Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Supporting an object-based API for DCE

Chu-Sing Yang, Shu-Chin Su Chen, C.C. Chen, and David Lin
Computer and Information Engineering
National Sun Yat-Sen University

Kaohsiung, Taiwan, ROC
sschen@dcs.ccl.itri.org.tw
Abstract Open Software Foundation(OSF) was founded in early
In this paper, we investigate approaches to 1980 which is a non-profit organization. The major

supporting friendly and efficient application
programming interface jfor the Distributed Computing
Environment(DCE) which is from Open Software
Foundation. Application programming interface(API)
provided by DCE is designed in C language, and the
IDL file must implement in C language. Therefore ,if we
want to develop object-oriented application by using
DCE/API, we cannot utilize the orient-object facilities in
our distributed application by using C style.

We take the advantages of object-oriented concept
to reduce the difficult of application design. We
encapsulate the function of API provided by DCE and
provide an object-oriented interface for programmers to
design distributed object-oriented programming. In
addition, we also provide Stub Generator to analyze
C++ API, and generate stub in C++ style. So the
programmer can develop distributed application more
conveniently in DCE by using C++ API and Stub
Generator.

Keyword: Distributed Computing = Environment,
Interface definition Language, Application
programming interface, and objected-oriented

1. Imtroduction

Information has been considered as an
important asset by many of today‘s enterprises. Being
able to affect enterprise-wide information and efficiently
process the data is the key to enhance the competitive
edge of the enterprise. As the personal computers,
workstations and fast networks emerged, there is an
increasing need to access data stored at different
systems. Besides, as down sizing and right sizing are
gaining more atiention recenily, next generation
applications must require to retrieve - data stored and
processed by dozens or even hundreds of platforms
connected by high performance computer networks.
In the Network, we need to have a powerful middleware
to handle all the communication protocols, resources,
data, and other among the computers. Open Software
Foundation(OSF) had developed a middleware system
called Distributed Computing Environment(DCE). A
distributed computing environment enables users to take
advantage of heterogeneous system resources without
having to understand the specifies of how various
systems and peripherals interoperate in mnetworked
systems.

mission was established and promoted the open system
of client/server architecture. Due to the market need and
technology trend, the OSF and X/Open had merged to
form a new organization called Open Group in Feburary

- of 1996. The OSF/DCE had been developed in early

1986.. At that time, the most of programming languages
are procedure languages, such as Pascal, C, Fortran, etc.
The C language is the most popular one. That‘s why C
language was chosen for developing the DCE. DCE was
composed by remote procedure call, security service,
distributed time service, cell directory service, and
distributed file system, and every service has its own
application interface. Therefore, before users develop a
program, they have to study all the application interface"
libraries first. Unfortunately, all the services of the DCE
have huge and complicate libraries, and application
developers need to use these library functions to develop
their programs. So they have to spend lots of time to
study the library functions before they start to do the
developments. The result is the developing time will be
very long.

Our approach is to provide a friendly C++ application
interface on top of the DCE which provide an easy to
use, debug, and maintain features, furthermore to reduce
the developing time, as shown in Figure 1-1.

C++ distributed applications

Figure 1-1: architecture

The C++ application interface has two layers, one is the
high level layer, the other one is low level layer. The
low level layer calls the DCE library interface directly
and the high level layer calls through the low level layer
class only, as shown in figure 1-2. Developers can select
all the funciions by their demands.

* high Tevel C++ API_]

. distributed
thread / RPC| security] |directory | time file

low level C+ API
Figure 1-2: C++ application interface

302

2. Distributed Computing Environment

We selected Open Group OSF/DCE as
implementation environment and built a C++
application interfaces on the top of DCE, which
included stub generator, C++ application interfaces of
RPC and Security Service.

Stub generator uses Lex and Yacc[5] to analyze
C-++ header file. C-++ application interface of RPC and
security service are provided by their encapsulated
libraries [1,2,6,7,8,9,10,11].

2.1 DCE Architeciure

OSF‘s Distributed Computing Environment
provides a wide range of computer services to
applications regardless of the location of the user, the
application, or the required resources, as shown in
Figure 2-1.

