Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

An Efficient Forward Recovery Checkpointing
Scheme in Distributed Systems

Kuochen Wang and Chien-Chun Wang

Department of Computer and Information Science
National Chiao Tung University -
Hsinchu, Taiwan, R.O.C.

Email: kwang@cis.nctu.edu.tw

Abstract

In this paper, we present a cost-effective forward
recovery checkpointing scheme (FRCS) for distributed
systems without a spare module, where a job is exe-
cuted simultancously on two processors (or processing
modules). For those schemes with a spare module, the
time required for initiating the spare module is long
and the cost is high for an extra module. Mathemat-
ical models have been developed to demonstrate that
our scheme is always better than the traditional roll-
back scheme without any spare module and is better
than other schemes with a spare module in terms of
number of processing modules required and the total
execution time (cost-effectiveness).

1. Introduction

~ Checkpointing schemes [1] [2] [3] are widely used
for fault tolerance in distributed systems. At each
checkpoint, the states of two processing modules (PMs)
are compared in order to detect a fault, and a recov-
ery procedure is performed to locate a faulty module
when a mismatch occurs. Those schemes using spare
modules [4] [5] to perform the recovery procedure can
reduce the average completion time of a task, but the
system cost is high due to the need of a spare module
~and a long time to initiate it. In transaction systems,
the system availability is important [6]. For reducing
the system cost, retry is performed on the same mod-
ule, which maybe the faulty module. For avoiding the
invalid retry on the faulty module, the module needs
to be rolled back to the last checkpoint at the begin
of the retry. However, the average completion time
is longer than the schemes using spare modules. In
this paper, we propose a novel checkpointing scheme
to provide a trade-off between the average completion
time of a task and the number of modules required.
In our forward recovery checkpointing scheme (FR
CS), no spare module is required and the retry for an
additional checkpoint is conducted in one of the PMs.
Two other checkpointing schemes are reviewed here:

A fault Retry I
\

Py D4
Retry
I interval Ij1
P, ®
| | f | |
I | oo |
| [Forward IJ+‘1 l i .
to ty . i3 Time_

Figure 1: FRCS for a duplex system.

(1) the roll-forward checkpointing scheme (RFCS) and
(2) the rollback (RB) scheme [1] [5] [8], to compare
with our FRCS scheme. The RFCS scheme needs to
employ a spare module to do the retry when a fault is
detected. As to the RB scheme, when the two check-
points mismatch, both PMs reexecute the question-
able checkpoint simultaneously. ,

The remainder of this paper is organized as follows.

. The basic concept of FRCS is introduced in section 2.
-Section 3 illustrates our cost-effective checkpointing

scheme in detail. The evaluation among the FRCS,
RB, and RFCS schemes are presented in section 4.
Some concluding remarks are shown in section 5.

2. Basic concept

This section introduces the basic concept of fault
detection, location, and recovery in our FRCS scheme.
The fault detection is achieved by a comparison on a
pair of checkpoints [4] [5]. At the beginning of the
retry interval (time ¢;), the states CP;; and CPjy are
saved on the corresponding reliable storage (see Fig-
ure 1). The CP;, and CP;; are the states of P; and
P, respectively. If P; is selected to retry the current
checkpoint I; and P, executes in the next checkpoint
Ij41 forward. At the end of the retry interval (time
t2), the retried checkpoint of P;, denoted C'P;j3, is used
to compare with CP; and CP; in order to locate the
faulty checkpoint. Assume that a single fault occurs

310

HHHE:!@ ’.

a) (b) (c) (d) (e) (f)
a) Duplex checkpointing — ¢,
b) Idle — ¢,

(
(
(b) Idle = 2, . .
(c) Comparing the retried checkpoint with
two saved checkpoints — ¢,

(

(

(

d) Restoring checkpoint — t.,
e) Rollback - ¢,
f) A fault

Figure 2: Box notations for FRCS.

