Proceedings of International Conference on Distributed
Systems, Software Engineering-and Database Systems

Evidence-based Software Verification and Validation Technique”

Chin-Feng Fan, Wei-Huo Huang
Dept. of Computer Engineering and Science
Yuan-Ze Institute of Technology, Chung-Li, R.O.C.

) Swu Yih
Division of Nuclear Instrumentation and Control
_ Nuclear Energy Research, Lung-Tang, R.O.C.

Abstract

Current software verification and
validation (V&YV) practice lacks a systematic
and integrated methodology; moreover, the
quality: of V&V process is difficult to judge.
This paper proposes
software Verification and Validation (EB V&V)
technique to solve these problems. In the paper,
V&V process is viewed as an evidence searching
process; we first propose an evidence taxonomy,
which divides evidence into syntactic, semantic,
complete, and exception impact (also called
safety) types of evidence. Methods to obtain
these types of evidence along with evidence
Sformats have been discussed. A quality-chart
approach is then developed to evaluate the
quality of V&V process as well as that of the
evaluated software. An evidence database can
be built to store and organize the obtained
evidence for further utilization. A case study is
also presented.

1. Introduction

Verification and validation is a major
technique to improve software quality. For
safety critical software, which used in
aviation, transportation, medicine, and
nuclear industry, V&V is particularly
important; V&V results can be used in
licensing approval process and in liability
determination after an accident has occurred.
Current software V&V practice lacks a
systematic approach; it usually generates
many independent reports, which are not
integrated and cannot be fully comprehended
and utilized. V&V can be viewed as an
evidence-searching process, searching for the
connection between contiguous development

This work was supported in part by National Science
Council, Republic of China, under the grant no.
NSC85-2213-E-155-004. ‘

286

an Evidence-Based .

stages and between software and the
requirements. V&V activities include
testing and review. Testing cannot cover all
possibilities; hence, review process is -
important. However, review is a mental
activity; most of the evidence obtained by
searching and comparison during review
process is in the reviewer’s mind and is not
recorded. Therefore, it is difficulty to judge
the quality of the review process. To solve
these problems, we propose an Evidence-
Based software Verification and Validation
approach (EB V&V), which first derives a
set of evidence that reflects the essential
relationship between software development
phases, and then, explicitly stores the
evidence in an integrated database. In this
approach, an evidence taxonomy is proposed
to systematically classify evidence;
techniques for evidence acquisition,
representation, and integration in a database
are developed. A quantitative approach to
estimate V&V quality "is also proposed.
The EB V&V methodology is presented in
Section 2, followed by a case study in
Section 3 and a conclusion in Section 4.

2. Evidence-based Software V&YV
Technique (EB V&V)

2.1. The Rationale

Under the waterfall software development
life cycle model, the development activities are
divided into several consecutive phases as
shown in Figure 1. The developers in each
phase have the same goal to achieve and the
same target to construct; since developers in
each phase use different languages, thus, the
development process can be viewed as a

translation or refinement process (if with the
same language) as shown in Figure 2. Under
this idea, the output of one phase is the subset or
refinement of the design of its previous phase.
The output of each phase can be viewed as a set
of expressions as follows:
User’s requirements: U=(U,, U,, ..,U,))
It is a collection of natural language
description orgnized in itemized forms Uj ’s.
Requirements specifications: R=(R,,R,,..R,)
Each user requirement item is translated into
one or multiple specifications R;’s.
Design phase: D=(D,,D,,..D,)
Each requirment specification is translated
into one or multiple deisgn entities D;’s.
And 50 on.
Each 'expression represents a description of
software state transition based on the language
used in that phase. For example,
R _State ——'—"fﬁiﬁ State !
refers to a particular state transition perceived in
the requirement phase for requirement item i and
represented in the requirement specification
lagnuage. There exists connection between this

User's Needs

Requirement
" Analysis

Joint Conference of 1996 Internationial Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C..

required transition with its . iniplemnetation,
which may be implemented by a set of
transitions, in the next stage. Thus, the
evidence in V&V process will link such
connection. For example, the evidence V;
associates the state transition in the requirment
phase from state i to j with its implementation in
the design phase; such connection will be
denoted as '
<Ri5 Di*:' Vi>
where, -
Ri=State,-” — 22l State®

D, _ P(Statel)—L4Y s P(StareP)

