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ABSTRACT

In this paper, we study cycle embedding in a faulty
wrapped butterfly BF,, with at most two faults in vertices
and/or edges. Let F be asubset of V(BF,,) U E(BF,) with
|F| < 2. Let f, denote |[F' N V(BF,)|. In this paper, we
provethat BF,, — F containsacycleof lengthn x 2™ —2f,,.
Moreover, BF,, — F containsacycle of lengthn x 2™ — f,
if n isan odd integer. In other words, BF,, — F' contains a
hamiltonian cycleif n isan odd integer.

1 INTRODUCTION

Performance of the distributed system is significantly de-
termined by the choice of the network topology. The hyper-
cube (binary n-cube) is one of the most popul ar interconnec-
tion networks. It hasbeen used to design variouscommercial
multiprocessor machines. One basic drawback with hyper-
cubes is that the degree of nodes increases with the number
of nodes. Hence it is not suitable to apply hypercubes to
the arealayout from the viewpoint of VLS| implementation.
Among all networks of fixed degrees, wrapped butterfly net-
work is one of the most promising networks due to its nice
topological properties. On the other hand, cycle (ring) con-
tains several attractive properties such as smplicity, exten-
sibility, and feasible implementation. Hence embedding a
cycle into wrapped butterfly network has received many re-
searchers effortsin recent years[1, 3, 5, 6, 8]. To embed
acycle into afaulty butterfly network, it is desirable to iso-
late those faulted components from the rest ones so that a
maximal-length cycle can be still embedded.

Assume that F C V(BF,) U E(BF,) be the fault set
with |F| < 2. In[6], Vadapali and Srimani verified that
BF, — F containsacycle of lengthn x 2™ — 2 if Fisa
set with only one vertex and that BF,, — F' contains a cy-
cle of length n x 2™ — 4 if F' is a set with two vertices.
In [3], Hwang and Chen proved that there still exists a cy-
cle of length n x 2™ ina BF,, — F where F' is a subset of
E(BF,). In other words, BF,, — F' remains hamiltonian
with at most two edges faults. In the previous study of cycle
embedding into wrapped butterfly, faults are limited into ei-
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ther node faults or edge faults. However some faults on both
nodes and edges may occur. Therefore we want to improve
the results of [3, 6]. We use f,, to denote |F' N V(BE,)|. In
this paper, we provethat BF,, — F' containsacycle of length
nx2"—2f,. Moreover, BF,, — F' containsacycle of length
n x 2™ — f, if n isan odd integer. In other words, BF,, — F’
contains a hamiltonian cycleif n isan odd integer.

In the following section, we discuss some properties of
the wrapped butterfly graphs. In section 3, we first present
a short proof that BF,, — F' remains hamiltonian if F' isa
subset of E(BF,,). Then we provethat BF,, — F' containsa
cycleof lengthn x 2™ — 2 if F' isaset with one vertex and
one edge. Finaly, we provethat BF,, — F containsacycle
of lengthn x 2" — f, if n isan odd integer.

2 WRAPPED BUTTERFLY AND ITSPROPERTIES

A graph G = (V, E) consists of afinite set V' and a sub-
set E of {(u,v) | u # v, (u,v) is an unordered pair of
elements of V}. Wecdl V = V(G) the vertex set of G
and E = E(G) theedge set of G. Let ' = V;|J E; for
Ey c EandV; C V. We use G — F' to denote the graph
G =V-V,(E-E)N(V-=V)x(V-=1))). The
wrapped butterfly (butterfly for short) BF,, is a graph
with n x 2" vertices such that each vertex is labeled
by (aoai...an—1,%) With0 < ¢ < n—1and q; €
{0,1} fordl 0 < 57 < n — 1. We say the vertex
(apay ...an—1,1) isat level i. Edges of BF,, are described
asfollows. Node (agay . ..a; ...an—_1,1) isadjacent to node
(apay ...a;...an—1, (i + 1) mod n) by astraight edge and
adjacent to node {(agay ...a;...an—1, (i + 1) mod n) by a
cross edge.

Lemmal [4]

For any integer k£ with 0 < k& < n, the mapping o, from
V(BF,) into V(BF,,) defined by o ({a0a; . ..an—1,1)) =
(ak@k41 - .. Qn-1a0a1 . ..ax—1, (I — k) mod n) isan auto-
morphismof BF,,.

Similarly, we can easily obtain the following lemma.

Lemma?2 For any integer ¢ with 0 < i < n, the
mapping ¢; from V(BF,) into V(BF,) defined by



vil{apay ...an—1,1)) = {(apay ...a;a4;41...an_1,l) isan
automorphismof BF,,.

Thus, we have the following corollary.
Corollary 1 BF, isvertex transitive.

