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Abstract

Consider the following node-to-set routing problem
in the n-dimensional star graph G,: given a node s
and a set of nodes T = {t1,..., 4}, 2<k<n-—1,
find k node-disjoint paths s — t;, 1 <7 < k. From
Menger’s theorem, it is known that G, can tolerate at
most (n — 1) — k arbitrary faulty nodes for node-to-
set routing problem. In this paper, we prove that G,
can tolerate as many as (n —'1) — k arbitrary faulty
clusters of diameter at most 2, where the faulty cluster
15 a connected subgraph of G, such that all its nodes
are faulty. This result implies that G, can tolerate
as many as n}n — 1 —k) faulty nodes for node-to-set
routing if the faulty nodes can be covered by (n—1)—k
subgraphs of diameter at most 2. We also show an
algorithm which, in the presence of up to (n — 1) —
k faulty clusters of diameter at most 2, finds the k
routing paths of length at most d(G,) + 9 for node-
to-set routing mn O(|F| + kn) time, where d(G,) =

l_ﬂ’};llj is the diameter of G, and |F| is the total
number of faulty nodes in faulty clusters.

1 Introduction

Node fault tolerant routing is one of the central issues
in today’s interconnection networks and it has been
discussed extensively [11, 10, 2]. Most work for node
fault tolerant routing has been done on a graph G
when a certain number of arbitrary nodes failed. For
a specific routing problem, we say a graph G can tol-
erate [ faulty nodes if given at most ! arbitrary faulty
nodes, the required routing paths exist for the routing
problem. In the presence of more than [ faulty nodes,
if the routing paths do not always exist, what are
the sufficient conditions for the existence of the rout-
ing path? This is one of the fundamental problems
in node fault tolerant routing and several approaches
such as forbidden faulty set and cluster fault tolerant
routing have been developed [14, 12, 7, 9]. The ap-
proach of cluster fault tolerant routing (abbreviated as
CFT routing in what follows) is to reduce the number
of “faulty nodes” that the routing has to deal with us-
ing subgraphs of small diameters to cover the faulty
nodes [7, 9]. In CFT routing, a connected subgraph is
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called a cluster and a cluster is called faulty cluster if
all its nodes are faulty. It is previously known that for
several routing problems in some interconnection net-
works with regular structures, if multiple faulty nodes
can be covered by a cluster of small diameter, those
faulty nodes can be viewed as one “faulty node” rather
than several arbitrary ones [7, 9]. In practice, failed
processors can often be covered by fewer clusters of
small diameters. For example, two routing jobs, one
is between nodes s; and #; and the other is between
s and t3, are performed simultaneously. The nodes
in the routing path between s; and ¢, may be viewed
as faulty nodes by the routing between s and ¢,, and
vice versa. In the above example, m faulty nodes can
be covered by [m/d] clusters of diameter d.

Star graphs are an attractive alternative to the hy-
percubes. Like hypercubes, star graphs posses rich
recursive structure and symmetry properties. In ad-
dition, with regard to the important properties of
node degree and diameter, star graphs are shown to
be markedly superior. A number of efficient algo-
rithms on star graphs, which exploit its versatility,
have been reported [1,4, 6, 5] Further efforts for node-
disjoint paths (abbreviated as disjoint paths in what
follows) and fault tolerant routing problems in star
graphs have also been made by several researchers
[4, 15, 3, 13, 16, 6] M. Dietzfelbinger et. al. [4] first
studied the following disjoint paths problems in star
graphs: finding disjoint paths between two nodes s
and ¢ (node-to-node) and finding disjoint paths be-
tween a node s and a set of nodes T' = {t1,...,1;}
(node-to-set). Node-to-node disjoint paths of optimal
length in star graphs were found in [15, 3, 13, 16].
Node-to-node fault tolerant routing and node-to-node
CFT routing in star graphs were discussed in [8, 9].
In this paper, we continue the efforts in the same di-
rection and study node-to-set CFT routing in the n-
dimensional star graphs G, : '

¢ Given‘aset F of faulty clusters, a non-faulty node
s, and a set of non-faulty nodes T' = {#1,...,},
2<k<n-1,in G,, find k fault-free disjoint
paths s —¢;, 2 <i<k.

