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Abstract

A major topic of studying communication

networks is to �nd an appropriate route for mes-

sage transmission. In particular, the design of

parallel routing can be used to transmit mul-

tiple packets eÆciently from a source node to

a destination node simultaneously. In this pa-

per, we consider the problem of constructing

parallel routes in an alternating group graph,

which has recently been developed as a new

model of the interconnection topology for par-

allel and distributed computing systems. An n-

alternating group graph contains (n!)=2 nodes

and is a regular graph with degree 2(n� 2) for

each node. The aim of our work is to provide an

algorithm for constructing 2(n�2) edge-disjoint

paths for any pair of nodes in an n-alternating

group graph for a special case. Furthermore, we

show that the lengths of all paths are shortest.
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1. Introduction

In this paper, we consider the problem of

constructing parallel routes in an alternating

group graph, which has recently been developed

as a new model of the interconnection topol-

ogy for parallel and distributed computing sys-

tems [3, 4, 7, 9]. The alternating group graphs,

like the well-known star graphs and the n-cube,

belong to a class of graphs called the Cayley

graphs, a family of graphs that possesses group

theoretic properties [1]. Furthermore, It has

been shown in [4] that a class of generalized star

graphs called the arrangement graphs also con-

tains alternating group graphs as members. In-

deed, a proof given in that paper showed that

the n-alternating group graph AGn is isomor-

phic to the (n; n�2)-arrangement graph An;n�2.

The arrangement graph has been shown to

be vertex and edge symmetric, strongly hierar-

chical, maximally fault tolerant, and strongly

resilient [5], and thus of the alternating group

graph. A comprehensive analysis of symme-



try in a wide variety of the Cayley graphs of

permutation groups can also be found in the

survey paper [9]. Jwo et al. [7] proposed a

simple shortest-path routing algorithm for al-

ternating group graphs. According to their re-

sults, there exist eÆcient schemes to embed two-

dimensional grids and arbitrary cycles on alter-

nating group graphs. Moreover, they also pro-

vided an algorithm for broadcasting messages

by using a spanning tree. Recently, Cheng and

Lipman [3] proposed an assignment of directions

to the edges of the alternating group graphs and

showed that the resulting directed graphs are

not only strongly connected, but, in fact, they

have maximal arc-fault tolerance and a small

diameter.

In this paper, we will present an algorithm

for constructing 2(n�2) edge-disjoint paths be-

tween every pair of vertices in an n-alternating

group graph under a special case. Thus, the re-

sulting parallel paths can be used to transmit

multiple packets eÆciently from a source node

to a destination node simultaneously. Moreover,

we show that the lengths of all the routing paths

are shortest.

2. Preliminaries

Let p = p1p2 � � � pn be a permutation of

f1; 2; : : : ; ng, where pi is the element at posi-

tion i for 1 � i � n. Also, let p�1
i be the posi-

tion where the element i can be found. If pi = i,

then the element i is said to be at the right place;

otherwise i is out of place. A convenient way to

denote a permutation p is by using its cycle rep-

resentation C(p) = c1c2 � � � cke1e2 � � � el, where ci

is a cycle of length jcij � 2 for 1 � i � k and

ei is an invariant (i.e., an element which has

been at the right place) for 1 � i � l. For sim-

plicity, all invariants are suppressed in the rep-

resentation. As an example, if p = 16543827,

then C(p) = (2687)(53). Note that the set of all

permutations of n elements is called the sym-

metric group of degree n and is denoted by Sn.

A pair (i; j) in a permutation is called an inver-

sion if i < j and pi > pj. A permutation is said

to be even (respectively odd) if its parity (i.e.,

the number of inversions) is even (respectively

odd). The alternating group An is a subgroup

of Sn consisting of all even permutations. For

fundamental de�nitions of group theory, please

refer to [2, 10].

A construction of graphs built on alternating

groups was originally introduced by Jwo et al.

