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Abstract

To develop a reliable computer vision system, the algo-
rithm employed in the system must ensure the quality of its
output. In this paper, a reliable approach to estimating a
3D object pose from 2D-t0-3D line correspondences is pro-
posed. An algorithm is developed to integrate the abilities
of automatically evalutaing the quality of input data as well
as that of the estimated object pose into a single system.
To ensure the quality of the estimated result, two simple
test functions are defined based on the statistical hypothesis
testing. The first test function can filter out poor input data
priori to computing the object pose. After estimating the
object pose, the second test function can decide whether the
estimation result is accurate or not if it has significant evi-
dences to make the decision; otherwise, an evaluation func-
tion is called for a further evaluation, in which algorithm,
based on the bootstrap technique is designed to estimate
the standard error of the estimated object pose. Experi-
mental results show that the first test function can detect
input with low qualities or erroneous line correspondences
and the proposed method always }1elds reliable estimated
results.

*This work was supported by National Science Council under Grant
NSC-86-2213-E-009-114 .
tTo whom all correspondences should be addressed.

I. INTRODUCTION

Determining the orientation and position of an object
relative to a camera is an essential and important problem
in computer vision. Since determining object poses can be
regarded as an early process of a computer vision system,
the quality of the estimated results must be known and
ensured before using them for subsequent processes.

In general, the position and orientation of an object is es-
timated using the relation between the 3D structure of the
object and its 2D perspective projection image. Methods
to solve the pose estimation problem using line correspon-
dences can be classified into the direct method [1, 2, 3],
and the iterative method [4. 5, 6, 7, 8, 9] which takes all
line correspondences into account based on the concept of
minimizing the sum-of-squares error [5, 6, 7], and robust
statistics like the M-estimator [4] to deal with outliers like
erroneous line correspondences or observed lines corrupted
by serious image noise. No matter which approach used, it
is necessary to know the accuracy of estimated results be-
fore using them. Consequently, a method to know whether
the estimated results are accurate or not is required.

Poor input data leads to instability of the pose estima-
tion algorithm and a poor estimated object pose gives rise
to poor performance of a computer vision system. Tradi-
tionally, to know whether the estimated result is good or
not, an one-dimensional test function is usually defined [12],
and then the estimated result is classified to be good if the
value of the test function of the estimated result is smaller
than a pre-defined threshold value; otherwise, the estimated
result is classified to be bad. However, this simple method
has two drawbacks. First, the estimated result cannot be
known to be bad before computing the object pose even if
the input data is significantly poor. Second, this method
measures the error of the estimated result by mapping the
original six-dimensional parameters space (three for orienta-
tion and three for position) to a one-dimensional test func-
tion. This mapping loses valuable information, leading to
making wrong decision, especially when the value of the
test function of the estimated result is near the threshold
value. In this study, to overcome the first drawback of the
traditional method, the test is decomposed into two stages:
the test function H,,. of the first stage detects significantly
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poor input data from which it is almost impossible to es-
timate accurate object poses, and the test function Hpoe:
of the second stage judges the quality of the estimated re-
sult. To overcome the second drawback, a reject option [13]
is introduced to the test function Hpest so that if the esti-
mated result is within the reject region of Hpos:, then an

evaluation function will be called for a further evaluation -

using the standard error of the object pose estimated by
the bootstrap method [14].

In the following sections, we first formulate the problem
of estimating object poses from line correspondences as one
of minimizing an error function; in addition, the relation
between the value of the error function and the agreement
between the estimated object pose and the constraint equa-
tions is analyzed by the reduced chi-square test [15] in Sec-
tion 2. In Section 3, in order to design the test function
Hpre, two lower bounds of the error function are derived.
How to apply the bootstrap method to evaluate the accu-
racy of the estimated pose is also illustrated in this section.
To show how effective our method is, the proposed method
is tested by computer simulations and by the use of real
images in Section 4. Concluding remarks are included in
the last section.