If F = () then the above problem becomes node-to-set
disjoint paths problem. For node-to-set disjoint paths
problem, from Menger’s theorem, k disjoint paths ex-
1st if £ < n—1. For node-to-set disjoint paths problem



in G,,, n—1 disjoint paths of length at most d(Gy)+4
can be found in O(n?) time, where d(G,) = By
is the diameter of Gy, [6].

In this paper, we show that G, can tolerate as
many as (n — 1) — k faulty clusters of diameter at
most 2 for node-to-set CFT routing. In particular,
we give an algorithm which, given at most (n—1)—%
faulty clusters of diameter at most 2 in G, constructs
k fault-free disjoint paths of length at most d(Gp) +
9 for node-to-set CFT routing m O(|F| + kn) time,
where |F| is the total number of faulty nodes in faulty
clusters. Since a cluster of diameter 2 in G, has as
many as n nodes, the above result implies that G,
can tolerate as many as n(n — 1 — k) faulty nodes for
node-to-set CFT routing if the faulty nodes can be
covered by certain clusters. This is in contrasts to the
previous result that G, can tolerate at most (n—1)—k
arbitrary faulty nodes for node-to-set routing.

The rest of this paper is organized as follows. Sec-
tion 2 gives the preliminaries of this paper. Node-to-
set CFT routing is discussed in Section 3 and some
conclusional remarks are given in the final section.

2 Preliminaries

Graphs considered in this paper are undirected:
graphs. A path in graph is a sequence of edges of
the form (s1,52)(52,53) - .. (8x—1, 5%). The length ofa
path is the number of edges in the path. We some-
times denote the path from s; to sg by sy — sg.
For a path P = (s1,s52)(s2,53)...(sk—1,5%), P is
also used to denote the set of nodes {s1,...,sx} that
‘appear in path P, if there is no confusion arises.
For any two nodes s,t € G, d(s,t) denotes the dis-
tance between s and t, ie., the length of the short-
est path connecting s and ¢{. The diameter of G is
d(G) = max{d(s,t)|s,t € G}. The eccentricity of
s € G is e(s) = max{d(s,t)[{ € G} and the radius
of G is 7(G) = min{e(s)|s € G}. The center node of
a graph G is the node s € G such that e(s) < (G).
Graph G is connected if there exists a path between
any two of its nodes and G is disconnected other-
wise. The connectivity of the graph G is defined to
be the minimum number of nodes whose removal dis-
connects G or reduces it to a single node. Graph G is
k-connected if its connectivity is k. :

Let F be a set of faulty clusters in a graph G. |F|
denotes the cardinality of F, d(F) = max{d(C)|C €
F} denotes the diameter of F, and F = Ucer € de-
notes the set of nodes of the clusters in F. For a par-
ticular CFT routing problem in a graph G, a triple
(m,d, 1) is called a features number of G, if for any set
F of faulty clusters in G with |F| < m, d(F) < d, and
|F| < 1, the required routing paths exist for the rout-
ing problem. A features number (m,d;l) is called an
optimum features number (denoted as OCFT num-
ber) for a specific CFT routing problem, if for any
(m,d,l) < (m',d',l'), (m',d',l') is not a features num-
ber for the problem.! For a graph G and a triple
(m,d, 1) with | = m x max{|C]|C C G, d(C) = d},

YThe partial order < on (m,d,l) is defined as:
(m,d, 1) < (m,d\U)if m < m', d < d,and I <V
and (m,d,l) < (m',d,V) if (m,d,l) < (m',d',l') and
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Figure 1: A 4-dimensional star graph.

the triple will be denoted (and only in this case) by
only two parameters (m, d) in the rest of the paper. A
pair (m, d) is an OCFT number if (m, d) is a features
number and for any (m/,d’) with (m,d) < (m’,d’),
(m',d’) is not a features number.

