THE LONGEST DETOUR PROBLEM
ON A SHORTEST PATH TREE'

Fu-Long Yeh, Shyue-Ming Tang, Yue-Li Wang and Ting-Yem Ho

Department of Information Management,

National Taiwan University of Science and Technology, Taipei City, Taiwan, R. O. C.

Email: ylwang@cs.ntust.edu.tw

ABSTRACT

In a biconnected graph, a detour from a vertex u to some
destination vertex s is defined as an alternative shortest
path from u to s when the edge (u, v) is not available in a
.., 8>. The longest detour (LD)
problem is to find an edge (u, v), called the defour-critical

shortest path <u, v,

edge, along a shortest path <r,...,u,v,...,s>, such that the
removal of (u, v) may cause maximum increment of
distance from u to s. The LD problem can be solved in
O(m + n log n) time, where m and »n denote the number of
vertices and edges, respectively, in a graph. In this paper,
we are concerned with the LD problem with respect to a
shortest path tree of a graph. An O(m a(m, n)) time
algorithm for finding a detour-critical edge in a shortest
path tree is presented in this paper, where o is a functional
inverse of Ackermann’s function.

Keywords : Longest detour, Detour-critical edge,

Shortest path, Biconnected graphs.

1. INTRODUCTION

Let G(V, E) be an undirected graph, where J” and E are
vertex set and edge set, respectively. A weighted graph is
a graph in which every edge e O E is associated with a
nonnegative real weight w(e) which can also be denoted
as w(x, y) if x and y are two end vertices of ¢ . The length
of a path is the weight summation of edges in the path. A
shortest path between vertices » and s in G, denoted as
P;(r, s), is defined as a path with the shortest length from

r to s. The distance between vertices r and s, denoted as

dg;(r, s), is the length of P;(7, s).

Let P(r, s)=<r,..,u,v,...,s> be the shortest path
from r to 5. A detour at vertex u, denoted as P;_,(u,), is
defined as a shortest path from u to s without using the
edge e=(u, v). The graph G-e is obtained by removing
edge ¢ from G. Notice that a detour is a shortest path from
u to s, not to s, in G-e. The longest detour (LD) problem
is to find an edge e=(u, v), called the detour-critical edge,
in Pe(r, s) such that dg_ (v, s) minus dg(u, s) is

maximum.

Figure 1. A weighted graph G.

For example, see Figure 1. Pg(6,1) = <6, 5, 1> is the
shortest path from 6 to 1. Paths <6,2,1> and <5,6,2,1> are
the detours at vertices 6 and 5, respectively, with respect
to P(6,1). In other words, paths <6,2,1> and <5,6,2,1>
are taken as the shortest paths toward vertex 1 when edges

' This work was supported by the National Science Council, Republic of China, under Contract NSC-89-2218-E011-019.

(6,5) and (5,1), respectively, are not available. The
detour-critical edge of P;(6,1) is (5,1), because d¢_
(5,1)3:1) - dg(5,1) = 400 - 100 = 300 is greater than dg_
(6,5)(6>1) - d(6,1) = 300 - 200 = 100.

The algorithm for finding detours, as well as
determining the detour-critical edge, is important from the
viewpoint of network management. Due to a sudden link
failure from some node, a message must be transmitted
through a detour from the node instead of the failed link.
In [9], Nardelli et al. gave an O(m + n log n) algorithm for
finding a detour-critical edge on a shortest path, where m
and » are the number of vertices and edges, respectively,
of a graph.

Let S¢;(s) be a tree of the shortest paths from vertex
s to all other vertices in a graph G. The LD problem with
respect to Sgy(s), called the Tree Longest Detour (TLD)
problem, is to find a detour-critical edge (u,v) in Si(s),
with v closer to s than #, such that the removal of (z,v)
results in maximum increment of distance from u to s. By
applying Nardelli’s algorithm for every path in S¢;(s), this
problem can be solved in O(mn + n? log n) time. We shall
design an O(m o(m,n)) time algorithm to conquer this
problem, where a is a functional inverse of Ackermann’s
function.