II. PROBLEM FORMULATION

Let ;i = 1,2,.., N, be N 3D lines of an object in an
object coordinate system, 0, — o — Yo — 2. The line L;
going through a point p; with direction d; can be described
by

E : Ad; + pi, (1)

where )\ is a scalar. Let L; denote line L; in the camera
coordinate system o, — Z, — Yo — Zz.. The transformation
from the object coordinate system to the camera coordi-
nate system can be described by a rotation matrix R and
a translation vector ¢, which represent the orientation and
the position of the object with respect to the camera, re-
spectively, '

pe = Rp, + 1, (2)

where p, and p. represent the coordinates of a 3D point
in the object coordinate system and a camera coordinate
system, respectively. According to Egs. (1) and (2), L; can
be described by

L;: \Rd; + Rp; +1, (3)

and the 2D perspective projection of L; is an image line [;
which can be described by

T.c080; +y.8inb; +¢; =0 and 2, = f, (4)

in the camera coordinate system where f is the focal
length. From the relation between the 3D model lines
I;,i=1,2,..., N, and their 2D perspective projections ;,
i =1,2,...,N, the pose of an object with respect to the
camera can be estimated {2, 5, 6, 7, 9].

A. Definition of error function

As shown in Fig. 1, L; , !l; and the origin o, of the
camera coordination system are on a common plane 7,
called the interpretation plane [9], with a unit normal vector
n; expressed as

—1
ni = (1+ (%})2) ’ [ cosf; sind; & ]t (5)

in the camera coordinate system. Since 7; is orthogonal to
the direction vectors of the lines lying on w; according to
Eq. (3), n; is orthogonal to Rd;. In addition, Rp; +1 is a
point on ;. Thus, two types of constraint equations can
be obtained as follows:

niRd; =0, i=1,2,..,N, - (6)

and ) i
ni(Rp;+t) =0, i=1,2,..,N. - (7)

Eq. (6) is called an orientation-constraint equation and
Eq. (7) a position-constraint equation [2]. In the least
sum-of-squares error sense, we can obtain an error func-
tion E (R,t) to measure the degree of agreement between
the estimated pose and the observed lines as follows:

E (Ra t) =Eo (R) + Ep (Ra t) s (8)
where
AT
Eo (R) = Z (%) )
i=1 3 (9)
N . 2
Ep(R,t) = Z (J—)'n IEiH ) )
i=1 *
o; and a;, i=1,2, .., N, are used for weighing each of

the constraint equations. Now, the problem can be clearly
stated as follows. (1) Is it possible to obtain an accurate
pose of an object with respect to the camera from Eq. (8)
? (2) Is the estimated pose good enough ? To answer the
two questions, we must define some evaluation functions.

B. Relation between error function and qualities of input
data and estimated result

To use the error function to test the quality of the ob-
served image lines and the estimated pose, we must define
what poor quality is. A simple and straight-forward defini-
tion of poor quality is that the relative errors coming from
the estimated object pose and the observed image lines of
the object exceed some pre-specified tolerable limits. In
this study, the tolerable limits are defined to be the rela-
tive error of the rotation matrix §g, the relative error of
the translation vector §;, and the relative error of each of
the unit normal vectors of the interpretation planes A, be-
cause tl.2 estimated rotation matrix, the estimated transla-
tion vector, and the observed image lines all contribute to
the value of the error function F(R,t). Thus, E(R,t) can
act as an indicator of the agreement between the observed
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image lines and the estimated object pose according to the
pre-specified tolerable limits.