An n-dimensional star graph is a graph Gj,, where

. the nodes of G, are in a 1-1 correspondence with

the permutations [p;,pa, ..., pn] of the set < n >=
{1,2,...,n}. Two nodes of Gy, are connected by an
edge if and only if the permutation of one node can
be obtained from the other by interchanging the first
symbol p; with the ith symbol p;, 2 < i < n. This in-
terchange of the symbols in position 1 with position i
is called a transposition. For node s = [py,pa, ..., Pnl;

s(9) denotes the node [p;, p2, .. -Pi=1,P1,Pit+1, ....,p,}],
obtained by transposition ¢ on s. Similarly, sCindaoik)
denotes the node obtained after performing k trans-
positions (s(!) = s(4) = s). Figure 1 gives an G4.
G,, has n! nodes, and n! x 51;_11 edges. It has uniform

node degree n—1 and diameter d(Gy) = [3—&2_1% . Gn
is node and edge symmetric and is (n — 1)-connected.
Star graphs have a highly recursive structure. Gp
is made of n copies of G,,_;. Consider -the parti-
tion of nodes of G, into n mutually disjoint sub-
sets S,(k) = {[p1,p2,---,Pn—1,kllp; €< n > —{k}
for j # n,pj # mand j # 1}, 1 < k < n, where
<n>-{k} ={ii e<n> andi gk{k}} In Gy,

_the induced subgraphs of the set Sp(k), 1 < k& < n,

is each an (n — 1)-dimensional star graph denoted as
Gr (k).

We prove in this paper that (n — 1 — &,2) is an
OCFT number of G,, for node-to-set CFT routing.

(m,d,1) # (m',d',l').
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Figure 2: Example 1.

3 Node-to-Set CFT Routing

We first show some topological properties of star
graphs. For a node s = [p1,p2,...,Pn-1k] € Gr(k),
we have s(®) € Gy,(p1). We will call the node s a port
to Gn(p1). Each node s € G, (k) is a port to exactly
one substar G (p1). The set of nodes

Co(k,1) = {s|s € G, (k) and s™ € G,(1)}

is called the port-set of G,(k) to Gp(l). Clearly,
the nodes in G,(k) can be partitioned into n —
1 port-sets Cp(k,l), | €< n > —{k}, with

[Ca(k, )] = (n = 2)! and Cp(k,1)Cr(k,m) = 0
for I # m. For s = [p1,p2,...,Pn] € Ga(pn),
s € Cu(pn,p1) and its neighbor nodes s(®) =

i;pz’---,Pi—l,PI,P:‘-i_-l,u-)Pn] (S Cn(PmPi), i €<
n > —{l,n}. Given a cluster C = {u =

[p1,...,Pa),u,2 < i < n} of Gy, the nodes of
C appears in two substars of G,, with » and u(®,
2<i<n-—1in Gy(p,) and ¢™ in G,(p;). From
this, the nodes of a cluster of diameter at most 2 ap-
pear in at most two substars of G,,.

Example 1: C; = {u = (2,3,1,4,6,5)}, a clus-
ter of diameter 0; C; = {v = (4,3,2,1,5,6),v® =
(2,3,4,1,5,6)}, a cluster of diameter 1; and C3 =
{c=(3,2,4,5,6,1),c%,2 < i < 6}, a cluster of diam-
eter 2 (see Figure 2).

The nodes of cluster Cs appear in two substars of Gg,

¢,¢®,2 < i < 5 appear in Gg(1), while ¢(®) appears
in Gg(3). The node ¢ is the center node of Cs:

Lemma 1 There are no odd length cycle and no cycle
of length 4 in G,,.

Proof: For any node s, clearly s — s() — s(id) -

to s itself. O
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Lemma 2 For distinct nodes sy and sy in the same
port-set of a substar, dis(sq,s5) > 3.