In the past, the shortest path related problems have
been studied widely [3,6,8,10]. The most vital edge
(MVE) problem, or the I-MVE problem, which is a
variation of the shortest path problem, has also been
studied widely [2,7,5].
concerning the MVE problem. In [5], a most vital edge

There are two definitions

with respect to the minimum spanning tree of a graph is
the edge that, when removed, results in the greatest weight
increment of the minimum spanning tree. In [2] and [7], a
most vital edge with respect to a shortest path is the edge
whose removal results in the greatest increase in the
distance between two end vertices. By comparing their
definitions, we know that the detour-critical edge is
different from the most vital edge with respect to a
shortest path. The most vital edge of P(r, 5) is the same
as the most vital edge of P¢;(s, 7). However, the detour-
critical edge of P;(r,) is not necessarily the same as the
detour-critical edge of P¢;(s, 7).

The remainder of this paper is organized as
follows. In Section 2, we introduce some notation used in
this paper. In Section 3, we propose an O(m O(m,n)) time
algorithm for solving the TLD problem. Section 4

contains the concluding remarks.

2. NOTATION

Before describing our algorithm, we define some notation
which will be used throughout this paper. Most of them
are also used in [9].

Let Si(s) be a shortest path tree of G rooted at
vertex 5. An edge in Si(s) is called a tree edge, and a
nontree edge if it is not a tree edge in S¢;(s). Clearly, any
detour from a vertex in the graph must make use of some
nontree edge in order to arrive at s again. For example,
Figure 2 is S(1) of the graph in Figure 1. Nontree edge
(6, 2) is included in the detour from vertex 6 when tree

edge (6, 5) is not available.

tree edge

----nontree edge

-
-

Figure 2. Scg(1) of graph G.

It follows throughout this paper that an edge (u, v)
in Sc;(s) means that the latter vertex v is closer to s than u.
The former vertex u is called the defour starting vertex.
Based on the property of a shortest path tree, we have the
following lemma.
Lemma 1 Let e=(u, v) be an edge in S;;(s) and u be a
detour starting vertex. There exists a detour from u to the
destination vertex s which contains exactly one nontree
edge with respect to S¢;(s).
Proof : Let (x, y) be the first nontree edge encountered in
the detour from u to s. Clearly, the path from y to s in
Si(s) is a shortest path between y and s. If there exists
another nontree edge (x’, ¥°) in the detour, then the path
from y to s which pass through (x’, y’) must be longer than
or equal to the path from y to s in S¢;(s). Thus, the lemma

follows. Q.E.D.

According to Lemma 1, we call the only nontree
edge in a detour the crossing edge of the detour. Note that
the detour from a vertex may be more than one. In case of
multiple detours, their length must be equal. The length of
a detour from u to s is formulated as :

dG-o(t, $) = dG_ o1,) + w(x,) + dG_o. 3),
where e=(u, v) is a tree edge in S(s) and (x, y) is the
crossing edge of vertex u. In fact, dg_(u, x) = dg(u, x),
since x belongs to the subtree of S;(s) rooted at u.
Moreover, dgy_o(,) = d(y, 5), since y belongs to the set
of vertices reachable from s without passing through edge
e in S¢;(s). Thus, we have

dg.e(ws) = dg(ux) + wx,y) + dg(.s) .

Let z be the lowest common ancestor of the two vertices
of a nontree edge (x, ¥). A fundamental cycle, denoted as
C(x,), is the cycle which consists exactly of P;(z, x), (x,
y) and P(y, z). The K-value of C(x, y), denoted as K(x,
), is the total length of a close walk from s to x, then to y,
finally from y to s. That is,

K(x, y) = dg(s, x) + w(x, y) + dg(y, s).