on P and P, is fault-free during the interval I;. The
result of comparison will indicate that ("P;3 is identi-
cal with ('P;; and different from C'Pj;. Now, we can
assume that P; was faulty during the interval I;. At
the same time, the forward checkpoint of P, denoted
C P +1)3, will complete and be saved on the reliable
storage. It is used to recover an additional fault in
the next interval, if any. Then P; and P, execute in
the next interval [(;41). Suppose another single fault
happens on Py during the next interval Ii4i. At time
t3, the comparison of C P11 and CPgyyys will not
be identical. They can be compared with CPi41y3
from the corresponding reliable storage immediately.
By comparison, another fault on P, during the inter-
val I(j41) can be recovered without requiring another
retry interval. However, in the RB scheme, this over-
head is at least two rollback intervals for the same
fault case.

3. Forward recovery checkpointing
scheme

There are six box notations used in this paper (see
Figure 2). (a) The time required for checkpointing is
denoted by ¢.;, which also includes the time needed
for comparing the checkpoints of P, and P,. (b) For
synchronization, the time is denoted by t,, where
the faster PM waits for the slower PM. (c) The time
required for comparing the retried checkpoint CPj3
with two previous saved checkpoints C'P;; and CPjy
s named t... (d) The time needed for making the state
of a faulty PM consistent with the state of the other
PM is named ¢.,. (e) The time needed for making the
states of both PMs consistent with a previous check-
point is named ¢,. (f) A fault is represented by a black
dot.. The length of one use ful computation is denoted
by tu, and let T = t,, +t., and Ty = ¢, +1, +tee. De-
pending on how the faults occur, there are six possible
fault cases, denoted as (A) through (F).

(A) No failure: Both P, and P, are fault-free in
the interval I; (see Figure 3). The probability of oc-
currence for this case is P4 = ¢72*T [5] [9]. The exe-
cution timeist4 = 7.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

ta=T '
Pt |
1 Ij !
P, i
T, ==
S N N
to tott, t T'ime
Figure 3: Case (A) — No failure.
- ip = T + Tl + tc_p >
P s oo n e
Ijx miE =
Py i o—titi— S
I A G+
| | | I . >
t() tl t3 t(; t4 tz ‘t5 Time

Figure 4: Case (B) — Recovering a single failure and
followed by a state restoration. '

tc :T+T1 + 1

L Rollback _ i
P 4 H—e
Iy ==~ Iis
P2 . I [...:
T = 7
I I e I I .
10 t; i3 te tq ts ts Time

Figure 5: Case (C'1) — Rollback due to the retry in-
terval failure.

(B) Recovering a single failure and followed by
a state restoration: In this case, the current interval
I; has a single fault and ‘the retry checkpoint CPj3
is fault-free (see Figure 4). At time tg, this forward
checkpoint is completed first. Then P, waits until
P; completes- the retry procedure. This idle time is
named ¢, = t; — tg. At time ¢4, P; finishes the retry
and its state C'P;3 is compared with the two saved
checkpoints C'Pj; and C'Pj;. At time t,, it is found
that C'Pj3 is identical with C'Pj; and different from
CPjy. The time required for this comparison is de-
noted by t.. = ty —t4. Then P, is assumed faulty
and it must be made consistent with the correct state
from P;. The time required for this state restoration
is denoted by ¢, = ¢5 — t5. The probability of occur-
rence for this case is Pg = e*'"(T"'Tl)(l — e"‘r). The
execution time is denoted bytp =T + Ty +tep.

(C)- Rollback due to the retry interval failure: The
number of faulty checkpdints is at least two among
CPj1, CPjs, and C'P;3. There are three possible sce-
narios as listed in Table 1. For the sake of illustration,
consider scenario C illusﬁirated in Figure 5. Here two
faults happened in the in{terval I;5 and the retry in-
terval I;3. Both PMs are rolled back to the previous

311

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Table 1: Three possible fault scenarios in case (C).