Vi = Evidence
Note that
P refers to power set, and

State® o P(StateP)
Statef) P(Statef)

inputiR 2 P(input,-‘J)

(Natural language)

Design

Programming

Opgration

(Machine language)

Figure 1. Language used in different software development phases

287

Proceedings of International Conference on Distributed
Systems, Sofiware Engineering and Database Systems

Unatural - Rspec‘

I%age language
vy

- D design

Ianguaie

— P - M

programming
- language

machine
language.

state transition structure

Figure 2. Software development as a translation or refinement process

The related sets of state transitions are the basic
unit in-the evidence-based approach; this basic
unit is named as entity. Thus, evidence in EB
V&V approach connects a particular entity in a
development phase with its refinement or
implementation entities in the next development
phase. For each phase, the entity will be
different; for example : '
User requirement phase: an entity is a
requirement item or keywords.
Requirements specifications phase: an entity is a
requirement specification item.
Design phase: an entity is a design unit.
Implement phase: an entity is a module in the
program code.
Test phase: an entity is a test case.

2.2. Evidence Taxonomy

To facilitate systematic acquisition and
utilization of the evidence, we classify the
evidence into four types: syntactic evidence,
semantic evidence, complete evidence, and
exception impact evidence (safety evidence).
Syntactic : The syntactic evidence detects the

lexical existence of a given entity.

Semantic: The semantic evidence determines
whether a given entity performs its
intended objectives.

Complete: The complete evidence determines
whether the software completes the exact
specification of the previous phase and
no unintended extra functions.

Exception impact (Safety): Since completeness
is difficult to establish, thus, the evidence
is needed to identify the impacts due to
incomplete coverage. Such evidence is
named as safety evidence, detecting if
there exist any unsafe factors in the
software. '

For a particular entity, V&V process will
seck the evidence of its
implementation in the next stage. First, the
syntactical evidence is sought to show the
existence of such refinement or implementation
in the next stage; then the semantic evidence is

288

refinement or .

sought to judge the correctness of such
implementation. For example, for a
requirement specification item “interrupt”, the
syntactical evidence in the design verification is
that the term occurs in the design document; the
semantic evidence is that the design properly
implements this function. After that, the
overall complete evidence can be searched for to
demonstrate that the software implemented in
the next stage fulfills the specifications of the
previous stage and has no unintended functions.
However, since the completeness cannot be
ensured or may not exist, safety evidence is
needed to investigate the impacts induced by
potential incompleteness. Safety evidence is
particularly important for safety-critical
applications: as long as the incomplete portions
will not cause unsafe consequences, then the
implementation will be acceptable. Syntactic,
semantic, and complete types of evidence are
sought sequentially; while safety evidence
obtained from software failure modes and effect
analyses seeks the safety links between stages.
Complete and safety evidence mainly refer to
the entire software; yet, they can also refer to the
complete and safe implementation of a particular
entity, if appropriate, by the next stage.

2.3. Evidence Processing

Besides subjective judgment, the above four
types of evidence can be obtained by more
objective techniques. Syntactic evidence can
be identified by string/token mapping.
Semantic evidence can be generated by program
testing (for implementation stage) or prototype
testing (for requirement and design stage).’
Complete evidence can be processed in several
aspects: first, check gathered semantic evidence
to verify that all the defined entities in a
particular phase have been successfully
implemented by the next development phase;
then, check using checklists or inspection to
determine whether there is no extra/unwanted
functions from this implementation by using
checklists; also, reliability data can be used to
indicate the degree of completeness. A formal

or a semi-formal approach may also be applied
for semantic and complete evidence [3,4].
Safety evidence in each development phase can
be generated by safety analysis techniques such
as accident scenario tree analysis [8] at
requirement stage, Petri-net analysis [5] and
frame-based fault-tree/event tree analysis [2] at
design stages, and software fault tree analysis[6]
at implementation stage. These safety analysis
techniques will identify the hazardous causes for
each development phase, if these causes have
been considered and prevented in the current
development, then we indicate the places they
are treated; otherwise, the safety evidence is
missing and needs to be added into development.
Figure 3 is a summary of the evidence
acquisition process.

The above four types of evidence can be
represented in tracing tables. These tracing
table will be kept in an integrated evidence

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

database to facilitate further inquiry and
utilization. The concept of evidence database
is shown in Figure 4. A relational data model
may be used to implement this evidence base.