In [5], Vadapalli et al. proposed a family of degree four
Cayley graphs, G,,. Later, Chen and Lau [2] point out that
G, isisomorphic to BF,,. Thus, we can combine al the
resultsof G,, and BE;,.

Each vertex of G, is represented by a circular permuta-
tion of n different symbolsin lexicographic order, where the
n Symbols are presented in either uncomplemented or com-
plemented form. Let di, 0 < k < n — 1, denote the kth
symbol in the set of n symbols. We use the English apha-
bets. thusforn = 3,dy = a,dy = b,and dy = ¢. We
use ¢, to denote either d;, or d,. Therefore, for n distinct
symbols, there are exactly n different cyclic permutations of
the symbols in lexicographic order. Moreover, each sym-
bol can be presented in either uncomplemented or comple-
mented form. So the vertex set of G,, has a cardinality of
n x 2™ If apay ...a,_1 denotes the label of an arbitrary
vertex and a¢p = t; for some integer k, then for all 7 and
0<i<n-—1,wehavea; = t; wherel = k +i (mod n).
Theedgesof GG, are defined by the following four generators
in the graph:

g(tkthrl .. .tn,1t0 .. .tk,thfl)
=lgt1.. . tn—1to .. . tp—1ts,
frterr . tp_1to ... tthtk—l)
=lgt1.. . tn—1to .. . tp—1ts,
gil(tktk+1 cootn—1to .. .tk,thfl)
= tkfltk e tn,1t0 e tk,Q, and
f_l(tkthrl co.tn_1to .. .tk,thfl)
=tp 1tk .. . tn_1tg...th—_o.

In [7], Wei et a. point out the isomorphism maps
the vertex (apai...an—1,k) of BF, into the vertex
ti...th1to...tx—1 Of G,, where t; = d; if and only
if a; = 0, 0rt; = d; if and only if a; = 1. There-
fore, throughout this paper, the nodes of the butterfly graph
will be labeled in the form of (aga; ...an—1, k) rather than
tr...ta_1to...tx—1. Therefore, thefour generators g, g+,
f and f~! can be rewritten as follows:

g({apay . ..an—1,k))

= <a0a1 e Qp—1, k+ 1),

f(<a0a1 ..a7,,_1,k>)

= <a0a1 e Ok—10kOk4] - - - Ap—1, K + ].>,
g ({aoay ... .an_1,k))

= {(apay ...an—1,k —1), and

f_l( apay ...0p—1, k?))

<a0a1 e Q2010 ... Gpy_1, k — 1>.

Hencethe g-edges, (u, g(u)) or (u, g~ (u)) for somewu €
V(BF,,), correspond to the straight edges and the f-edges,
(u, f(u))or (u, f~*(u)) for someu € V(BF,), correspond
to the cross edges of BE;,.

Lemma3 f~!(g(u)) = g~ (f(u)) for any node u in
BF,.

Let u be any vertex of BF,,. Obvioudy, ¢"(u) = u.
Moreover, (u, g(u), g?(u),...,g"(u) = u) formsasimple
cycle of length n, denoted by C'y. We call such cycle of
BF, ag-cycleat u. Itiseasy toseetha Cy = C' if and
only if v € Cj. Thusadl g-cycles form a partition of the
straight edges of BF,,. Thereisno g-edge joining vertices
of two different g-cycles. Any f-edge joins vertices of two
different g-cycles. Obviously, (u, f(u)) joins verticesof C'

and Cg(“). The following lemma can be proved easily.

Lemma4 (g(u),g~* (f(u))) isan f-edgejoining vertices
of Cy and cf™, Moreover, the
path (u, f(u),g~ 1 (f(u)),g(u),u) forms a cycle of length
4.

Any Cy contains exactly one vertex at each level. In
particular, Cy contains exactly one vertex at level 0, say

{agay ...an_1,0). We use Cé“o‘““‘“"*l) as the name for
Cy'. Now, we form a new graph BFES with al the g-cycles
of BF,, asvertices, two different g-cyclesarejoined with an
edgeif and only if there exists an f-edge joining them. The
vertex of BFS corresponding to Cy is denoted by C‘;‘. The
following theoremis provedin [5] [6].

Lemma5 BFS isisomorphic to the n-dimensional hyper-
cube. Moreover,
the set of vertices adjacent to the vertex corresponding to
C_é“oal“'“”‘l) is the set of vertices corresponding to the g-

Cyclesin JL/C~«£S(7I()(11~~~(ln—1)7 C«é(lo@lm(ln—l)7 o Céa()al---an—l)}.

Let h = (Cy,Cy) beany edge of BFS. We use X (h)
to denote the set of edges in BF), joining vertices of C'
and Cy. Using standard counting technique, we have the
following two corollaries.