[7]. Let g+i = (12i) =T12�T2i and g�i = (1i2) =

T2i�T12 for 3 � i � n, where Tij denotes that

the elements in positions i and j are exchanged

and Tij � Tst means exchanging positions i and

j then exchanging positions s and t. It can be

shown that 
 = fg+i j 3 � i � ng [ fg�i j 3 �

i � ng is a generator set for An [10]. De�ne

an n-alternating group graph AGn = (Vn; En)

as follows: the vertex set Vn is the set of all

even permutations (i.e., Vn = An) and the edge

set En = f(p; q) j p; q 2 Vn and q = p � g for

some g 2 
g, where p � g means applying opera-

tion g on p and we neglect \ � " when it will not

make. Note that q = p � g+i if and only if p =

q � g�i . For example, 31546827=16543827 � g�5

and 63541827=16543827 � g+5 . Also, it is easy to

check that AGn is a regular graph with degree

2(n� 2) and jVnj = (n!)=2. Figure 1 depicts an

example of AGn for n = 4.

Suppose P is a path of length h with the

starting vertex p and the terminal vertex q in

AGn, then q = p � g1� g2 � � � gh for some g1;

g2; : : : ; gh 2 
. Let ri = p � g1� g2 � � � gi,
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Figure 1: A 4-alternating group graph AG4.

i = 1; : : : ; h � 1, be the internal vertices of P .

We shall use [p] g1[r1] g2[r2] � � � gh�1[rh�1] gh[q]

(or simply write [p] g1 g2 � � � gh�1 gh[q]) to rep-

resent the path P . In particular, if there are no

internal vertices ri = rj with i 6= j, then P is

called a simple path. Note that every shortest

path must be a simple path. In what follows,

we only consider the simple path produced by

the routing algorithm.

Due to the vertex symmetry of alternating

group graphs, the problem of routing between

two arbitrary vertices in AGn can be reduced

to the problem of routing from an arbitrary

vertex p to the identity vertex In = 12 � � � n.

We now describe the shortest-path routing al-

gorithm proposed in [7]. Suppose p 6= In and let

r = r1r2 � � � rn be a vertex in the routing path

from p to In. Then, the immediate successor r0

of r in the path can be determined as follows.

Algorithm spr-1 (Shortest-Path Routing)

Input: An alternating group graph AGn and

a vertex p.

Output: A shortest routing path from p to In.

1. Initially, r = p.

2. Repeat the following steps until the

identity vertex is reached (i.e., r = In).

3. If r1; r2 2 f1; 2g then

select any element i =2 f1; 2g that is

out of place and let r0 = r � g�i where

� 2 f+;�g

Let r = r0.

4. If r1 =2 f1; 2g then

let i = r1 and r0 = r � g+i

else if r2 =2 f1; 2g then

let i = r2 and r0 = r � g�i

Let r = r0.

Since every vertex p in AGn corresponds to

an even permutation, the elements 1 and 2 will

automatically be at the right place in the al-

gorithm when all the other elements are at the

right place. Furthermore, it can be shown that

the shortest-path routing algorithm corresponds

to an optimal sorting by using the operations in


 of the permutation p. Consequently, Algo-

rithm spr-1 can produce a shortest path from

an arbitrary vertex to the identity vertex in

AGn. In addition, the routing distance can be

computed as follows.

Lemma 1 [4, 7] Suppose that vertex p has

the representation C(p) = c1c2 � � � cke1e2 � � � el.

Then the distance Dp from p to In in AGn is:

Dp =

8>>>>>>>>>><
>>>>>>>>>>:

n+ k � l; if p1 = 1; p2 = 2
n+ k � l � 2; if (p1 6= 1; p2 = 2)or

(p1 = 1; p2 6= 2)
n+ k � l � 3; if 1; 2 2 ci for

1 � i � k
n+ k � l � 4; if 1 2 ci; 2 2 cj for

1 � i 6= j � k



For example, consider a vertex p with the cy-

cle representation (23)(54)(876). The following

is a shortest path P produced by the routing al-

gorithm and the distance Dp = 8+3�1�2 = 8.

P : [13254867] g�3 [21354867] g+4 [15324867] g�5

[41325867] g+4 [12345867] g+6 [28345167] g�8

[72345168] g+7 [26345178] g�6 [12345678].

Let P be a routing path from vertex p(6= In)

to the identity. We say that P is predominant

if every non-invariant of p, except 1 and 2, will

never be out of place again throughout the path

after it has been at the right place. It is clear

that every shortest path from p to In is pre-

dominant. A sequence consisting of all non-

invariants of p, except 1 and 2, is called a con-

veying sequence if a predominant path can be

generated according to the sequence. For ex-

ample, in the preceding instance, predominant

path generated by 3; 5; 4; 8; 7; 6 is a conveying

sequence of vertex p = 13254867.