Suppose that the measurement error of each term in
Eq. (9) are all approximate normal distributions, and o; and
o; are the standard deviations of ntRd; and 'n’t (Rz; +t5),
respectlvely To test the degree of the agreement between
the observed image lines and the constraint equations,
which is measured in a sum of squares form, the chi-square
tect {12, 15] is =n appropriatc method. Since, in E{R,t)
there are 2V measurements and six parameters to be com-
puted from the 2N measurements a function x? defined
by

2 1
X =sy—E(R,t)

can be regarded as a chi-square with one degree of free-
dom [15]. Eq. (10) is also called the reduced chi-square [15].
Additionally, two functions x% and x% for testing the de-
gree of agreement between the observed image lines and the
orientation-constraint equations and the position-constraint
equations can be similarly defined as follows:

(10)

Xb =
Xp =

'1\}’1—_3EO (R) )
s Ep (R1).

In practice, however, o; and 0;», i=1,2,..., N, are unknown
and only the a prior: information available is the tolerable
limits, ég, 6:, and 6, which are specified by users. Thus,
the relation between the specified tolerable limits and the
standard deviaticns of ntRd; end nt (Rx; + &),i=1,2, ...,
N must be figured out in order to use the reduced chi-square
test.

C. Determination of o; and 0, i =1, 2, ..., N

By properly assuming the probability distributions of the
errors of the observed lines, the estimated rotation matrix
R#, and the estimated translation vector ¥, we can obtain
an upper bound of the variance cr% expressed only in terms
of 6 and A, as follows (the derivation is omitted):

<9_a+§2An
— 26 13

as well as an upper bound of the variance ¢

terms of &g, 6, and §a, in the following:

expressed in

o _ 985 pill2 |, SanlllpellyHletl,)? | s2peyi2
o S e+ 13 + -5 (11)

where ||-||, represents the 2-norm of a vector. Since ||t*ﬂ2
is unknown, we may replace ||if*‘|l2 by its upper bound

max ||t |2 2, the longest distance between o, and o,, and ob-
tain

' 20 n2 §2 il “1. 2 §2 - 3
o2 < Whleds | an(lle u_gmut )" t(ma;c;lt 13) (12)
However, in the right-hand side of Eq. (11), the numerator
of the third term represents the tolerable limit for the ab-

solute translation error; thus, if the tolerable limit of the

translation error is specified by the absolute translation er-
ror instead of the relative translation error, then we will
have

‘2 o 95%leal} | San(lle:l +maxl|tl
o2 < Shlmd: An (2l )"

+% (13)

where 6;2 represents the tolerable limit for the absolute
translation error. That is, if the tolerable limit for the error
of the translation vector is specified by the absolute trans-
lation error, then Eq. (13) instead of Eq. (12) should be
used.

For convenience, the pre-specified tolerable limits can be
represented by (6r, 64, 6an). Representing the desired qual-
ity by the three terms has at least two advantages over the
method which can only specify the quality of the observed
image lines (i.e. (0,0,6an)). The first advantage is flexibil-
ity because we can consider the value of the error function
coming from the errors of the three sources: the estimated
rotation matrix, the estimated translation vector, and the
observed image lines, individually. The second advantage is
intuition because we can directly specify the desired quality
of the estimation result.

III. EVALUATION OF INPUT QUALITY AND ACCURACY
OF ESTIMATED OBJECT POSE

A.  Lower bounds of error function

Writing the error function F (R, t) in a matrix form, we can
obtain . )
E(R,t) = ||Arll + |Br + Ctll3 ,

where ||-||, represents the 2-norm of a vector and

dt

dt

nidy nad} Mad;
(51 51 71
A. = : 1A * t . t 14
nv-idyoy Rv-nedy.y Pav—nadig )
ON-1 ON=1 ON-1
nydb nyads nyadh
N1dy Nedy Nady
L ON ON ON
t t t
nup ni2p ni3p
9 91 9,
B = ¢ D Lo
WN-1)1PN—1 N—-1)2PN-1 NN-1)3PN—21 15)
’ U r
crN_t1 o’N_% aN.__%
nyip NP nN3p
L Ty T oy
t
n nyN-— n
C = e A B (16)
al a'N_ UN

r=[Ru Ri Ris Rn Ryp R Raui Rp Ry ).