Distributed Applications |

Operating Systems an
Networks

"~ Figure 2-1: DCE

DCE consists of remote procedure call, security service,
distributed service, cell directory service and distributed
- file system. DCE architecture is shown as Figure 2-2,
and each component is described as follows[1]:
€ RPC extends familiar local procedure calls,
masking much of the underlying network
complexity. It works consistently across DCE
implementations on heterogeneous systems, and can
support different network technologies.
@ Security Service provides
distributed computing.

-- Authentication of identities allows users to
identify one another so that they may trust each other.

-- Authorization checking is carried out using
access control lists(ACLs) to conirol access to
distributed services and resources.
@ Thread Service provides support for creating and
managing multiple sequential flows of execution within
a single process in a computer.
€ DTS provides precise, fauli-tolerant clock
synchronization for computers connected in Local Area
Networks (LANs) and Wide Area Networks (WANs) in
a distributed environment.

security-sensitive

4 CDS provides directory (or naming) support which

allows DCE services and applications to easily locate
and look up information about objects in a distributed
environment, such as files, services, etc.

€ DFS is the key DCE information-sharing

Joint Conference of 1996 Internatlonal Computer Symposium
December 19~21, Kaohsiung, Taiwar, R.0.C.

component, and is built upon the fundamental services.
It masks the distribution of file systems, making it easy
to work with remote files for users and application
developers. Users are able to log to any computer in the
global DCE envu'onment to access DFS files the same
way.

5 . Distributed
— e I
% t,w —— t T f

DCE
Components

Welght Procem P
Trsnopart Layer _tnterfacs (TLI)
Trai Network Protoce))
Operating System and Network Comsection

Sosket - Library

Platform

Figure 2-2: DCE Architecture

2.2 DCE/RPC

Remote Procedure Call (RPC) is the core of DCE. RPC
is based on an openly specified architecture that
provides a common base for the independent
development of distributed computing products,
applications, and servers. RPC works consistently across
implementations on heterogeneous systems, prov1d1ng
interoperability - a key benefit of open systems. It is a
typical client/server model. An RPC interface is a
contract for a set of remote procedures to be offered by
servers and to be used by clients, as shown in Figure 2-
3.

client remote server remote

procedure call procedure
application application
code cade
stub code stub code
RPC RPC
nantime nuntime
library library
. v
JV Network

Figure2-3: RPC Mechanism

The following steps describe the control flow of RPC:

1. The client apphcatlon code makes a RPC, passing the
input arguments to its stub.

2. The client RPC runtime transmits the input arguments
over the network to the server RPC runtime, which
dispatches the call to the appropriate server stub.

3. The remote procedure executes and returns any
results to the server stub.

4. The server RPC runtime transmitsl the resulis over the
network to the client RPC runtime, which dispatches
them to the client stub.

5. The client stub uses its copy of the RPC interface to
unmarshall the result and pass them to the calling code.

303

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

2.3 DCE/Security

A distributed computing environment encourages
the free flow of information from where it is stored to
where it is needed, and the sharing of the network
services and resources. But the computer networks are
unfortunately susceptible to relatively easy security
breaches by running network monitoring software on
the workstation or by using dedicated = network
monitoring devices. So application developers should be
able to build in the desired security into new distributed
applications in an easy way. Security for application of
distributed computing consists of identities,
authorization of authenticated principals for using
services and resources, and guarantees of integrity and
privacy of messages sent over the network.
Authentication of identities allows principals to identify
one another so that they may trust each other. Once
principals are authenticated, authorization ~checking is
carried out. DCE uses access conirol lists(ACLs) to
control access to distributed services and resources.
ACLs are associated with each service or resource. An
ACL contains a list of names of principals and the types
of operations they are permitted to perform.

3. Stub gemerator

DCE RPC interfaces are generated from a formal
interface definition written using the DCE Interface
Definition Language(IDL). RPC interfaces are
implemented by ‘stub routine’, which are generated
automatically by an IDL compiler(see Figure 3-1)[11].

idl file

idl

i ! b

client header server
stub stub

Figure 3-1: Interface Definition in IDL

Stubs handle the interfaces of remote procedures
with the main body of the application program. The stub
routines implement the interface required for RPCs.
Client and server stubs are linked with the client and
server code respectively. The client stub packages
(‘marshalls’) the arguments to the call, transmits the
data to the server, and waits for the server‘s reply. The
server stub unpacks (‘unmarshalls”) the arguments, calls
the required procedure, packages the results, and sends
the reply to the client. Results are returned to the calling
program, as shown in Figure 3-2.