Scenario Status in the interval I; Status in the retry interval

Iy Ija I3 IG+1)3
Ch fault-free . faulty faulty don’t-care
Cy faulty fault-free faulty don’t-care
'3 faulty faulty don’t-care don’t-care
tp =2T+T;
P e = = S
' Iy == I B TG
PZ - I —L ! I | Pe—— I
| J2 | | (j+1)3 |] (G+1)2 | s
.t() tl t3 t6 t4 tz ts Time

Figure 6: Case (D) — Retry successful and no more failure in the next interval.

Table 2: Two possible fault scenarios in case (E).

Scenario - Status in the interval I; Status in the retry interval Status in interval ;41

Ijs Liz Iis L+1)3 T LG+
Ey faulty fault-free fault-free fault-free faulty fault-free
E, faulty fault-free fault-free fault-free fault-free faulty

checkpoint ("Pj_;1. The time required for this state
restoration is denoted by t, = t5 — t5. The proba-
bility of occurrence for this case is Pe = 2e=*T(1 —
e M1 — ey 4 (1 — e~ *T)2. The execution time
is denoted by t¢ =T + 11 + t,.

(D) Retry successful and no more failure in the
next intervel: In this case and the following two cases
(E) and (F), the retry mechanism succeeds to recover
a single failure in the current interval I;. The forward
checkpoint (/F;41)s is also valid due to a faulty mod-
ule selection hit. There is only a single fault during
the interval I; and the remainder is fault-free (see Fig ig-
ure 6). The probablhty of occurrence for this case is
Pp = ¢~ 2BT+T)(1 — ¢=2T), The execution time is
denoted by tp = 2T+ T3.

(E) Retry successful and forward recovery a sin-
gle fatlure in the next interval: There are two possible
fault scenarios listed in Table 2. For illustration, con-
sider scenario E; as shown in Figure 7. The intervals
Ij1 and I(;4qy; are both faulty. At time t7, the cor-
re('t checkpoint (VP;; is derived since C'P(j41y3 and
C P(]_H) 5 are 1dentical. The time required for this com-
parison, ty — t5, is similar to that between {4 and »,
and is also denoted by t.c. Both failures in I;; and
I(; 41)1 are recovered successfully. Note that it needs
only one retry interval to recover two failures in our

scheme. For the RB scheme, it needs at least two roll-
back intervals. The probability of occurrence for this
case is Pp = 2¢72MT+T1)(1 — ¢=?T)2. The execution
time is denoted by tg = 2T + 11 +tce + Lep-

(F) Retry successful and rollback in the next inter-
val: There are three possible fault scenarios in this
case (see Table 3). For illustration, consider scenario
F) as shown in Figure 8. The failure in [;; is re-
covered successfully. But the other two failures, in
I(i41)2 and I(; 1133, can not be recovered successfully.
The probability of occurrence for this case is Pp =
e_)‘(T+T1)(l - e—AT)2(1 + e-—)\T _ 26—)\(T+T1)). The
execution time is denoted by tr = 2T+ T + tee + 1.

4. Performance evaluation

Here we will evaluate the performance among FRCS,
RB, and RFCS schemes quantitatively. The perfor-
mance measures examined are: average completion
time and total execution time.

T, = the average completion time for a job

T.|f = same as T, except that at least one failure
occurs during the execution of a job

312

Joint Conference of 1996 International Gomputer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

tg = 2T+ T1 +toe + Lo

Py - @ 3 3—e— =
Iz miE B T
PZ LLLLL) LLLLLJ ! I—I—l
| b e)y Tae L1 | N
to tl 1‘.3 ts t4 t‘z t5 t7 tg Time

Figure 7: Case (E1) — Retry successful and forward recovery a single failure in the next interval.

Table 3: Three possible fault scenarios in case (F).