For example, see Figure 2 again. K(2, 6) = dg(1, 2) +
w(2, 6) + dg(6, 1) = 500, and K(7, 9) = d(1, 7) + w(7,
9) + d;(9, 1) = 900. Notice that the lowest common
ancestor of the two vertices of a nontree edge (x, y) may
be the root of S;(s). In case of identity, K(x, y) is the total
length of fundamental cycle C(x, y).
Although a fundamental

corresponding to a nontree edge, multiple fundamental

cycle is one-to-one
cycles may cover the same tree edges of Sc(s). For
example, tree edge (6, 5) in Figure 2 is covered by four
fundamental cycles, i.e., C(2, 6) , C(3, 6) , C(4, 7) and
C(7, 9). It is obviously true that if G is biconnected, then
each tree edge of S;(s) must be covered by at least one
fundamental cycle. Let (u, v) be the unavailable edge in
SG(s), and (x, y) be a crossing edge of vertex u. Recall
that a crossing edge is the only nontree edge in a detour.
The fundamental cycle C(x, y) which covers both (x, y)
and (u, v) is called a defour cycle of vertex u. In Figure 2,
C(2, 6) is a detour cycle of vertex 6 in S(1).

Lemma 2 Let F, be the set of fundamental cycles which
cover edge e in S;(s). C(x, y) is a detour cycle of e if
and only if the K-value of C(x, y) is minimum among all
Jundamental cycles in F, .

Proof : Let (x, y) be the crossing edge of a fundamental
cycle C(x, y) [J F, ,where e=(u, v), and assume without

loss of generality that u is in the shortest path from s to x.

Since di(s, x) = dg(s, u) + dg(u, x), the K-value of C(x,
y) can be derived as follows :

K(x, y) = dg(s, x) + w(x, y) + dGQ,)

=dg(s, u) + dg(u, x) + w(x, ¥) + dgQ, s).

In the above formula, d;(s, #) is the common item of the
K-values of all fundamental cycles in F,. If the K-value of
C(x,) is minimum among all fundamental cycles in F, ,
then d¢;(u, x) + w(x, ¥) + dg(y, s) must be minimum and
(x,) is the crossing edge of a detour from u.

Conversely, suppose that (x, y) is a crossing edge
of vertex u. The value of d(u, x) + w(x, y) + dg(y, 5) is
the length of a detour from u to s. It must be minimum
among all feasible paths from u to s in G - e. Therefore,
the K-value of C(x,y) is also minimum among all
Q.E.D.

We use an example to illustrate Lemma 2. In

fundamental cycles in £, .

Figure 2, fundamental cycles which cover edge (6,5) in
So(1) (ie., F(6,5))are C(2,6), C(3,6), C(4,7) and C(7,9).
C(2,6) is a detour cycle of vertex 6 because K(2,6) is the
smallest among K(2,6), K(3,6), K(4,7) and K(7,9).

Lemma 2 shows that we can compute the detour
length from the K-value of a detour cycle. That is, the
detour length from a vertex u equals dg(u, x) + w(x, y) +
dg(y, s) = K(x, y) - dg(s, u) , where (x, y) is a crossing
edge of vertex u. Let I(u) be the distance increment from
a detour starting vertex u to the destination vertex s. To
find a detour-critical edge e=(u,v) of S;(s) is to find the
maximum /(u) among all detour starting vertices u in
Si(s). Lemma 3 provides a formula to compute /(u)
efficiently.

Lemma 3 Let u be a detour starting vertex in Sc(s).
Then, I(u) = K(x,y) - 2 dgy(s,u), where (x,y) is the crossing
edge of a detour from vertex u.
Proof : Let e = (u,v) be a tree edge in S¢;(s).
Ku) = dg_o(u, 5) - di(u, s)

=dg(u, x) + wix, y) + dg(v, s) - dg(s, u)

=K(x, y) - dg(s, u) - di(s, u)

=K(x, y) - 2d (s, u). Q.E.D.