3. The parallel routing algorithm

In this section, we present a parallel rout-

ing algorithm from an arbitrary vertex p =

p1p2 � � � pn to the identity vertex in AGn where

p1p2 = 12 or p1p2 = 21 and no pi = i, 3 � i � n.

The construction scheme is based on the charac-

terization of Latin square which is di�erent from

the one in the previous section. �rst of all, we

de�ne a sequence from a cycle representation,

which is helpful for describing our shortest-path

routing algorithm.

Assume C(p) = c1c2 � � � ck. If element 1 is a

non-invariant, without loss of generality we may

assume that it is the �rst element in the repre-

sentation of a cycle. Moreover, if element 2 is

also a non-invariant and 1,2 are contained in dis-

tinct cycles, we assume that element 2 is the �rst

element in the representation of the cycle that

contains it. Otherwise, we choose arbitrarily an

element of a cycle as the �rst element. With

respect to a permutation p(6= In), the elemen-

tary cycle sequence of p, denoted by ecs(p), is a

sequence consisting of all non-invariants, except

1 and 2, such that for every pair of elements s

and t, s precedes t in the sequence if s 2 ci,

t 2 cj where 1 � i < j � k, or s; t 2 ci and s

comes before t in the representation of the cy-

cle. From the de�nition, it is easy to see that all

elements of a cycle appear consecutively in the

sequence. For example, if C(p) = (14)(235)(67),

then ecs(p) = 4; 3; 5; 6; 7.

In the following, we present a shortest-path

routing algorithm that all non-invariants of p

become invariants according to the sequence

ecs(p).

Algorithm spr-2
+ (Shortest-Path Routing)

Input: C(p) = c1c2 � � � ck.

Output: A shortest routing path from p to In.

1. Let ecs(p) = s1; s2; : : : ; sr where r is the

number of non-invariants of p, except 1

and 2.

2. For i = 1 to r do

2.1 Let h = p�1
si
.

2.2 If h = 1 then f = 1

else if h = 2 and 1,2 are contained in

distinct cycles then f = 2

else if si is the �rst element in the

representation of a cycle then

perform g+h and let f = 2.

2.3 If f=1 then perform g+si and let f=2

else perform g�si and let f = 1.



For example, p = 1623745. Then the corre-

sponding cycle of p is (2643)(57) where c1 =

(2643), c2 = (57) and ecs(p) = 6; 4; 3; 5; 7.

When i = 1, the operations performed in Step

2 are as follows. In Step 2.1, h = p�1
6 = 2. In

Step 2.2, f = 2. Step 2.3 performs g�6 and let

f = 1. Thus, the operations performed for p are

g�6 , g
+
4 , g

�

3 , g
+
7 , g

�

5 and g+7 .

In the above algorithm, f denotes the posi-

tion 1 or 2 that the element in the position will

be moved into the right place in the next step.

Also, we observe that for two elements s; t 2 ci

appear consecutively in ecs(p) and s precedes t,

if s is moved into the right place by some op-

erations, then t must be at the position 1 or 2.

We then carry out the operation g+t or g�t and

thus t will be at the right place in the next step.

Continue this work for each next element of the

cycle. Therefore, all elements of ci should be at

the right place. Thus, we can proceed to the

elements of the next cycle. As a result, the al-

gorithm produces a routing path. Indeed, the

length of the derived path equals to Dp.

Note that the algorithm possesses the follow-

ing interesting property. Let r = r1r2 � � � rn be

a vertex in the derived path which is process-

ing. If we carry out operation g�h (respectively

g+h ) in step 2.2, then r1 (respectively r2) always

retains its position at 1 or 2 during the course

that all elements of the cycle are moved into the

right place. In particular, r1 and r2 will back in

the position 1 and 2 if all other elements of the

cycle have been arranged at the right place. Be-

sides, we can change the operation g�h instead of

g+h and let f = 1 in step 2.2. Then the resulting

path is still a shortest routing path. Speci�cally,

we call such a modi�ed algorithm as spr-2�.

