A MODIFIED MESH INTERCONNECTION NETWORK FOR

FASTER SORTING
Apurv Gupta, Asha Tarachandani and P. Gupta

Department of Computer Science & Engineering

Indian Institute of Technology,
Kanpur 208 016, India
e-mail: pg@Qiitk.ac.in

ABSTRACT

In this paper, we propose a modification of the well
known m xm mesh interconnection network. The mod-
ification is done by adding some more connections to
some of the processors. However a processor can have
at most six connections which leads O(m?) number of
connections. We have implemented bitonic sorting al-
gorithm on the network. It is shown that the time
complexity of the algorithm reduces to O(y/mlogm)
due to this modification.

1. INTRODUCTION

The design of interconnection network has been one
of the most fundamental challenges in parallel process-
ing. A major problem in design of efficient parallel
algorithms lies in devising effective mapping of differ-
ent known sequential algorithms on suitable parallel
machines.

In this paper, we propose a new interconnection net-
work, which is essentially a modification of the well
known 2-D MCC. A few extra links between proces-
sors have been added. However, the order of number
of conncetions remains the same. By adding these con-
nection intelligently, it is possible to reduce the time
complexity of some of the widely implemented algo-
rithms on the mesh network.

We use the Bitonic sort as an illustration of the
power of our model. Batcher’s bitonic sort is based
on merging a bitonic sequence into a sorted one [1].
This algorithm has been implemented on 2-dimensional
MCC in [2]. The parallel algorithm takes O(m) time
to sort m? elements on an m x m MCC. This algorithm
can be implemented on our model in O(y/mlogm).

The rest of the paper is organized as follows. The
modified model has been described in section 2. In the
next section the bitonic algorithm on MCC has been
discussed. We have implemented the bitonic sorting al-
gorithm on the modified MCC in section 4 while in the
next section we have tried to optimize the time com-
plexity with respect to various constraints. We con-
clude in section 6.

2. THE MODIFIED 2-D MCC

In a two dimensional MCC, the processors are con-
nected to form a two dimensional array of size m x m.
The processor F; ; denotes the processor in the column
J of the row i. Each processor P; ; is connected to its
neighbour processors Pi_1; , P;j—1, Pit1,j, Pijy1 if
they exist. The index I of a processor P; j is ¢ *xm + j
(i.e., processors are indexed left to right, top to bot-
tom). In sorting problem each data item is to be routed
to a distinct processor such that processor with index
1 would contain i-th smallest element, for 1 <i < n.

For a mXm mesh, we propose to add a few more
connections for each row and column, so that the time
to route the elements from one processor to another re-
duces. These connections are laid so that the routing
time in various stages of bitonic sort decreases. Since
routing is the costliest instruction among all, reduc-
ing routing time reduces the overall time complexity of
bitonic sort. The scheme of modified mesh is as follows.
Apart from the connections that exist in an ordinary
2-D mesh, the following connections are laid. For t =
0,1,2,..., 2m —1r)/(2s)-1

1. processor P(i,t* s+ r/2) is connected to the pro-
cessor P(i,txs+ s — 1), for each row 1,

2. processor P(t*s+r/2,7) is connected to the pro-
cessor P(t*s+s—1,j), for each column j,
where the 7 and s are power of 2, 1 < s < 7 and

2<r<m.

Thus, the number of extra connections being intro-
duced are (2m —r)/(2s) per row and per column. The
total number of connections is 2xm(m—1)+ % (2m—r)
which is also O(m?). Figure 1 illustrates some exam-
ples of the model. For simplicity we have depicted one
row of 8 x 8 2-D MCC. It is easy to show that a pro-
cessor may have at most 6 connections.

In the modified mesh, a row (or column) of m ele-
ments can be thought as r/(2s) disjoint paths of 2ms/r
elements each. There may be more than one path and
with the help of these paths, the elements of a row (or
column) can be routed.