Calling Remote
Program @ @] @ Procedure
] § 5
RPC Interface RPC Interface

= Network
| it
Client Server

Figure 3-2: RPC and Stub operation

3.1 Design of stubgen

Due to DCE RPC’s stub can only handle C
functions, and IDL compiler can only interpret C APL
So we built a stub code which can analyze and execute
C++ header file. The stub code was created by the
stubgen, which was built upon the DCE RPC stub. The
client C++ application code ‘marshalls’ the input
arguments - prepares arguments for transmission and
dispatches the call to the server . The server stub uses its
stub code interface to ‘unmarshall’ the input arguments -
disassemble incoming network data and convert it into
application data in the format that the local system
understands and pass them up to the C++ application
code. All the operations go through C++ stub code

‘object-oriented model, which the users do not need to

know the lower level long and complicate library
functions. Figure 3-3 illustrates the operation.

stub code created

sty
by IDL compiler by IDL compiler
RPC RPC
runtime runtime
library library
vV
v Network

Figure 3-3: C++ Stub Generator operation

stubgen generated two header files, one IDL file,
and two Stub routines. The details are described as
follows:

1. * fh: copies a C++ header file which does
not include “typedef”, “define” and other
declarations.

2. * sh: packs class parameter and private
data into structure format and records them.

This header file records
the “typedef’, “define”, and other
declarations.

3. * iidl: generates stub file to communicate
with RPC runtime.

4. * cs.cc: client site stub program.
3. * ss.cc: server site stub program.

3.2 Constraint of Stub generator

In this section, we characterize the constraints of
DCE and stubgen. The memory address can be different
for the shared data at each node in a heterogeneous
environment. Therefore, it is difficult to maintain data
consistency. To summarize, we use the following two
constraints for DCE.

1. No-public data within the class:

Cannot have public data in the class. If public data
exist in the class, its memory address may be different
for each node in the network. This will cause the data to
be inconsistent.

304

2. No ”inline” type format for object:

All the "inline” function in the class, the C++ compiler
will convert to macro format. If the object is in remote
site, which has “inline” function in the class, then the
compiler would not find its code in the remote site.

In our prototype system, stub generator can not handle
the following.

1. No complicated data structure:

Due to the stub generator can not marshall and
unmarshall the data structure of linked list format.
Currently, the system can not handle the linked list data
structure.

2. C++ Application interfaces are only available for
Remote Procedure Call and Security service.
3.3 How to use the stub generator
The way to use the stub generator can be described from
the input and output.
® Input of stubgen:

C++ language is class and its a user-defined class.
Classes provide data hiding, guaranteed initialization of
data, implicit type conversion for user-defined types,
dynamic typing, user-controlled memory management,
and mechanisms for overloading operators. It has
already had enough information for stub. So the input of
stubgen is a C++ header file only.Stubgen based on this
header file to analyze and generate demand file.

@ Output of stubgen:

Stubgen analyzes the definition of C++ classes
and generates *_f.h, * s.h, * iidl, *_cs.cc(client stub),
and *ss.cc(server stub). The *i_idl uses DCE/IDL
compiler to compile and generate RPC runtime stub.
The *_cs.cc and *_ss.cc use the C++ compiler to
generate the object files, as shown in Figure 3-4.

¢+ compiler ¢
i ;

~_ generale
----- include

Figure 3-4: stub generator

flow diagram
4. RPC/C++ Implementation

DCE/RPC uses some data siructures to record and
control its status. These data structures are described as
follows[1,2]):

@ binding handle: point to the binding information.
This binding information records binding related
information, such as server address, network protocol,

Joint Conference of 1996 International Computer Symposium
December 19~21, Kacohsiung, Taiwan, R.0.C.

object UUID, etc.
® uuid: The universal unique identifier(UUID) is the
mechanism to assure the uniqueness of the interface. It
is generated by an interactive utility, uuidgen. uuidgen is
used to identify network object, such as user, group,
node, cell, etc.
© protocol sequence: User uses it to select its own
network protocol. DCE provides three kinds of network
protocols: (1) ncacn_ip_tep using the TCP protocol. (2)
ncadg_ip_udp using the UDP protocol, and (3) ip using
UDPprotocol.
@ profile entry: It is used to set the service priority.
Each entry contains server‘s binding informations.
@® endpoint: It is an address of the server’s instance,
like a connection port.