We now introduce the notion about Latin

square which is helpful for the constructing of

parallel routing. Assume jecs(p)j = d. For

each i = 1; : : : ; d, we construct a new sequence

from ecs(p) by regularly moving circularly the

elements with i positions. Combining these d

sequences to form a matrix results in a Latin

square matrix; i.e., none of the elements occur-

ring twice within any row or column in the ma-

trix. For instance, if ecs(p) = 4; 3; 5; 6; 7, we can

obtain the following matrix:

2
666664

4 3 5 6 7
3 5 6 7 4
5 6 7 4 3
6 7 4 3 5
7 4 3 5 6

3
777775

Applying each row of the d� d Latin square

as a conveying sequence, it can be shown that

the derived paths are node-disjoint (by the sim-

ilar technique used in [6] and [8] on star graphs

and recursive circulant network respectively).

Let ecsi(p) be the conveying sequence obtained

from row i, i = 1; 2; � � � ; d. In what follows, we

will show that for each ecsi(p) we can construct

two corresponding edge-disjoint paths. Thus,

we have totally 2d edge-disjoint routing paths.

Moreover, we will prove that all of the paths are

shortest.

3.1. The case where P contains no invari-
ant

In this subsection, we consider the case that

p contains no invariant, i.e, pi 6= i for all i � 3.

Our algorithm need the cycle representation

C(p) = c1c2 � � � ck as the input. The following

algorithm can obtain 2(n�2) edge-disjoint paths

and all derived paths are the shortest paths.



Algorithm A (Parallel Routing)

Input: C(p) = c1c2 � � � ck, and p1; p2 2 f1; 2g, and pi 6= i for i = 3; 4; : : : ; n.

Output: 2(n� 2) edge-disjoint paths from p to In.

1. Get ecs(p) = s1; s2; : : : ; sn�2.

2. For i = 1 to n� 2 do

ecsi(p) = si; : : : ; s(n�2); s1; : : : ; s(i�1).

Assume si is contained in cycle c and sj is the last element of c.

2.1 Let h = p�1
si
.

2.2 Let p0 = p g+h g�si g
+
s(i+1)

� � � g�sj , where � is \�" if (j � i) is even, otherwise � is \+".

The subsequence sj+1; : : : ; sn�2; s1; s2; : : : ; si�1 is the conveying sequence of p0.

Call spr-2+ with sj+1; : : : ; sn�2; s1; s2; : : : ; si�1 as the input to obtain the routing path

between p0 and In.

2.3 Let p00 = p g�h g+si g
�

s(i+1)
� � � g�sj , where � is \+" if (j � i) is even, otherwise � is \�".

The subsequence sj+1; : : : ; sn�2; s1; s2; : : : ; si�1 is the conveying sequence of p00.

Call spr-2� with sj+1; : : : ; sn�2; s1; s2; : : : ; si�1 as the input to obtain the routing path

between p00 and In.

For example, let p = 12537846. Then, c1 =

(3574), c2 = (68) and ecs(p) = 3; 5; 7; 4; 6; 8.

When i = 1, the operations performed in Step

2 are as follows. In Step 2.1, h = p�1
3 = 4.

In Steps 2.2 and 2.3, p0= p g+4 g�3 g+5 g�7 g+4 =

21345876 and p00=p g�4 g+3 g�5 g+7 g�4 =21345876,

respectively. In Step 2.2 (respectively Step 2.3),

Algorithm SPR-2+ (respectively SPR-2�) will

be invoked to �nd the routing path from p0 (re-

spectively p00) to In.

Lemma 2 Let p = p1p2 � � � pn be a vertex in

AGn. If p1; p2 2 f1; 2g and pi 6= i for 3 �

i � n, then the derived path in Algorithm A

corresponding to the conveying sequence ecsi(p),

i = 1; 2; : : : ; n� 2, is a shortest path.

Proof. We only prove the case p1 = 1 and

p2 = 2. For the case where p1 = 2 and p2 = 1,

it can be proved by a similar way. Without loss

of generality, we may assume that the derived

path is produced by Step 2.2 of Algorithm A.