Proof: Assume sy = [pi,p2,...,Pn] and sz =
[¢1,92,---,4x] are distinct nodes in the same port-set
Cn(pn,p1) of the substar G,(p,). Then, p; = ¢; and
Pn = @n. Since 51 # s2 and s; and so are permuta-
tions of < n >, there exist at least two positions i and
J, 2 < i# j < n-—1,such that p; # ¢; and p; # ¢;.
Therefore, dis(s1,s2) > 3. 0O

The following results for node-to-node CFT routing
in G, will be used in node-to-set CFT routing.

Lemma 3 [9] Given a set F, |F| < n — 2, of faulty
nodes, and non-faulty nodes s and t in G,, a fault-
free path of length at most d(G,,)+ 3 can be found in
O(n) time.

Lemma 4 [9] Given a set F of faulty clusters with
[F| <n~2 and d(F) < 2, and non-faulty nodes s and
t in Gy, a faull-free path of length at most d(G,) + 8
can be found in O(|F|+n) time, where F = J,p C.

The outline of the algorithm for node-to-set CFT
routing in G, is as follows. Given a set F of faulty
clusters, non-faulty nodes s = [p1,...,p,] and T' =
{t1,%2,...,tx} in G, the algorithm first find k desti-
nation substars G,, §I,-) such that G,(I;) does not have
any center node of faulty clusters and there is a fault-
free path s — gi; € Gn(I;) of length at most 2. Next
the nodes of T' are routed into destination substars,
one substar for one node, by fault-free disjoint paths
t; — hi; € Gu(l;) of length at most 3. Finally, &y, is
connected to g;; by a fault-free path in G,(I;). We
first prove that destination substars can be found.

Lemma 5 Given ¢ set F of faulty clusters with |F| <
n—1—kFk and d(F) < 2, and a non-faulty node
s = [p1,...,pn] in Gy, k substars G,(1;), ; €< n >
—{pn}, can be found such that G,(l;) does not have
any center node of faulty clusters and there is a fault-
Jree path s — g1, € Gp(1;) of length at most 2.

Proof: For s = [p1,pa, ..., Pa, its neighbor node s¢),
2 <i< n—1,is aport to the substar G,, (p;), and path
s — () - 567 = g € G.(p) is a path of length
2. 5 — 5™ =g, € Gp(py) is a path of length 1. We
now prove that any faulty cluster C with d(C) < 2 and
s & C can block at most one of the above n — 1 paths
5 — gp;, 2< i< n. From Lemma 1 and d(C) < 2, if
s® € C, 5 is any neighbor node of s, then s) ¢ C
and sU) ¢ Cfor 2 < j < nand j # i. Assume
s(b7) € C for some i with 2 < i < n — 1. Similarly,
s) g Cfor2<j<mandj+i. Letc be the center
node of C. Then either ¢ € Gh(py) or ¢ € Gn(p;).
If ¢ € Gn(ps), then from sC¢?) € ¢, sGm) = )
ie., s&) = ¢. From this, C does not block any path
s — gp; for j # i. For ¢ € Gn(p;), all the nodes of

C except ¢ are in G,(p;). Since (™) is a port to



G (pi) and sU™ is a port to G, (ps), sU™ & C for
j # i. Therefore, given F with |[F| < n—1—k and
d(F) < 2, at least k of the n — 1 paths are fault-free.

Assume r, r > k, of the n — 1 paths are fault-free.
Obviously, if cluster C' blocks a path s — g,,, then
the center node of C is either in G,(p,) or in G, Pi)-
Therefore, at most »—k faulty clusters may have their
center nodes in the r substars G, (lp) with fault-free
path s — g,.. Thus, the lemma holds. O

To find k fault-free disjoint paths t; — hi; € G (L),
the following preparations are needed.

Lemma 6 For any node s = [p1,pa,...;pn] in Gy
and any k €< n > —{p1,pn}, there are n — 1 dis-
joint paths of length at most 3 that connect s ton—1
distinct nodes in G (k).