The above informations are encapsulated in the
RPC classes and each data structure is independent. In
our system, C++ application interface classes do not
have clear class hierarchy relationship, but they all
depend on each other, as shown in Figure 4-1.

RpcProSeqVect |

Randl ' EndPointMap

RpcStringBinding fl

RpcGroup |

RpcProfileElement ||
Figure 4-1: The relatiosp of RPC classes

The above classes belong to low level or thin C++
API classes. We need to have high level C-++ interface
upon these low level C++ API, which provides users a
friendly interface to access the system. So the users do
not need know the complicated library functions in the
low level. The high level C++ interface has RPCppC
and RPCppS. One is for client site, and the other one is
for the server site, as shown in Figure 4-2,

High Level

[RPCppS - RPCppC J

(RpcHandle . RpeBinding. UUIDVect - RpcBindingVeot)
l UUID . RpcStringBinding. RpcGroup. ...etc

Low Level
Figure 4-2: The relationship of the Low Level and
High Level Classes

Although DCE application programs can be

305

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

executed in the heterogeneous environment, the calling
code and the called remote procedure are not linked
together, they communicate indirectly, through an RPC
runtime, over the network. An RPC runtime manages
the network and provides library function to access
runtime operation[7]. The runtime operation is
" described as follows:
1. communication operation :
build binding, which client and server’s program
uses it to request and communicate data.
2. name service interface operation (NSI)
provide RPC server’s information to the
programmer through name service. RPC server uses NSI
operation to broadcast server interface, object, and
address information which are recorded in name service
database.
3. endpoint operation :
allow server to add or delete endpomt
4. authentication operation :
provide authentication, protection level, and
authorization for distributed applications:
5. UUID operation :
provide some operation to build and maintain
UUID. _
Now, according to the above information, RPC C++
API can be grouped as follows[12]:
4 RpcHandle - RpcStringBinding - ‘RpcBinding :
manage and maintain binding handle, string
binding, and other related informations.
€ RpcProfile ~ RpcGroup * RpcProfileElement -
Rpclfld : ,
" allow user to add or delete entry from name
service database.
4 EndPointElement - EndPothap
manage and maintain endpoint element.
Informations of the endpoint element have binding
handle, interface ID, object UUID, and annotation.
¢ UUIDD :
manage and maintain UUID.
€ RpcBindingVect * RpclfldVect + RpcProtVect -
RpcStatusVect ~ UUIDVect :
Figure 4-3 shows the relationship- of C API, RPC
runtime operation and RPC C++ classes.

Application code

C++ API for RPC

RpcBinding RpcGroup | | EndPointMap D

RpoStringbinding || ...

NSI
aperation

authmtication
operation

Uum
operation

endpoint

communication
i operation

operation

C API for RPC
Figure 4-3: The relationship of Stub, C++ API, and C
API

. 5. Security/C++ Implementation

DCE provides comprehensive security support
for security-sensitive - distributed computing.
Application - interface of Security Service provides
authentication, authorization, data integrity, and data
privacy. The characteristics of the components are
described as follows[2,7]:
® authentication: allows users to identify one another
so that they may trust each other.
® authorization: using access control lists to control
access to distributed services and resources.
® data integrity: using cryptographic data checksums to

_determine whether data was modified or corrupted while

passing through the network.

® data privacy: ensure the encrypting /decrypting data
as it is transferred acrossa network. = =

® access control list (ACL): contains a list of names
of principals and the types of operatlons they are
permitted to perform.

® principal " key comes from the password of
principal. It is used to verify the access right of the
principal. '

® principal, group, organization (PGO) :

The registry database of Security Service is composed
of the following three container objects:

® principal--includes principal name.

° group--records group name and members of
group’s principal. _

® organization—-records organization name and
members of organization’s principal.

@ login context: - contains principal name, UUID
group of principal, and access right of the account.

® account: contains person, group, and organization
name °

Security classes encapsulate the above data structure to
manage and maintain resources.