Scenario Status in the interval I; Status in the retry interval Status in interval L

i Ijz UE L1+1)3 {g+n L1y

Fy faulty fault-free" fault-free faulty fault-free faulty
F, faulty fault-free fault-free = faulty faulty fault-free
Iy faulty fault-free . fault-free -don’t-care faulty faulty

L tp =27+ 1) +tee + 1, N

n - Rollback i
P F—e | "'"'"'/

, L EE Is FE LG

p‘z : e — !—. | S—— S— r

M | foe) Teve .

iy tl t;; t(g t4 t2 t5 tr7 tg Time

Figure 8: Case (F1) — Retry successful and rollback in the next interval.

Table 4: Parameters for job 1.
Ty ten i, is tec tcp tpr
50 0.50 0.05 0.30 0.07 0.05 0.80

T. = total execution time of a job which is the sum-
mation of the execution time of each PM, in-
cluding that of a spare module if used.

The total execution time can be used as a measure of
cost-effectiveness for each scheme. The analysis pre-
sented here focuses on transient faults. Occurrence of
a transient fault in a module is assumed to be a Pois-
son process with a constant failure rate A [6] [9]. So
the failure probability of a module is 1 — =T dur-
ing the time period 7. Based on the probability and
required time for each case, the average completion
~ time of three schemes are shown in equations (1), (2)
and (3).

If there are n checkpoints, the probability of no

’

failure in every execution interval is P4™. The value
of 7,|f can be derived as follows [5]:

C T — Py™nT
Tlf = TP

To conduct the performance comparison among these
three schemes, we use a hypothetical job called job 1.
Parameters for job 1 are listed in Table 4.
Comparison of the average completion time T, |f: In
Figure 9, 7,,| f of the three schemes are shown, respec-
tively. The z-axis represents the failure rates from
107% to 1078 and the y-axis represents the average
completion time with the optimal checkpoint number
[7]. The RFCS scheme has the shortest time among
the three schemes, because it uses a spare module dur-
ing a fault retry interval. Note that both FRCS and
RB do not employ any spare module and our FRCS
performs better than RB.

Comparison of the total ezecution time T, (or cost-
effectiveness): In a duplex system without using a
spare module for fault recovery, the total execution
time is equal to twice of the completion time Tl f.
FRCS and RB are belong to this case, because they

313

Proceedings.of international Conference on Distributed
Systems, Software Engineering and Database Systems

FRCS :

_ qDE
4DE (¢ata +48tB +qctc + aptp + BtE + qrir) ((" JIDE~ ﬁ}‘)

Th = . (1)
I+ape +?T<(11)E_1+(—<IDE) >+Tl(-((1A+fIB+tIF)) (QDE + (—¢pE)")
Py .) : T+t
where qx = 1——%, for X =AB,C,D,E,F qpg=qp +4qg, 71 = }jw —t,, and 75 = 277
— P
RB

[T+, 5
Tn =1 (:m’ - tr) (2)

l+g¢B

(4ata +4pt5 + qcte + 4oip) ((n ~2)qs~! + ;3%)

_ 4B
I+ q_B +77 (llé_1 + (—QB)n—l> + (7% — qapT1) (‘13_1 + (—QB)"_Z)

Table 5: The execution time for each situation in
RFCS scheme.

[e T
- N W

D
i=]

Situation Required execution time
(A) tg =2T
(B) tp = 4T + 2ty + 2ec + 2y + 2ep + tpr
() te = AT+ 2ty +tee+tu + 2 + by,
(D) tn = AT + 2y + 4ec + 4ty + 2ty + 1oy

0

average completion time
wv Wb
~N o0

>

| R TS S R E S

v
w

1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8
Failure rate

always use only two PMs to retry. For RFCS, the ex-

. . . Figure 9: 7,|f for job 1 with optimal checkpoint num-
ecution time of the spare module must be considered i