Proof: Assume that p; = k for some j with 2 < j <
n — 1. Then the n — 1 disjoint paths are:
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. { s — s o 56 s sGin) € Gu(k) ifi# ] (pi # k)
;

s — 50 — s6n) € G, (k)
for2<i<n-—1and

Pn 18— S(n) — s(nrj) — s(n)j;n) E Gn(k).

a

.Notice that the path P, in Lemma 6 passes through
substar Gy, (pll)‘. ’

Example 2: Let s = [2,3,4,1,6,5] and k = 4. Then

the n — 1 paths are (see Figure 3):

Py s — s® = [3,2,4,1,6,5] — %3 =
[4,2,3,1,6,5] — s(238) =[5 2,3,1,6,4] '
P: s — s® = [4321,65 — sG9 =
[5,3,2,1,6,4]

Py s — s® = [1,3,4,2,6,5 — s*3) =
[4,3,1,2,6,5] — s(438) = [5,3,1,2,6,4]

Ps: s — s® = [6,34,1,25 — 653 =
[4,3,6,1,2,5] — s(536) =[5,3,6,1,2,4]

Ps: s — s® = [534,1,6,2 — s63 =
[4,3,5,1,6,2] — s(636) =[2,3,5,1,6,4]

Lemma 7 Given s = [p1,...,p.], ¥ €< n >
—{p1,pn}, and a cluster C with d(Cg <2,5¢C, and
the center node ¢ ¢ G,(k), C can block at most one
of the n — 1 paths P;, 2 <i< n, given in Lemma 6.

Proof: We first claim that C can not block any
two paths P and P, of Ps,..., P,_;. Without loss
of generality, we assume P; :
s and P, : s — s(m) — g(mi) —, g(min) gre
any two paths of Py,...,P,_1, where s € G,(pn)
and s(9) s(m3) € Co(pa,k). From Lemma 1,
d(sM, s(m9)) > 3. From Lemma 2, d(s(9), s(m:i)) > 3
and d(s(h5"), s(mJm)y > 3. In general, it is easy to see
that for a node € P,—{s} and anode y € P, — {s},
if z = s() and y = (™), then d(z,y) = 2, otherwise
d(z,y) > 3. On the other hand, for C with s ¢ C and

s — s(l) — s(lrj) L—
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ifi=j (pi=k)

d(C) < 2, from Lemma 1, C can not block both s(*)
and s(™). Thus, the claim holds.

Now, we show for C with d(C) < 2, s ¢ C, and
the center node of C is not in G,(k), C can not block
both P, and any P;, 2 <1< n —1. Notice that the
nodes of P, — {s} are in G,(p1) and G, (k). Assume
C blocks some P;, 2 <1< n—1, then the center node
c of C' is either in Gy (pr) (in this case p; # k) or in
Gn(pn)- If ¢ € Gn(p1), then ™ € G,.(p,) and path
P, is fault-free. Assume ¢ € Gpn(py). If ¢ € G,(j)
with j # k,p;, then obviously P, is fault-free. If
™ € Grn(p1), then ™ and s are in the same
port-set. From this and Lemma 2, d(c(™,s(™) > 3.
Therefore, P, is fault-free. If ¢ ¢ G (k), then ¢
is port to Gy, (py,) and s(™7") is a port to Grn(p1), and
thus, P, is fault-free. Similarly, we can prove if C
blocks P,, C does not block any P, 2 <1< n~1.
Thus, the lemma holds. O

Now we give our algorithm for node-to-set CFT
routing in Figure 4.

Theorem 8 For 2 < k < n — 1, given a set F of
Jaulty clusters with |[F| < (n—1)—k and d(F) < 2, and
non-faully nodes s = [py,...,pp] and T = {t1,...,1;}
in Gn, Algorithm Node-To-Set finds in O(|F| + kn)
time fault-free disjoint paths s — t; of length at most
d(Gp)+9. :