2.4. Quality Index of EB V&V

V&V tasks consists of review and testing.
Conventional review process is an internal and
mental activity; the EB V&V approach converts
this opaque, mental activity to an external and
observable process. Consequently,” quantitative
measurement of EB V&V process is then
possible. A quantitative quality chart is
proposed to measure the quality of EB V&V
tasks in this evidence approach. A quality
chart as indicated in Figure 5 is proposed to

- indicate the percentage of evidence searched out

of the all the desirable evidence.

Y
J1OBJULS
/
ONUBLIRS

syntactic: token/string mapping -

complete: 1. check coverage of semantic evidence
for defined entities

2. check noextra_functions produced by

checklist or subjective judgment

Y

Jprdwod

Y
Ajayes

semenatic : program testing,

prototype testing,
or formal approach

safety: safety analysis techniques
at each phase

3. use reliability data as completeness indicator

or formal approach

Figure 3. Evidence Acquisition

289

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Concept
Requirement
Design
coding
Test
Installation
checkout
Operation
M aintenance
EVIDENCE-BASE
Rqmt| Design | Coding [Testing P&M
Syntacti¢ Evidence]
\..
Semanti¢ Evidence
]
» Complete Evidence] (vev Reports |
j Safe Evid
| afety vidence
Figure 4. The concept of evidence-base
A E(T): effort to search T type of evidence for
entity K. E(T) =0 means the verifier has not
tried to examine the evidence, E (T)=1
Seéty i means he has. '
o W, weight of entity K.
S A further refinement by using error seeds to
obtain more accurate V&V quality [1] is
Sic desirable. Also, similar quality chart approach
can be applied to get software quality reflected
by the obtained evidence, assuming that the

V&YV task has high quality first. In such a case,
then E(T) in the above formula refers to
whether such evidence exists.

Etityl Hity2
Figure 5. Quality chart

0 ibl li trics of V&V task i
ne possible quality metrics o ask is as 3. Case Study

follows:
Quality(V&V) = . We have constructed a simulator for a rapid
(& & / railroad system to demonstrate the usage and
kZ_Jl 'TZ_‘.I WreE,(T)eW,, effectiveness of the proposed approach. The
n 4 * 1000 simulated system has eight stations

) * 100%

XX W oW, (ABCDEF,GH) and four trains (1,2,3,4)
where staying at stations A,C,E,G at the beginning; this

T=1..4, represents the four types of evidence.

W.: weights for types T evidence (W,,W,,
Wi, W)

E,: entity k. Assume there are n entities at the
previous stage.

290

is shown in Figure 6.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C. '

S NG 6. The system can be interrupted by the user at
any time.
7. The system must has the self-test function.
B , H 8. The system can be restarted if needed.
| 9. The user can check the current state.

— 10.The system should print out data when
Q=" - ®@ necessary.

The documents at the requirements
specifications, design, and testing (including
prototype testing) stages were written in SDG
2.0 [7]. The requirements specifications
identified functional items, including the user
inputs the direction of each train, the computer
randomly generates the direction of each train,
interrupt function, restart function, self-testing,
etc. The design stage developed several design
modules including window_control, car_control,
signal control, calculate, flow_control, etc.
The simulated system was coded in Visual
Basic. '

The V&V process was proceeded as that
discussed above. Tables 1 to 3 show segments
of some tracing tables generated by the EB V&V
for this case.

(=]

E
Figure 6 A simulated rapid railroad system

User’s requirements includes the following:

1. Trains can move either clockwise or
counterclockwise.)

2. Trains stop at any-station and passengers can
get in or leave from the trains.

3. The speed of each train can be changed.

. The trains follow traffic lights.

5. This system takes speed, number of
‘passengers, and direction as input; either from
users, or randomly generated by the

N

computer.
Table 1. Syntactical evidence for requirement verification
User’s requirements Requirements Specifications in SDG2.0
No. (Page |Entity No. {Page |Corresponding Entity

6 1 The system can be interrupted by[29 [3-20 [3.2.11 Item 11: Interrupt function
the user at anytime.

30 3-21 |3.2.12Item 12: Restart function

...