.. . ber.
as well. That is, it uses two modules when no failure
oceurs and three modules when a failure occurs. We
derive the execution time of RFCS for each situation 5. Conclusions
in Table 5 [5]. The total execution time T; for each .
of the three schemes (FRCS, RB, and RFCS) equal to We have presented a very cost-effective forward re-

covery checkpointing scheme for distributed systems
without using spares. Our scheme without a spare
module has less system cost than those schemes with
a spare module in terms the hardware expense and
the initialization time of the spare module. During
the retry interval, one processing module is doing the
T (RF("Q) = 2 xm]f (RFCS) with { ¢ ST retry checkpoint and the other processing module is

e\ E) = n . A5 B, IO, doing the next checkpoint for recovering a possible
tp } 1nstead of { ta,tB, tc, tp } fault in the next interval. Thus, our scherme only needs
one retry interval to recover two transient faults at
two consecutive checkpoints. In the rollback scheme,

twice of 7,|f is summarized as follows:
T.(FRCS) = 2 x| f(FRCS)
T.(RB) =2 x7,|f(RB)

In Figure 10, the z-axis represents the failure rates °

from 1072 to 107 and the y-axis represents the to- it.needs at least two rollback intervals at the same
tal execution time with the optimal checkpoint num- fault situation. Mathematical models have been de-
ber [7]. The total execution time of our FRCS is the rived to evaluate the average completion time and the
best while that of RFCS is the worst among the three cost-effectiveness (total execution time) of the differ-
schemes. ent schemes. Simulation results shows that our scheme

314

158 m

\ —-®-—RFCS

\ —-&—- RB
148 | a —&—FRCS
Q \
g "8 s maw.aa-n--u
g .
3138 "
]
e
[
E
2128 4

4
118

1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8

Failure rate

Figure 10: T, for]ob 1 w1th optunal checkpoint num-
ber. v

can provide a better trade-off between average com-
pletion time and cost (or number of processing mod-
ules required) than the other two schemes. That is,
our FROS scheme is the most cost-effective among the
three schemes in terms of the total execution time un-
der a wide range of failure rates.

Acknowledgment

This work was supported in part by the National
Science Council of the Republic of. China under Grant
NSC86-2213-E-009-085.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

References

(1]

2]

(3]

[4]

9]

315

Yong Deng and E. K. Park, ”Checkpointing and
Rollback-Recovery Algorithms in Distributed Sys-
tems,” Journal of Systems Software, vol. 25, 1994,
pp. H59-71.

Kassem Saleh, Imtlaz Ahmad, and Khaled AI—
Saqabi, ” An Efficient Recovery Procedure for Fault
Tolerance in Distributed Systems,” Journal of Sys-
tems Software, vol. 25, 1994, pp. 39-50.

Junguk L. Kim and Taesoon Park, ” An Efficient
Protocol for Checkpointing Recovery in Distributed
Systems,” IEEE Trans. on Parallel and Distributed
Systems, vol. 4, no. 8, Aug. 1993, pp. 955-960.
Junsheng Long, W. Kent Fuchs, and Jacob A.
Abraham, ”Forward Recovery using Checkpoint-
ing in Parallel Systems,” International Conference
on- Parallel Processing, vol. 1, Aug. 1990, pp.

272-275.

Dhiraj K. Pradhan and Nitin H. Vaidya, ”Roll-
Forward Checkpointing Scheme: A Novel Fault-
Tolerant Architecture,” IEEE Trans. on Comput-
ers, vol. 43, no. 10, Oct 1994, pp. 1163-1174.

Avi ZviandJ ehoshua Bruck, ” Analysis of Check-
pointing Schemes for Multiprocessor Systems,” IEEE
13th Symposzum on Reliable Distributed Systems,
1994, pp. 52-61.

Avi Zvi and Jehoshua Bruck, ”Optimal Number of
Checkpoints in Checkpointing Schemes,” Manuscript,
1993. :

P. A. Bernstein, ”Sequoia: A Fault-Tolerant Tightly
soupled Multiprocessor for Transaction Process-
ing,” Computer, Feb. 1988, pp. 37-45..

R. A. Howard, "Dynamic Probabilistic Systems
Vol II: Semi Markov and Decision Processes,” John
Wiley, 1971.