Proof: For F = {C},...,C.}, 7 < n—~1—Fk, let
¢; be the center node of C;. For each substar G, (3),
ie<n >, let.z; = |G, (D) Mer, .- er, ™, ..., ™Y
and y; = |Go({)(\T| (x; is the number of faulty
clusters C with C[\Gn(i) # 0 and y; is the num-
ber of nodes of T in G,(i)). For each faulty cluster
C;, if the center node ¢; appears in a substar Gy (j),
then ¢(®) ¢ G,(j). Therefore, for every i €< n >,
2; <n—1—kFkand z; +y; <n— 1. The proof of the
theorem is divided into two Cases.
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Algorithm Node-To-Set(s, T, F,Gr)
Input: Fault clusters F = {C},Cs,...,C: },
r < n— k — 1, non-faulty nodes s and
T:{tl,...,tk} in Gy,. .
Output: Fault-free disjoint paths s —t;, 1 <i< k.
begin
For each Cj, 1 < i < r, find the center node c; of C;;
Forie<n >, z; .= |Go(?){c1,-- .,cr,cgn), .. .,csn)}l
and g; = |Ga (D) (T
if (Vie<n>, zi+y; <n-—1) then
find k substars Gy (L) s.t. Gn(Li) (e, --
l; # pn, and s — g;; € Go(l;) is fault-free
else /¥*Jie<n>, zi+yi=n—1%
find k substars G, (;) s.t. Go(l;)Mer,---5e} =0,
l; # i, and s — gi; € Gn(l;) is fault-free;
Find fault-free disjoint paths t; — hi; € Gn(l;)
of length at most 3;
if (Gn(1;) has at most one node of T') then
connect g;, and by, in G,(I;) by Lemma 3
else connect g;, and hy; in Gn(l;) by Lemma 4;
end.

')c'l‘}:@)

Figure 4: Algorithm for Node-to-Set CFT Routing in

n-

Case 1: Vie<n >, z;+y; <n—1.
Choose k destination substars Gy,(l;) by Lemma 5
“such that I; # pn, Ga(L;)({e1,---,¢-} =0, and there
is a fault-free path s — g;, € Gn(l;) of length at most
2. If Gn(l;) has any faulty node, the faulty node is
¢, where c is the center node of some faulty cluster.
Therefore, for any fault-free node ¢ with ™ € G (k),
1(?) is fault-free. For each G, (I;), if Gx(l;) contains a
node t;, then assign ¢; to G, (&) and ki, = ¢; (if G (1)
contains more than one #;’s, then assign any one of ¢;
to Gn(l;)). Mark Gp(l;) used. For unused Gy(l;), if
Gn(l;) contains £ for some un-assigned ;, then as-

sign #; to Gn(l;). Patht; — t = hy, € Ga(li) is
fault-free. Mark G, (l;) used. For the rest t;, assign
an arbitrary unused Gn(I;). Then &, 8™ ¢ Ga(L).
Assume t;'€ G,(m). From Lemma 6, there are at
least n — 2 disjoint paths Ps,... P,—; from¢; to n —2
distinct nodes in G,(l;). We will show that one of
the above n — 2 paths, say Pj, is fault-free. For this
P;, B;NGr(l) =0, e<n>—{m,l;}, and P; has a
subpath of length at most 2 in G,(m). If G,(m) con-
tains other nodes t; of T, then treating the subpath
of t; — hy; in Gy(m) as a faulty cluster, there are at
most Z,, + Ym — 1 < n — 2 faulty clusters of diame-
ter at most 2 in Gn(m). Therefore, from Lemma 7,
a fault-free path P; : t; — h;; € Gp(l;) of length at
most 3 can be found. Obviously, k paths ¢; — hy,,
1 < i < k, found above are disjoint. _