Corollary 2 Let h = (C¥, CY) beany edge of BF. Then
| X (h)| = 2. Moreover, thevertices of edgesin X (h) induces
a4-cyclein BF,,.

Corollary 3 Thereisa unique g-cycle, namely Cg (“), such
that edges of BF,, joining vertices between C'y' and Cg (w)
areexactly (u, f(u)) and (g(u), f~" (9(w)))-

According to Corollaries2 and 3, any edge = (C, CY)
in BFY inducesaunique4-cyclein BF,,, with two f-edges
and two g-edges. We use X;(Cy', Cy) to denote the set of
f-edgesin this4-cycle, and X, (Cy, Cy) to denotethe set of
g-edgesin thiscycle.



Lemma 6 Assume that T' be any subtree of BF. Let CT
denote the graph generated by the edge set

( U ecpu U
Cuev(T)

(Cu,Cy)eE(T)

- U

(Cu,C2)EE(T)

Xy (Cy, C_Z,’))

X, (Cr,C).

Then C7 isacycleof BF,, of lengthn x [V (T')|.

Let v = (apay...an—1,k) be any vertex of BE,.
We use @ to denote the node (apa;...an—1,k). Ob-
vioudy, f*(u) = @ and f?"(u) = wu. Moreover,
(u, f(u), f2(u),..., f*(u) = u) formsasimple cycle of
length 2n, denoted by C'}. It is easy to see that all f-cycles
form a partition of the cross edges of BF,,. Thereisno f-
edge joining vertices of two different f-cycles. Any g-edge
joinsverticesof two different f-cycles. The g-edge (u, g(u))
joinsverticesof O and CJ-‘Z(“). Thefollowing lemmacan be
proved easily.

Lemma7
(f(u), g~ (f(w)), (@ g(@)), (f(a),g~'(f(a))) arealsog-
edgesjoining vertices of C'¥ and C]‘i(“). Moreover, the paths

<u7f(u)ag_1 (f(u))ag(u)au>a and
(a, f(0),g~* (f(@)),g(a), ), formtwo 4-cyclesin BF,,.

Any C} contains exactly two vertex at each level. Sup-
pose that u is one of the vertex in C at level i. Obviously,
the other vertex in C}‘ at level i is@. Thus, C}‘ contains
exactly one vertex at level 0, say (apa; ...a,—1,0) with
an—1 = 0. We use C}“O““'“”‘” asthe namefor C. Now,
we form a new graph BEL with al the f-cycles of BF,
as vertices, two different f-cyclesare joined with an edge if
and only if there exists a g-edge joining them. The vertex of
BF,}" correspondingto C'} is denoted by C'. Thefollowing
theorem is provedin [5] [6].

Lemma8 BF! isisomorphic to the (n — 1)-dimensional

folded hypercube.  Moreover, the set of vertices ad-

jacent to the vertex corresponding to C{™%n=2) jg

the set of vertices corresponding to the f-cycles in
(@Ual...an_g) (a()@l...an_g) (aoal...@7l_2)

{C§ ,Cy e } U

{C}@Ual...&n_g)}.

Let h = (C},CY%) beany edge of BF,\. We use Y (h)
to denote the set of edges of BF), joining vertices of C
and C}. Using standard counting technique, we have the
following two corollaries.

Corollary 4 Let h = (C,C}%) beany edge of BF,!". Then
|Y'(h)| = 4. Moreover, the vertices of edgesin Y (h) induce
two 4-cyclesin BF,.

Corollary 5 Thereisa unique f-cycle, namely C]‘i(“), such

that edges of BF;, joining vertices between C' and C}’(“)
are exactly (u,g(u)), (f(uw),g~" (f(u))), (4, g(a)), and
(f(a),g~" (f(a))).

Accordingto Corollaries4 and 5, any edge» = (C, C¥)
induces two 4-cyclesin BF,,. Let o be an assignment of
(C%,Cy) € E(BF)") with one of the 4-cycles it induced.
Weuse Y (CY¥, C}) to denotethe set of f-edgesinduced by
a(h) and Y*(C}, CF) to denote the set of g-edgesinduced
by a(h). Hence [Y 2 (CY, CF)| = |Y,* (C}, CF)| = 2.

Lemma9 Assumethat 7 is any subset of BF/". Let C'*
denote the graph generated by the edge set

( U mepu U
Cyev(T)

(Cy.CY)EE(T)

- U

(Cy.CYEE(T)

Y (CF, C}))

YR (CY,Cp).

Then C'** isacycleof BF,, of length 2n x [V (T)|.

In the following, we introduce three basic cycles 31, Bs,
and Bs.