I
|
=
I
I
I
I
I
———————

0 i1 12 i3 i4 15 i6 17

m=8r=8 s=4
(f

N —
I 1y A \

i0 i1 i2 i3 i4 id i6 i7

m=8r=4¢s=1

(d

Figure 1. i-th Row of 8 x 8 Modified Mesh

3. BITONIC SORTING ON 2-D MCC

A sequence X = (z1,22...2,) is said to be bitonic
if either (i) there exists an index i,1 < i < n , satis-
fying 1 <9 < ... <x; > Tip1 > ... >z, or (ii) a
sequence can be obtained by cyclic shifting of the orig-
inal sequence which satisfies the first condition. From
the definition it can be shown that if X is a bitonic
sequence then subsequences D = (di,ds,ds,...,dz)
and E = (ej,ez,e3,...,ex) are also bitonic where
d; = min(x;, r2 ;) and e; = max(z;, vz ;). Further,
max(di,ds,...,dz) < min(er,es,...,ex). Batcher’s
algorithm to sort a bitonic sequence X first defines the
two subsequences D and E from X and then sorts re-
cursively D and E. Any sequence Y = (y1,¥2,..-Yn)

may be sorted recursively by sorting the subsequence
(Y1,92,...yr27) into non-decreasing order, the sub-
sequence (y[%Hl,y[%HQ, ...Yn) into non-increasing
order (or vice-versa) and then sorting the resulting
bitonic sequence (y1,y2, - - Yn) into non-decreasing or-
der using Batcher’s method.

The idea of bitonic sort can be mapped directly on
a m x m MCC. In the 1st stage the m x m array of
input elements is treated as mTQ sub-arrays, each of size
1 x 2 that are sorted individually so that we get 5 x
subarrays each being a bitonic sequence of 4 elements.
In stage 2 each of the 3 x 3 subarrays is sorted in such
a way that we get 7 x 7t subarrays each being a bitonic
sequence of 8 elements. This procedure is iterated till
one gets the sorted sequence of m? elements.

In order to implement, Batcher’s bitonic sort on the
2-D MCC, Nassimi and Sahni [2] have assumed to have
three registers to each processor and they are routing
register R, and two storage registers namely, R; and
R; each register is capable of storing one element of
the sequence. Each processor can execute the following
three instructions.

1. Register-Exchange instruction : for unconditional
changing contents of two of its registers by each
active processor. The same registers are used for
all processors.

2. Route instruction : for routing the contents of
their R, registers of all active processors to their
immediate neighbour in the same direction. Thus,
this instruction simply shifts the entire R,.-array
by unit-distance in one of the four directions viz.,
up, down, left or right.

3. Compare-Exchange instruction : for comparing
and interchanging contents of R, and R, by each
active processor.

Note that the maximum number of routing steps
will be required when first processor contains maximum
and last processor contains minimum element. Exactly
2m — 1 routing steps are needed to bring the maxi-
mum element from Fy o to Pp—1,,m—1 and that many
routing steps for bringing the minimum element from
Py—1,m—1 to FByo. Thus, total 4m — 2 routing steps
are required to interchange data between from Fy ¢ and
Pp—1.m—-1. This implies, no algorithm can sort m? el-
ements on an m X m MCC in fewer than Q(m) steps.

The algorithm proposed by Nassimi and Sahni [2]
used to call Horizontal Merge to sort bitonic sequences
at the odd indexed iteration while it used to call
Vertical Merge to sort the bitonic sequences at the
even indexed iterations. They considered three types
of time complexities and they are complexity due to
Comparison-Exchanges, Register-FExchanges and Rout-
ings. Let TG (J,K), TE,(J,K) and TE,(J, K)
be the respective time complexities to sort the J x
K bitonic sequence using Vertical Merge algorithm.
Then, it is shown that

T\ (7, K) = log(JK)
Ty (7, K) = 2log(JK)
T (J,K) = 2(] + K) — 4

Again, let T, (J, K), TH,,(J. K) and TH,,(J, K) be
the time complexities due to comparison- exchanges,
register-exchanges and routings respectively, to sort the
J x K bitonic sequence using Horizontal Merge algo-
rithm, one gets

T (J, K) = log(JK)
TE (J,K)= 3logJ + 2logk
T, (J,K)=2J+K)—4

Finally, various time complexities to sort m x m ar-
bitrary elements using 2-D MCC are obtained as fol-
lows:

TC(m,m) = 2log>m + 5logm — 4
TF(m,m) = 4.5log’m + 10.5logm — 9
TE(m,m) = 14(m — 1) — 8logm

where T¢, TF and TF are time complexities due to
comparison-exchanges, register-exchanges and routings
respectively. Note that the time complexity of the al-
gorithm to sort m x m elements on 2-D MCC is O(m)
which is due to the routings.