Table 2. Semantic evidence for requirement verification

User’s requirements Prototype Testing Report for Specifications
No. |Page |Entity No. [Page |Corresponding Entity
1 1 Trains can move either clockwise orj1 1 Prototype Test case 1

counter-clockwise.
7 1 The system must has the self-testi26 (25 [Prototype Test case 26
function. ~

291

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

-

Table 3 Compete evidence by checklist for requirements

Checldist Item Rating Comment

Do the requirements specifications include all ~ [Perfect Good OK Poor

functions called for or implied by the Statement

of Problem?

Does the specification reference all desired Perfect Good OK Poor

development standards?

Does the requirements consider incorrect input [Perfect Good OK Poor add negative input...
handling ?

Table 4. Safety evidence for requirement verification

safety analysis document requirement document in SDG 2.0
No. (Page|Entity No. Page |Corresponding Entity
1 1 User input checking |missing
2 1 run-time self checking 26 2-1 |2.2. self-check function
3 1 interrupt function 29 3-20 [3.2.11 interrupt function
30 3-21 |3.2.12 restart function
For safety evidence, appropriate analysis click the item twice, and the detailed information

techniques needs to be used. For example, the
accident scenario tree [8] or fault tree analysis
can be performed in the requirements
verification to identify that the train collision
accident is caused by the following potential
reasons:

(Dincorrect user inputs,
(2lack of run-time self-check, or
(3)lack of interrupt function.

Thus, negation of these reasons constitute the
safety constraints for requirements specifications.
These constraints needs to be checked against
the requirements specifications to verify their
existence or missing, and the information will be
recorded in a safety evidence tracing table, as
shown below in Table 4.

We have implemented the gathered
evidence in an evidence base using Visual
Foxpro in Chinese. The user indicates the
entity, the current stage, and the evidence type to
search for, the system will show the evidence
linked to the previous and the next development
stages; this is shown in Figure 7. For detailed

descriptions for each searched iiem, the user can

292

will be linked to (see Figure 8). Since evidence
is kept on-line and can be tracked backwards
and forwards, further utilization of this
information is possible.

The main screen of the evidence base

Figure 7.

(1) Hitdts

(2) R

(3) $i7 A

447 SELE TEST @%ihieth » AL TAY
e

Figure 8: Linked information for a query

4.‘ Conclusion

This paper proposed an evidence-based
software verification and validation method,
which has the following advantages over the
current practice:

1. Ttis an integrated and systematically V&V
method with proposed evidence taxonomy,
acquisition procedure, and representation
formats.

2. This technique converts the originally
internal, mental V&V activities to external,
observable behavior by recording detailed
evidence.

3. Quality indices measuring
performance and results are proposed.

4. Obtained evidence is kept on-line in an
evidence base, supperting forward and
backward traceability. Thus, V&V
information can be further utilized, such as
in certification and liability determination
for safety-critical software.

Techniques and tools to facilitate the
evidence creation - and mainienance will be
further developed to improve the efficiency of
this approach.

V&V

References

[1] C. Fan, and S. Yih, “Prescriptive metrics for
quality assurance,” in Proc. of IEEE Asian
Pacific Software Engineering
Conf.(APSEC'94) , Tokyo , Dec 1994 , pp.
430-438.

[2] C. Fan and S. Yih, “Frame-based safety
analysis approach for decision-based
errors,” to appear in Reliability Engineering
and System Safety, 1996.

293

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

[31 M. Heimdahl, and N. Leveson,
“Completeness and consistency analysis of
state-based requirements,” in Proc. of 17th
International Conference on Software
Engineering, April 1995, pp. 3-14.

[4] C. Heitmeyer, B. Labaw, and D. Kiskis,
“Consistency checking of SCR-style
requirements specifications,” in Proc. of
International Symposium on Requirements
Engineering, March, 1995.

[5] N. Leveson and J. Stolzy, “Safety Analysis
Using Petri Nets,” IEEE Trans. On Sofiware
Engineering, SE-13, No. 3, 1987, pp. 386-
397.

[6] N. Leveson, S. Cha, and T. Shimeall, “Safety
verification of ADA programs wusing
software fault trees,” IEFEE Sofiware, July
1991, pp. 48-59.

[7] Software Development Guide (SDG) 2.0,
Information Industry Institute, Dec. 1988,
Taiwan

[8] S. Yih and C. Fan, “Development and

verification of licensable requirements
specifications for safety-critical software,”
9th Sino-Japanese Nuclear Safety Conference,
Taipei, Dec. 1994, pp. I-F-1-1-F-14.