The interface of security service can be grouped into
five categories[7]. The characteristics of the security
API are described as follows:

1. Registry API: provides a binding mechanism to link
with registry database. .

2. Login API: builds login context.

3. ACL API: manages and maintains access control
lists ©

4. Key Management API: verifies the access right.

5. ID Map API: analyze global name.

Based on the above API categories, the
implementation’s classes are described as follows:

€ SecRgyBinding, SecRgyAcct, SecRgyPGOltem,
and SecRgyPGO manages and maintains registry
database.

& SecLoginContext: builds login context.

& SecAclLocallf, SecRdacINetworkITf, "and
SecAclMgmtlf: provides ACL network interfaces and
managemet programs. - '

306

€4 SecKeyMgmt: manages the account key.

4 SecIDMap:analyzes global name and maps with id.
The relationship of the security classes is shown in
Figure 5-1.

SecRgyBinding

ecAclLoc; SecRgyPGOltern
SecRdacINetworkIf SecRgyAcct
SecAcIMgmtlf SecRgyPGO

[SecIDMap] [SecKeyMgmt]
SecLoginContext

Figure 5-1: The relationship of the security classes

These classes are provided by Security
Service/C++ API, which are built upon the Securlty
Service / C API, as shown in Figure 5-2.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

C-++ AP for security service
SecRgyBinding

* . | SecAclLocallf SecReyPGOItem | SecIDMap | SecLoginContext
SecKeyMgmt | SecRAACINetworkIf Secngrco e
SecAclMmgnIf SecReyAcct

key | ACL | registry | ID map | login
management| context
: C AP for security service

Figure 5-2: The relationship between C++ API and C
API

6. Example application
In this chapter, we used addition and subtraction of

array as our example. In this example, the programmers
only have to write four files. Each file is described in the
following:

client.cc declares the variable op to use arithmetic
class, and uses this class to build the initial value of op
object. This initial value is the status value of the client
when it is set up.

server.cc declares the variable op to use
arithmetic class, and uses this class to build the initial
value of op object. This initial value is the status value
of the server when it is set up.

arithmetic.cc has two remote files. One is for
addition, and the other one is for subtraction.

#include <stdio.h>

#include <DCE/rpcpp.h>

#include <DCE/sec_context.h>

#include <DCE/sec_keymgmt.h>

const unsigned short ARRAY_SIZE = 10;
typedef long long_array[ARRAY_SIZE];

class arithmetic:public RPCppC,RPCppS{

private:

long_array c;
public:
arithmetic(){};

arithmetic(unsigned_char_t *entry,rpc_if handle_t if h,

unsigned _char_t *protseq,UUIDVect *uuid_vect=NULL)

:RPCppS(entry,if_h,protseq,uuid_vect){};

arithmetic(unsigned char_t *entry,rpc_if handle_t if_h,UUID *uuid=NULL)

:RPCppC(entry,if h,uuid){};

void sum_arrays(handle_t handle,long_array a,long_array b);
void diff arrays(handle t handle,long_array a,long array b);

long *get result() { return c; };

b

rpc_binding_handle_t Get() { return RPCppC::GetBindingHandle();};

Program 6-1 arithmetic.h

/* FILE NAME: client.cc */

/* This is the client module of the arithmetic example. */

#include <stdio.h>
#include "arith fh"

/* header file created by Stubgen compiler */

307

Proceedings of International Conference on Distributed -
Systems, Software Engineering and Database Systems

long_array a ={100,200,345,23,67,65,0,10,20,0};
long_array b ={4,0,2,3,1,7,5,9,6,8};

main ()
{
int i;
SecLoginContext context(2);
unsigned_char t *princ_name="chencc";
unsigned_char t *entry_name="/.:/arithmetic_serverhost";

arithmetic ~ op(entry_name,arith_v0_0_c_ifspec);
unsigned32 status; »

printf("entry name ='%s\n",entry_name);
rpc_binding_set_auth_info((handle_t)op.Get(),princ_name,
rpc_c_protect_level pktrpc_c_authn dce secret,
(rpc_auth_identity handle t) context,
pc_c_authz_dce,&status);
op.sum_arrays(handle,a, b); ~ /* A Remote Procedure Call */
puts("sums:");
for(i = 0; i < ARRAY_SIZE; i++)
printf("%Id\n", op.get_result()[i]);
op.diff_arrays(op.Get(),a, b); /* A Remote Procedure Call */
puts("diff:");
for(i=0; i < ARRAY_SIZE; i++)
printf("%Id\n", op.get_result()[i]);
}