In this study, the vector r is called the nine-dimensional
vector associated with the matrix R. Taking a partial deriv-
ative of E with respective to ¢ and setting the derivatives
to zero, we obtain

t=-C*Br 17)

where C* = (C*C)~'C*. Consequently, for any rotation
matrix R and translation vector ¢, we have that

E(R,t) > E(R,~C*Br).
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Arranging E (R,—C*Br) into a compact form, we obtain a
lower bound of the error function E (R,t), E(R,t) > r*Fr
-where

F=A'A+B*(I-CC*)B (18)

with I being the N x N identity matrix. It is easy to check
that F' is a positive semi-definite matrix. For convenience
for subsequent discussions, let Z (R, F) = rtFr,

Let ap, Gz, ..., Gg be the unit eigenvectors of F and Aq, Ag,
..., Ag be the corresponding eigenvalues, respectively, where
Mg > Ag > ... > A1 > 0 because F is a positive semi-definite
matrix. From the Rayleigh-Ritz theorem [17], we can sim-
ply obtain a lower bound of Z(R, F): (R, F) 2 3)y; how-
ever, this lower bound is too loose to use in practice.

Let the nine-dimensional vector of Af; be oy, K; be
the rotation matrix closest to M; in the Frobenius ma-
trix norm, k; be the nine-dimensional vectors associated
with K;, ¢ = 1, 2, ..., 9. According to [16], the rota-
tion matrices K; can be computed using singular value de-
composition K; = Usdiag(1,1,det(U;V;)) VY, where U;S;V}
is the singular value decompositions of Mj, respectively,
with §; being a diagonal matrix diag(sl;, §2;,$3;) where
s1; > $2; > s3; > 0. We can obtain a lower bound LB; of
Z(R, F) not smaller than 3)\; in the following (the deriva-
tion is omitted):

LB, = trace(S1)?A\; +min {3 — trace($))?, trace(S2)? } Ao+

max {3 — trace(51)* — trace(S2)%,0} As.

If the rank of the matrix F* is eight, then the nine-
dimensional vector associated with R* is the eigenvector
of F* corresponding to the zero eigenvalue. By using the
perturbation theory of eigenvalues and eigenvectors (13, 16],
we can obtain an approximate lower bound LB; of Z(R, F)
as follows (the derivation is omitted):

LBy =3\ + (6 — 2v/3trace (1)) Xa.

Because E (R, t) is not smaller than Z (R, F), the largest
one of LB> and LB; denoted as LB can be used as a lower
bound of E(R,t). Since these lower bounds are derived
from the eigenvalues and eigenvectors of F, and the number
of line correspondences is at least eight to make the rank of
F to be eight. Thus, to use these lower bounds, the number
of line correspondences must be larger than seven.

B. Definitions of test functions: Hpre and Hpost

In order to distinguish the error function defined at
different tolerable limits, the functions E(R,t), Z(R, F),
x2, x%, and x% are denoted by E(sr.60.550) (B t),
E(‘sﬂyét :5An) (R’ F)’ X%ﬁﬂvst,'sAn)’ XO(53,5¢,6A",)7 and
Xfp(éﬂ’ﬁh&m). Because LB
E(5n,6.,65n) (B,t) which can be obtained before to es-
timate the object pose, we can foresee the ultimate quelity
of the estimated result via this lower bound. Thus, the

is a lower bound of"

function Hyr. proposed in this study for testing the quality
of the input data is defined as follows:

unacceptable if LB > y;
Hpre = { b IN-6= "1 (19)

acceptable otherwise,

where v; is a pre-defined threshold value. The function
Hp,st proposed for testing the agreement between the es-
timated result and the constraint equations can be defined
as follows:

2 2
I X5(80,0,0)7 XP(52,60,0)= V2

acceptable
Hapost = and X{50,60,05) < 1
i unacceptable  if 2\%5 Ribeban)Z V1
uncertain otherwise,

(20)
2 2 2
where X{s. 5,.65.)" XO(62,0,0) and XP(55,5¢,0) can be com-
puted after computing the best rotation matrix and trans-
lation vector by minimizing Fo,0,55,)(R,t) and vy is a pre-
defined threshold value.