Clearly, it requires (j � i + 1) + 1 operations

to move the elements si; : : : ; sj into their right

places. We �rst consider j � i + 1 to be an

odd integer. Let p0=p g+h g�si g
+
si+1

g�si+2
� � � g�sj

where h = p�1
si
. That is, p0 is the �rst vertex

in the derived path from p to In such that the

elements si; : : : ; sj are in their right place. Ap-

plying Algorithm spr-2
+ to construct a routing

path from p0 to In, Dp0 = n+k� (j� i+1)� 3,

where k is the number of cycles in C(p). There-

fore, the derived path has length Dp = Dp0 +

(j � i+ 1) + 1 = n+ k� 2, and by Lemma 1, it

is a shortest path . For the case where j � i+1

is an even integer, by a similar argument as the

preceding case, we can show that the derived

path is also a shortest path. 2

Theorem 3 Algorithm A produces 2(n � 2)

edge-disjoint shortest paths from vertex p to In.



Proof. According to the result of Lemma 1

and the conveying sequences from Latin square,

we only need to show that the two derived paths

produced by Steps 2.2 and 2.3 in Algorithm A

are edge-disjoint. Due to the fact that perform-

ing the operation g+h (respectively g�h ) will cause

2 (respectively 1) retaining at the starting two

positions (where h is the position that the �rst

element of a cycle can be found), this shows that

the two subpaths (not including the source ver-

tex and destination vertex) generated by the el-

ements of a cycle in the corresponding convey-

ing sequences are node-disjoint. Thus, these two

derived paths from p to In are edge-disjoint. 2

3.2. The case where p contains invariants

In this sbusection, we consider the case that

p contains l invariants, and 1 and 2 are not as

a part of the invariants. In this case, jecs(p)j =

n � l � 2 where l is the number of invariants

contained in p. Due to the result of the rout-

ing paths produced by the Algorithm A in Sec-

tion 3.1, we can obtain 2(n� l�2) edge-disjoint

paths from p to In. To complete the design of

parallel routing algorithm, we need to construct

another 2l edge-disjoint paths from p to In.

In this case, either p1 = 1, p2 = 2 or p1 = 2,

p2 = 1. Without loss of generality, we consider

p1=2 and p2=1. Let p=p1p2p3 � � � pn with cycle

representation c1c2 � � � ck. Assume that pt is an

invariant of p. We now operate p� g+t and p� g�t .

That is, p0=p g+t =p2tp3 � � � p(t�1)p1p(t+1) � � � pn

and p00 = p g�t = tp1p3 � � � p(t�1)p2p(t+1) � � � pn.

Therefore, we have C(p0) = (2t)c1c2 � � � ck and

C(p00) = (1t)c1c2 � � � ck. For example, consider

p = 21435. Then p0 = p g+5 = 15432 and

p00 = p g�5 = 52431. The cycle representations

are C(p0) = (34)(25) and C(p00) = (34)(15).

Algorithm B (Parallel Routing)

Input: p = p1p2 � � � pn = c1c2 � � � cke1e2 � � � el.

Output: 2l node-disjoint paths from p to In.

For i = 1 to l do

Let t = ei.

1. Let p0=p g+t =p2tp3 � � � p(t�1)p1p(t+1) � � � pn.

Use c1c2 � � � ck � t as the conveying sequence

to produce a path from p0 to In.

2. Let p00=p g�t = tp1p3 � � � p(t�1)p2p(t+1) � � � pn.

Use c1c2 � � � ck � t as the conveying sequence

to produce a path from p00 to In.

Theorem 4 Let p = p1p2 � � � pn be a vertex in

AGn. If p1; p2 2 f1; 2g, then the paths from p to

In found by Algorithm B are node-disjoint. In

particular, all the paths have length Dp + 2.

Proof. Suppose that C(p) = c1c2 � � � ck and

there is an invariant at position t (i.e., pt = t).

Let p0 = p g+t and p00 = p g�t . Then C(p0) =

c1c2 � � � ck(2t) and C(p00) = c1c2 � � � ck(1t). Since

p0 and p00 are the �rst vertices, respectively, in

the two derived paths from p to In and the algo-

rithm uses the same conveying sequence to pro-

duce the paths, it guarantees that the two de-

rived paths are node-disjoint. Moreover, since p

contains l invariants and each invariant t always

retains its position at 1 or 2, the algorithm can

produce 2l node-disjoint paths. Also, it is easy

to see that the length of each path produced by

the algorithm is Dp + 2.

2

4. Conclusions

In this paper, we propose an algorithm that

generates 2(n� 2) edge-disjoint paths on alter-

nating group graphs under a special case. All

of the derived paths are shortest. Now, we are

trying to solve the problem for the general case.
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