3. AN EFFICIENT ALGORITHM FOR SOLVING
THE TLD PROBLEM

To determine a detour-critical edge of Si(s), we should
compute the distance increment /(x) for every vertex u in
S(s) except vertex s. Intuitively, since there are at most
O(m) fundamental cycles which may cover a detour
starting vertex with respect to Si;(s), the computation of
I(u) needs O(m) time for vertex u. It requires O(mn) time
to compute /() for all the vertices in Si(s). Therefore, it
takes O(mn) time to determine a detour-critical edge of
Si(s) by using the naive algorithm. However, in the
following, we propose an O(m 0o(m, n)) algorithm to
solve this problem.

To design an efficient algorithm for solving the
TLD problem, we need a data structure, called a
transmuter, which was introduced in [10]. A transmuter is
a directed acyclic graph that represents the relation
between the detour starting vertices and the fundamental
cycles in Si(s). In a transmuter, one source (node of in-
degree zero) represents a detour starting vertex in S¢y(s),
one sink (node of out-degree =zero) represents a
fundamental cycle in S¢;(s), and every intermediate node
has at least two out-degrees as well as at least two in-
degrees. We label each source node with its
corresponding vertex and each sink node with its
corresponding nontree edge of S¢(s). The fundamental
properties of a transmuter are as follows. (i) There is a
directed edge from a source node u to a sink node C(x, y)
in the transmuter if and only if vertex u is covered by
fundamental cycle C(x, y) in G. (ii) When two or more
detour starting vertices share two or more fundamental
cycles, there exists a common intermediate node in the
paths from the corresponding source nodes to the
corresponding sink nodes. For example, the transmuter

corresponding to S;(1) is shown as follows.

500 700 1000 500 500 900 700 700 1200 1600 1200

700 Q,

A

CIp CEI» CB.ID o.D)

900 700 1600 1200

Figure 3. Transmuter for Sc(1).

Since vertex 3 is covered by C(3,6), there is a
directed edge from the source node 3 to the sink node
C(3,6). All of the vertices 2, 5 and 6 are covered by all of
the fundamental cycles C(2,6), C(3,6) and C(4,7).
Therefore, there exists a common intermediate node in the
paths from the source nodes to the sink nodes.

In [11], Tarjan has described an O(m a(m,n)) time
algorithm to construct a transmuter for a shortest path tree
with respect to a graph of size m and order n. Meanwhile,
it has been proved that a transmuter has O(m a(m,n))
nodes and edges. Given a transmuter, we can efficiently
determine a detour cycle, as well as a crossing edge, for
each vertex in Sc;(s).

We can compute /(u) for every detour starting
vertex u in S;(s) by using the transmuter of S(s). Let
each node x of the transmuter have an associated value
A(x). If x is a sink node, then A(x) is equal to the K-
value of the fundamental cycle x; otherwise, A(x) =
Mi”yﬂN(x) {4(»)}, where N(x) is the immediate
successors of x. In Figure 3, The value beside each node is
the associated value of that node. For a source node u,
A(u) is the K-value of a detour cycle of u. Thus, I(u) =
A(u) - 2 dg(us) for every detour starting vertex u in
Sc(s).

Now, we are in a position to describe our algorithm
for solving the TLD problem.

Algorithm Find_DCE

Input: A shortest path tree rooted at vertex s, S(s), of a

biconnected graph G(V,E).

Output: A detour-critical edge of Si(s).

Method:

Step 1. For every nontree edge (x, y)[J Si(s), compute the
K-value of C(x, y), where
K(x, y) = dg(s, x) + wix, y) +dgQ, s).

Step 2. Construct a transmuter of S¢;(s).

Step 3. Obtain the associated value of A(x) for each node
x in the transmuter.

Step 4. For each source node u in the transmuter, ompute
I(u) = A(u) - 2 di(u, s).

Step S. Find a detour-critical edge (u, v) of S(s), where
I(x) is maximum among all the associated values of
the source nodes in the transmuter.