C. Error estimation by the bootstrap method

Using the test functions mentioned in the previous sec-
tion, we can classify the quality of the estimated result to
be good or bad if we have significant evidences. However, if
we have no enough information to make that decision, then
we must find other evidences to judge whether or not the
quality of the output reaches the desired accuracy. In this
study, to estimate the error of the estimated object pose,
an algorithm based on the bootstrap method are proposed.

Let nf’&, i=1,2, .. N, be the unit normal vectors of
the interpretation planes when the orientation and position
of the object are R¥ and t#. Suppose that the errors be-
tween n;, 1 = 1, 2, ..., N, and their corresponding noise-free
versions, n}, 1 = 1, 2, ..., IV, as well as the errors (called
residuals) Ani# between n; and nz#, i=1,2, .., N, are
identically independent random variables. In addition, the
shape of the probability distribution of the error between n;
and n? is assumed to be similar to that of the error between
n; and n}. Thus, by repeatedly computing the amount of
the pose perturbed away from the estimated object pose
when nf‘, i=1,2, .., N, are corrupted by Anf, i=1, 2,
..., N, the bootstrap standard errors (BSE) with respect to
R* and t# can be estimated. Specifically, to know the dif-
ference between the ith bootstrap replication (Rf, t?) and
(R#,t#), R? can be defined to be equal to R# multiplied by
a Totation matrix R such that S(p,0,5,,)(R¥ R, F}) is mini-
mized where the matrix Fy is generated by Eq. (18) using
the ith bootstrap sample. From Euler’s theorem [16], we

know that a rotation matrix R can be regarded as rotating

around a unit vector [ = [ I Il I3 | by some angle 1,
i.e., the Euler’s representation [16}; in addition, R can be
expanded as a Taylor series with respect to ¥ at zero degree
to the first-order term as follows:

. 0 -z L
Re=I+]| I3 0 -l (¥ (21)
'—12 ll 0
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Thus, Z(g,0,54,)(R#R, F¥) becomes
 E005a) (RFR F) = (HU + ) FS(HI +1%), (22)

where [" denotes 1l and

0 R* .R* 0 RY .R% 0 R¥, -RZ,
H=|.rt ¢ RF RS, ¢ r¥ Rt 0 R¥
rRE r* ¢ R}, -R§ 0 RY -RY
By minimizing Z(R*R, F?), we can obtain that

' = ~(H'FSH)* HEFSr#, (23)

and the squares error between the ith bootstrap replication
and the estimated object pose can be computed as follows:

I1RS ~ R#| = 2”1”2
”l‘?—t#”iF _ “—CZ-S:—B?(T#‘*'l”)—t# 27 (24)
wherel' =0l & L 0 - I I 0 I The

steps of the algorithm are described as follows. )
Algorithm 1. Using the bootstrap method to estimate

standard errors. .
Input. Observed image lines, n; represented by

[ cosf;sing; sinf;sing; cose; 5, i=1,2,.., N, model
lines L;,i=1, 2, ..., N, and R¥ and t#. ‘ )
Output. Bootstrap standard errors for the rotation matrix
and the translation vector.

Step 1. Generate nfk which can be represented by
[ cos6F sing? sin6¥sing? cos¢? |, i=1,2, .., N,
by transforming the 3D model lines with the rotation ma-
trix R# and the translation vector t¥ and project them onto
the image plane. Each of nf* ,t=1,2, .., N, is adjusted
to make the inner product of n; and n}" to be nonnegative

because it is reasonable to assume that the error between
the two vectors is not larger than ninety degrees. Thus, the

residuals, An? = [ A6% A¢F |, i=1,2, .., N, can be
produced by AT = 0; — 6, A¢? = ¢, — oF i =1,2, ..,

N. .

Step 2. Perform Step 2.1 to Step 2.3 w times to generate
w square error terms: (uf, v$), (u§,8), ..., (u$, v5).