The cycle B; is congructed as follows: Let a; =
(00...0,1). Let P, bethe path a1, g(ai), ..., 9" 2(a1) =

as. ! Obvioudly, az = (00...0,n — 1), f(a2) =

(00...01,0) = a5, and f(a) :"<1w1, 1) = . Let
Pgnb_elthe path a4, g(as), ..., g"’l(aZ)_Q: as. Obvioudly,
as = (100...01,0) and f(as) = (100...0,n — 1) = ag.
Let P betV;]—erth as, 9" (ag), . - . g*(zj)(ag) = a7. Ob-
viously, a; = (1%’;9, 0) and f(a7) = a1. Then By is
(ag — P — ag,a;:;; — Py — as,a6 — P35 — a7, a1).
Let Wy = V:(Cgl) U Y(Cg3) U V(Cgs) UV (Cy) and
Wi = {Co, Cos, 0o, CorY,

The cycle B;y is constructed as follows. Let b, =
<M, 1). Let Q; bethepath by, g(b1), ..., 9" 2(b1) =
by, Obviousy, by = {00..Q.n — 1) and [~ (bs) =

<00 ...010,n — 2> = b3. Let QQ be the pth b3, gil(bg),
n—2

oo g~ 3)(bg) = by. Obviously, by = (00...010,1)

n—2
and f~1(by) = (100...010,0) = bs. Let Q3 be the
n—3
path bs, g(bf,), cey gnil(bg,) = bg. ObViOUgy, bg =

(100...010,n—1)and f~1(bg) = (100...0,n—2) = br.

n—3 n—1



Let Q4 be the path b7, g b7), 2(b )
(1 00...0,0) and f(bs) = (00...0,
n— 1 n
(b1 — Q1 — ba,bs — Q2 — by, bs — Q3 — bg, by —
Q4 — bg,br). Let Wy = V(CE) UV(CE) U V(Chs) U

V(CUr) and W, = {C1, Cs, Cbs, O},

= bg. Then by =
1> = by. Then Bs is

Let 2 < 5 < d— 1. The cycle B3 is constructed

as follows: Let ¢ = <M’1>' Let R, be the
path ¢, g(e1), ..., g9 %(c1) n: co. Obvioudy, c; =
<MJ — 1) and f(c2) = <M1w7j> =
cs. nLet R, be the path c3, gfl(g)l, ..,n;q;jj(c?,) =
cq. Obvioudly, ¢y = <M1w,0> and f(cq) =
<1w1w,1> :j_clg,. Lgt_jRg be the path cs,
—1(jc;§, ...,n;Z(7'—j+1>(C5) = c¢g. Obvioudy, ¢ =
<1M1M’j> and ' (cs) = <1MJ -1)=
j—2 n—j n—1

cy7. Let Ry bethe path Cc7, 4 (67) g —(n—j+1) ((37) = C3g.
Then cs — (100...0,0) and f(cs) — (00...0,1) = 1.

n—1 n
Then Bg is <Cl — R — C2,C3 — Ry — C4,C5 —
R3s — cg,c7 — Ry — Cg,Cl>. Then, thelength of B3 is
on + 4. Let Wy = V(CS) U V(C) U V(CS) UV(CE)
and 17, = {Co1, G, O, i),

Whenn = 3, itisobserved that b3 = by and c; = . All
the vertices of 13; isaproper subset of W, forevery 1 < <
3. Moreover, thelength of B; is3n fori = 1, 2.

3 CYCLE EMBEDDING IN A FAULTY WRAPPED
BUTTERFLY

Inthis section, we assumethat I’ C V(BFE),)|J E(BF,)
with |F| < 2. In the following lemmas, we just state the
results and omit the proofs.

Lemma 10 For anyinteger n withn > 3, BF,,—F ishamil-
tonianif F C E(BF,) and |F| = 2.

Lemma 11 Assumethat n > 3. Then BF,, — F contains a
cycle of length n x 2™ — 2 where F' consists of a vertex and
anedgein BF,,.

Lemma 12 For any odd integer n withn > 3, BF,, — F
is hamiltonian where F' consists of a vertex and an edge in
BF,.

Lemma 13 For any odd integer n withn > 3, BF,, — F'is
hamiltonian where F' C V(BF,,) and |F| = 2.

Since BF;, is hamiltonian for al n» > 3, by lemmas 10,
11, 12, 13, and Vadapalli et. a. [6], we have the following
theorem.

Theorem 1 Assumethatn > 3, F C V(BF,)|J E(BF,),
and |F| < 2. Then BF,, — F contains a cycle of length
n x 2" — 2|F NV (BF,)|. Moreover, BF,, — F' containsa
hamiltonian cycleif n isan odd integer.
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