End of Algorithm Find_DCE

We also use Figure 1 as an example to illustrate
Algorithm Find DCE. The result of Steps 1 to 3 are
shown as Figure 3. Step 4 computes I(u) for each vertex u.
We can see that /(2) = A(2) - 2 dg(2, 1) = 500 - 400 =
100. The values of I(3), I(4),... ,I(12) are 100, 0, 300,
100, 300, 100, 100, 200, 0 and 400. Therefore, the detour-
critical edge of S(/) is edge (/2,9) since I(12) = 400
makes the largest distance increment when edge (72,9) is
unavailable.

Step 1 takes O(m) time to compute K(x,y) for all of
the nontree edges in S¢;(s). Step 2 requires O(m a(m,n))
time to construct the transmuter of Sg(s) by using
Tarjan’s algorithm. Step 3 also takes O(m a(m,n)) time to
obtain the associated values of all the nodes in the
transmuter. Obviously, both Steps 4 and 5 require O(n)
time. Therefore, the time complexity of Algorithm
Find_DCE is O(m a(m,n)).

By summarizing above description, we have the
following theorem.

Theorem 4. Algorithm Find DCE can solve the TLD
problem in O(m a(m, n)) time.

4. CONCLUDING REMARKS

The TLD problem has many interesting properties. For
example, there may exist multiple detour-critical edges in
a shortest path tree. There may also exist multiple detours
or detour cycles from a detour starting vertex with respect
to a shortest path tree. With minor modification, our
algorithm can find all detour cycles of a detour starting
vertex, as well as all detour-critical edges in a shortest
path tree.

In general, we extend the LD problem from a
single shortest path to a shortest path tree rooted at a
vertex of a given graph. Assume the LD problem of one
shortest path to be a “one-to-one” fashion, the TLD
problem will be a “many-to-one” fashion. The former can
be viewed as a special case of the latter. In the near future,
we shall focus our study on an efficient algorithm for
finding a detour-critical edge with respect to all paired
shortest paths in an undirected graph. That problem is in a
algorithm
dedicated to the TLD problem is another topic that needs

fashion of “many-to-many”. A parallel

our effort.

References

[1] Bras88 G. Brassard and P. Bratley, Algorithmics:
Theory and Practice, Prentice-Hall Inc., 1988, pp. 30-
34.

[2] H. W. Corley and D. Y. Sha, Most vital links and
nodes in weighted networks, Operations Research
Letters, Vol.1, No.4, 1982, pp. 157-160.

[3] E. W. Dijkstra, A note on two problems in
connection with graphs, Numeric Mathematics, 1,
1959, pp. 269-271.

[4] M. L. Fredman and R. E. Tarjan, Fibonacci heaps
and their uses in improved network optimization
algorithms, Journal of the ACM, Vol. 34, 1987, pp.
596-615.

[5] L.-H. Hsu, et. al., Finding the most vital edge with
respect to minimum spanning tree in weighted graphs,
Information Processing Letters, 39, 1991, pp. 277-
281.

[6] D. E. Knuth, A generalization of Dijkstra
algorithm,
pp.1-5.

[7] K. Malik, A. K. Mittal, and S. K. Gupta, The k-most
vital arcs in the shortest path problem, Information
Processing Letters, 8, 1989, pp. 223-227.

[8] E. F. Moore, The shortest path through a maze,
Proc. International Symposium on Switching Theory,
Harvard Univ. Press, Cambridge, 1959, pp. 285-292.

[9] E. Nardelli, G. Proietti and P. Widmayer, Finding the

detour-critical edge of a shortest path between two

Information Processing Letters, 6, 1977,

nodes, Information Processing Letters, 67, 1998, pp.
51-54.

[10] R. E. Tarjan, Sensitivity analysis of minimum
spanning trees and shortest path trees , Information
Processing Letters, 14, 1982, pp. 30-33.

[11] R. E. Tarjan, Applications of path compression on
balanced trees, Journal of the ACM, Vol. 26, No. 4,
1979, pp. 690-715.