Step 2.1. Randomly produce a sample of bootstrap error

; # # T .

terms,‘ (Anf('l), Anp(z)‘, ey Anp(N)) which is a permutation
of AnT, An.}"’c s eees An}*, to generate the i¢th bootstrap sam-
ple: (n¥ @ Anf(l), n @ An® .. nk @ Anfw)) where

P(2)
ny & An;"( ) ‘denotes the vector

P;j) ()
e
cos (cﬁj + Arﬁp(j))

cos (6’3gt + Aeﬁj)) sin (43;?h + Aq&:ﬁ(j)
sin (ej‘ + 0% ) sin (¢7 + 207

Step 2.2. Use the ith bootstrap sample to generate the
matrix Fi3 by Eq. (18), and the other necessary matrices
A%, B, and C? based on the tolerable limits (0,0,6a5) -
Step 2.3. Compute the square error term: (v}, v}) using
Eq. (24).

Step 3. Compute bootstrap standard error & g for the rota-
tion matrix and that £, for the translation vector as follows:"
w \ '% w '%
€r = (ﬁ Zu?} 6= (%va) ,

i=1 i=]

Step 4. Stop.

Because the noise of the input data may be caused by
erroneous line correspondences, in order to balance the oc-
currence of each residual errors, a sample of the bootstrap
error terms is generated by a permutation of the residual er-
rors in Step 2.1. This scheme is called the permutation boot-
strap [14]. Algorithm 1 is automatic and easy to implement;
however, it needs to perform several times of Monte Carlo
simuletions. In this study, we find 20 bootstrap replications
are enough to estimate the bootstrap standard errors.

IV. EXPERIMENTAL RESULTS
A.  Computer simulation

The model lines are randomly generated within a 50
em3box. The z-component and the y-component of a trans-
lation vector are uniformly generated from the range [-50
cm , 50 cm |, and the z-component is uniformly generated
from the range [50 cm, 150 cm)]. The generation of a rota-
tion matrix is subject to no restriction. The focal length is
0.8 cm. To analyze the noise effect, n; is perturbed by a
noise vector An , n, = n; + pAn, where n; denotes the vec-
tor of n; after adding noise, p is a scalar which controls the
noise level, and An is a noise vector of which the elements
are uniformly generated from the range [-1, 1].

In order to examine the goodness of the lower bound
LB resulting from various numbers of line correspondences
and noise levels, we do some experiments when noise lev-
els are: 0.005, 0.01, 0.025, and 0.05, and the numbers of
line correspondences are 8, 10, 12, and 14. To know the
performance of our method under different tolerable limits,
four sets of tolerable limits are designed, two of them num-
bered 1 and 2 being for the case that the tolerable limit
of the estimated translation vector is specified by the rel-
ative translation error, and the others numbered 1" and
2" for the case that the tolerable limit of the estimated

translation vector is specified by the absolute translation

error. 32,000 random trials are executed (2000 trials for
each combination of the number of line correspondences,
the sets of tolerable limits and the noise levels). The min-
imum of Es,, 5, 5,.)(R, ) is computed by using the actual
rotation matrix R* as the initial guess. From Fig. 2, we can
see that the correlation coefficients between LB and the
minimum of Es, s, 5,.)(R,t) are greater than 0.6. This |
means that LB is highly linearly correlative to the mini-
mum of Es, 5, 5..)(R,t). In addition,the relative error be-
tween LB and the minimum of Es, s, an) (R, t) which is

minimum of E, (Rt)-LB| | .
defined as } PYET of(g::zi;‘in)( yox3 l, is also shown in
Fig. 2. It reveals that LB is at least half of the mini-
mum of Esp s,5,.)(R,t), in average. Fig. 3 (a) shows
the curve of the operating characteristics (13] of only using
E(54,6.,60) (R, 1) to evaluate the goodness of estimated re-
sults; Fig. 3 (b) shows the result of using Hpose with at most
ten percent rejection rate. Obviously, a significant improve-
ment is obtained. The numbers of line correspondences of
Fig. 3 and Fig. 4 are eight.
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B. Real images