4. SORTING ON THE MODIFIED 2-D MCC

In this section we will discuss how the bitonic sorting
algorithm can be implemented on the proposed model.
We will follow the same algorithm presented by Nassimi
& Sahni [2] but routing will be taken place using the
new connections. Hence the number of comparison- ex-
change steps and register-exchange steps is of O(logm)
and will not be affected by our change in routing
scheme.

For routing & elements in a row (or column) to the
adjacent % elements, the number of steps needed are:

[EK<r
R(K) = { SQTKv K>r
Clearly R(K) is the time taken to route one half of the
array of K numbers to the other half. Let us define

A(K) = Y25 R and
B(K) = Y8 A@2)

It is easy to derive the formulas for A(k) and B(K).
These follow from simple summation. For K < r,

AK) = YK R@2Y)

e
= K-1

Again for K > r,

AK) = Y257 R(2Y)
= YK R(2) + A(r/2)
= L1+ 3280 (s21/r)
= s[2E —1]+ 5 -1

Hence we have the following:

Theorem 1 A(K) satisfies
K-1,K<r
A(K) = ’
(K) { s[EE 1] +r/2-1,K>r
Summation of B(K) is similar. For K < r,
B(K) = Y251 A(2)
= Y-
= 2K —logK —2

Further, B(r/2)= r —logr — 1.

Again for k > r, we get
B(K) = z;iglﬁ A2
0 1
= 3 esr A2Y) + B(r/2)
= Y AR 7 —logr — 1
i+1
= Y IE) + e (/2 -5 - 1)

+r —logr —1
= 2s[ZE — 1]+ (r/2 — s — 1)[log(K/r) + 1]
+r —logr —1

Thus we have

Theorem 2 The value of B(K) is
2K —logK -2, K <r
K T
2827—1]+(§—8—1)
(log(ZY+1)+r—1—logr,K >r

B(K) =

Let us now obtain the number of routing steps
needed by the sorting algorithm. It can be shown
that to merge a J x K bitonic sequence the num-
ber of routing steps needed by Vertical Merge is
2A(J) + 2A(K) and that needed by Horizontal Merge
is 2A(J) + 2R(K) + 2A(K/2). Thus the algorithm to
sort m x m elements on 2-D modified MCC needs the
TE(m x m) routing steps where TF(m x m) is

THm x my= Y25 (2A(2%1) 4 24(2%1)
+2A(2) + 2R(211) + 2A(2%)}
= 4B(m)+4B(m/2) + 2A(m)

Using Theorem 1 and Theorem 2, we get:

TE(m x m)= 8s[Z2 — 1]+ 4(5 — s — 1)(log(£) + 1)
+r —1—logr + 8s[T — 1]
+4(5 —s—1)(log(gr) +1) +7—1
—logr +2s[22 — 1]+ 7/2 -1
= 28°% — 185+ 8(r —1—1logr) + %
—14+4(5 —s—1)+8(5 —s —1)log(®)

Note that this formula is valid only for r < m/2.
Otherwise the different expressions for A(K) and B(K)
must be used. This is not a problem as we can clearly
see that we would never really use r = m since we gain
in only the largest routing step. Thus,

Theorem 3 Bitonic sorting algorithm to sort m? ele-
ments using m X m modified mesh takes O(y/mlogm)
time.

5. OPTIMIZING TIME COMPLEXITY

Let us try to optimize this time with respect to the
parameters r and s. Since the derivative of this equa-
tion is a transcendental one, which doesn’t lend itself to
a solution in closed form, we plot a graph of T (m xm)
versus logr for various values of s. It is easy to see
s = O(1) and r = y/m lead to a time complexity of
TE(m x m) = O(y/mlogm). Also it is interesting to
note the quantity the gain in time complexity per extra
connection.

6. CONCLUSION

In this paper we have explored a new interconnec-
tion network that can reduce the time complexity of
bitonic sort on a mesh like interconnection network.
By adding the same order of connection we have seen
that we could gain the overall time complexity of the
bitonic sorting algorithm on 2-D MCC. It remains open
to study other problems on this network.

References

[1] Knuth, D. E., ”The Art of Computer Programming,
Vol 3, Sorting and searching”, Addison-Wesley,
Reading, Mass, 1973.

[2] Nassimi, D. & Sahni, S., ”Bitonic Sort on A Mesh-
connected Parallel Computer”, IEEE Trans. Com-
put., C-28(1), 2-7, 1979.

