three-
dimensional edge operator”, IEEE Trans.
Biomedical Engineering, Vol. 40. No.7,
pp.693-703, July 1993,

B-232

[9] Giedeon Frieder , Dan Gordon and R. Anthony
Reynolds “ Back-to-Front Display of Voxel-
Based Objects” IEEE CG&A pp.52-60
January 1985.

[1 0] B.K. P. Hom, “Extended Gaussian Images,”
Proceedings of the IEEE, Vol.72, No. 12, pp
1671-1686, Dec.1984

pif) [ololo[ON] -

. °

—{dTmla~]

pilfl | d{m|nf link
P[{LB‘"I] d{m|n| tink AT mIn] k] e — dlmlal

. .

ol { ¢ [mf a] ik |—>CTmraT=J

. .

plilh-] 0] o] o link |—{aTmRI=<]

Fig 1. A SB (Semi-Boundary) data structure

SB

/,
A
71; | Image

X

Fig.2if f s (link-listisscaled by cosf

© f__ Image

object

Fig.3if ¥ = O, image plane not rotation.

FEREN+AEZEHEHSS

MSB algorithm Timing | Percentage
Looping 324 21%
Neighboring configuration test 68 4%
Parallel projection transformation; 947 61%
Z-buffering and shading 218 14%

Table 1. Detailed timing breakdowns for the MSB algorithm

SSB algorithm Timing | Percentage
Looping 324 34%
Neighboring configuration test 68 7%
Parallel projection transformation| 347 36%
Z-buffering and shading 218 23%

Table 2. Detailed timing breakdowns for the SSB algorithm

periormance analysis(inciuds panilliLiv)

9 iber of visible nodes after took figurall
=e y 2ﬂxto num Iovsw e a-.na up configuration table
2000 2
24
1800
i §2dl
£ 600 s
3
= 3,
3 H
E 1400
1.8
1200 164
1000 14
P00 20 a0 80 80 100 120 10 160 180 0 20 ¥ &0 & 100 120 0 160 180
rotation angla{unit ; 2 dagraes) rotation angle(unit : 2 degrees)
Figure 8. The number of un-culled SB nodes versus different
Figure 6. Rendering time versus viewing point for the MSB view angles

performance analysis
1100 T T T T T
1050
1000
L)
i
£
g
g
T 80
v
M m e ® w 1o @ W @
mtation anglefunit : 2 degres)
Figure 7. Rendering time versus viewing point for the SSB Figure 9. The rendering image of pelvis (data

set:512x512x245)

B-233