Fig. 4 (a) shows the image of a magic cube which is
used to test ¥he performance of the proposed method. On
the cube, twenty one straight lines shown in Fig. 4 (b) are
detected. The pose of the cube which is computed by using
the twenty one straight lines is regarded as the ground true
solution. By randomly choosing eight lines from the twenty
one lines, a test sample can be formed. 500 test samples are
generated. The quality of the estimated pose is specified by
the tolerable limit sets 1, 2, 1', and 2,

In this experiment, v; = 3, and v2 = 0.5. In addition,
when the estimated result is within the reject region of
Hpost, the BSEs are compared to the tolerable limits. If the
BSEs are smaller than the tolerable limits, then the esti-
mated result will be regarded to be good; otherwise, the es-
timated result will be regarded to be bad. Table 2 shows the
experimental result. Moreover, Table 2 also shows a similar
experiment except that each of test samples contains one
erroneous line correspondences. In the case of normal data,
the experimental results associated with the tolerable limit
set 1 and 1 are not good because the relative errors of the
estimation results are around the tolerable limits. That is,
the quality of the estimation results is hard to discriminate
in this case. However, the experimental results associated
with the tolerable limit set 2 and 2’ are satisfiable. In the
case of containing one erroneous line correspondence, the
test function Hpre has a good performance especially when
the tolerable limit sets are 1 and 1" because the quality of
the test samples is poor with respect to the tolerable limits.

V. CONCLUSIONS

In this paper, we propose a method to ensure the qual-
ity of estimated object poses. To estimate an object pose,
an error function is defined based on the least-squares sense;
in addition, the relation between the error function and the
tolerable limits for the qualities of the input data and the
estimated result is discussed. By using the derived lower
bounds of the error function, a test function Hpr. was de-
fined to eliminate poor input data so that unnecessary com-
putation can be avoided. After estimating the object pose,
another test function Hpost i8 defined to eliminate inaccu-
rate estimated results. Since the two test functions Hpre
and Hpost are Very simple, they need little computation load
and can be easily to embedded in an existing algorithm to
eliminate poor input data or estimated results. To know the
standard error of the estimated result, an algorithm based
on the bootstrap method is introduced. Because the distrib-
ution of the noise of input data is hard to know in advance,
especially when the input data is corrupted by erroneous
line correspondences, the bootstrap method is found to be
very suitable for this application.
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Figure 1 — An illustration of the relation between the object
coordinate system and the camera coordinate system.
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Figure 2 — Ilustrations of the relation between LB and ’Fhe
minimum of Es . s, 5..)(R, t) versus various numbers of line
correspondences, tolerable limits, and noise levels where the
line graphs and the bar graphs represent, respectively, the
average correlation coefficient and the average relative dif-
ference between LB and the minimum of Es, s, 5..)(R, 1)
versus various numbers of line correspondences and noise
levels: (a) is for the tolerable limit set 1; (b) is for the set
2: (c) is for the set 1; (d) is for the set 2.
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Figure 3 - Illustrations of the operating characteristics of
the rate of identifying accurate results to be good versus
the rate of identifying inaccurate results to be good: (a) is
for that only using Es, s,,5,.)(R,t); (b) is for that using
Hpose with ten percent rejection rate.
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Table 1. A list of tolerable limits.

set uo. Sr St San set no. 5n 6/,( cm) SAn
1 001 | 0.01 | 0.01 1" - [ oot 1 0.01
2 0.025 | 0.03 | 0.025 2’ 0.025 3 0.025

Figure 4 — A real image used in this study: (a) is an image
of a magic cubic; (b) is the result after performing straight
line detection.

Table 2. Results of performance evaluation of the proposed
method.
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