Program 6-2 client.cc

/* FILE NAME: server.cc */
#include <stdio.h>
#include "arith_fh" /* header file created by Stubgen compiler */

#define KEYTAB "/home/chencc/simple_server tab"

main ()

{
unsigned32 status; /* error status (nbase.h) */
rpc_binding_vector_t *binding_vector; /*set of binding handles(rpcbase.h)*/
unsigned _char t *entry_name; /*entry name for name service (Ibase.h)*/
unsigned char t *princ_name="chencc";
void *key;

entry_name = (unsigned_char_t *)getenv("ARITHMETIC_SERVER_ENTRY");

printf("entry name = %s\n",entry_name);

arithmetic arith(entry_name,arith vO_0_s_ifspec);
rpc_server_register_auth_info(princ_name,rpc_c_authn_dce_secret, NULL,KEYTAB,&status);
SecKeyMgmt keymgmt(rpc_c_authn_dce secret, KEYTAB,princ_name,0);

SecLoginContext context(princ_name,(sec_passwd_rec_t *)keymgmt.get key(),sec_login_no flags);
arith.ServerListen(); ’

}

Program 6-3 server.cc

/* FILE NAME: arithmetic.cc */

/* An implementation of the procedure defined in the arithmetic interface. */
#include <stdio.h>

#include "arith fh" /* header file produced by Stubgen compiler */

308

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

void arithmetic::sum_arrays(handle_t handle,long_array a,long_array b)

{ .
int i;
unsigned _char t *server_name;
unsigned32 protect_level,authn_svc,authz svc;
error_status_t status; A
rpc_binding_inq auth_client(binding,(rpc_authz handle t *) &pac,
&server_name,&protect_level,&authn_svc,&authz_svc,&status);
if (status==rpc_s_ok&&authz_sve==rpc_c, authz dce)
{ o
for(i=0;i<ARRAY SIZE; i++)
c[i] = a[i] + b[i];
}
}
void arithmetic::diff arrays(handle_t handle,long_array a,long_array b)
{
int i; >
for(i=0; i <ARRAY_SIZE; i++)
cfi] = a[i] - b[il;
}
Program 6-4 arithemtic.cc
7. Conclusion and Future work Inc.,1991.

In this work, we implemented a CH++ API V. Willian Leddy and Arjun Khanna, “DCE++:A
prototype system upon . DCE, which allows C++ APl for DCE”Hal Cpmputer
programmers to implement an application system by Systems,Inc.,1993
object-oriented methodology. This API has. inherit, V. John R. Levine, Tony Mason and Doug Brown,
overloading, object, and data privacy features. This C++ “Lex & Yacc”, O’Reilly & Associates Inc,
API can reduce programmers’ learning and developing October 1992.
time, and provides users an easy way to manage and VL Open Software Foundation, “DCE Users Guide
maintain the system. ' - and Reference”, Open Software Foundation,
Currently, the C++ API is only available for Remote Cambridge, USA 1993. ‘
Procedure Call and Security Service. Some techniques VII. Open Software Foundation, “DCE Application
are still needed to handle more complicated data Development Guide”, Open Software
structures, such as linked lists. As a future step, We plan Foundation, Cambridge, USA 1993.
to (1) build the C++ Application interfaces for other VIII. Open Software Foundation “DCE Application
DCE services, and (2) enhance the functions of stubgen Development Reference”, Open Software
to handle more complicated data structure. Foundation, Cambridge, USA 1993.

IX. Open Software Foundation “OSF DCE

References Administration = Guide”, Open Software
Foundation, Cambridge, USA 1992. v

I. Open Software Foundation, ”Introduction to - W. Rosenbenry, D. Kenney and G. Fisher,

OSF DCE”, Open ‘Software Understanding DCE,” O’Reilly & Associates

Foundation,Cambridge,USA 1993 Inc, September 1992. o

IL W. Lockhart, Jr, “OSF DCE Guide to XL Shirley, “Guide to Writing DCE Applications”,

O’Reilly & Associates Inc., 1992.
XI. Y.H Du, “Object-based RPC Develop
Environment”, IE NSYSU,1995.

Developing Distributed ~ Applications”,
McGraw-Hill, Inc., 1994.

I, Bjarne Stroustrup, "The C++ Progtamming
Language”,2nd Edition, Addision Wesley,

309