For G,,(I;) which contains at most one node of 7',
Gy (I;) may only have some single faulty nodes. There-
fore, by Lemma 3, g;, and h;, can be connected by
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a fault-free path of length at most d(Gn—1) + 3 in
Gn (). If Go(L;) has at least two nodes of 7', then
one node #; is assigned to G, (l;) and the other nodes
of T are routed out of Gy, (l;). Therefore, G, (I;) may
have some faulty clusters of diameter 2 due to the
routing of other nodes of 7. Obviously, G (l;) has
at most z;, + yi; — 1 < n — 2 faulty clusters. By
Lemma 4, g;; and hy; can be connected by a fault-free
path of length at most d(Gr-1) + 8 in Gy (L;). The
total length of the paths s — ¢; in this case is at most
max{d(Gp-1)+2+3+3,d(Gr_1)+2+8} < d(Gp)+9.
Case 2: die<n>, ¢;+yi=n— 1
From Lemma 5, we can find at least k destination sub-
stars Gn(l;). If we can choose k Gy (l;) with l; # i,
then the destination substars are found. Assume
Gy (i) is chosed. From the condition of this case,
for any faulty cluster C € F, C(NGr(?) # 0, ie,
¢®) € G, (4) for every faulty cluster C. Therefore, we
have G, (pn) is fault-free (otherwise, Gn(pr) has at
least one center node of faulty clusters, implying that
we can choose k Gyp(I;) with l; # 7). We use Grn(pn)
to replace Gy (i) as a destination substar.

From the condition of this case, for any faulty clus-
ter C € F, either the center node ¢ € Gy, (p, ) or ¢™ €
Gn(pn). Thus, for any non-faulty node ¢ € G'n (), 1)

is fault-free. For each Gy (l;), if Gy (l;) contains t,("')
of some t; € T, assign t; to Gn(l;) (if Gn(l;) contains
more than one tg"?, assign an arbitrary t; to G, (l;)).
Mark G,(I;) used. For each unassigned node ¢;, as-
sign an arbitrary unused G, (l;). Since Gn(I;) does not
contain any center node of faulty clusters, from Lem-
mas 6 and 7, fault-free disjoint paths t; — hi; € Gn(l;)
of length at most 3 can be found. For l; # p,, from
Lemma 3, g;, and hy, can be connected by a fault-
free path of length at most d(G,_1) + 3, since Gp(l;)
has at most some single faulty nodes. For l; = py,
we connect h;, to s., Mark the neighbors RO # 1,
which is connected to g;; and then to %;, as faulty
nodes. Then h;, and s can be connected by a fault-
free path of length at most d(G,_1) + 3. The path
s — hy, is disjoint with the paths s — h;; for i # j.
The length of the paths s — t; in this case is at most
d(Gn-1) +2+3+3<d(Gn)+9.

It takes O(|F|) time to find the centers of faulty
clusters. It takes O(n) time to find k destination
substars Gp(l;) by checking the last digits of center
nodes of fault clusters. Finding paths t; — h;, takes
O(kn) time. Connecting g;; and hy, in G, (Iit) takes
O(|Fy,| + n) time, where |Fy,| is the number of faulty
nodes in G, (l;). Since G,(I;) has originally at most
O(n) faulty nodes and routing some nodes t; out of
Gn(l;) generates at most O(n) new faulty nodes, it
takes O(n) time to find one g;; — hy;. Thus, the time
complexity of Algorithm Node-To-Set is O(}F|+ kn).
o

Theorem 8 shows that (n — 1 — k,2) is a features
number of G,, for node-to-set CFT routing. We now
prove (n — 1 — k,2) is an OCFT number as well.

Theorem 9 (n—1—k,2) is an OCFT number of Gy,
for node-to-set CFT routing.



Proof: To show the theorem, we need to prove for
any (m,d) with (n — 1 — k,2) < (m,d), (m,d) is not
a features number. Let s = [p1,...,p,] and F =
{{[pz, <oy Pi—1,P1, Pitls - - - ;pn]} 2 < i <n- k + 1}
Then |[F| = n — k and d(F) = 0 < 2. Obviously s has
only k — 1 fault-free neighbors. It is impossible to find
k fault-free disjoint paths s — #;, 1 < 7 < k. Thus,
(n— k,2) is not a features number of G, for node-to-
set CFT routing. Similarly, we can show (n—1—£k, 3)
is not a features number as well. O

4 Conclusional Remarks

In this paper, we discussed node-to-set CFT routing
in star graphs G,. For node-to-set CFT routing, we
proved (n — 1 — k,2) is an OCFT number of G,,. We
gave O(|F'|+kn) time algorithm which find & fault-free
routing paths of length at most d(G},)+9 for node-to-
set CFT routing. Our result shows that G, has very
good fault tolerant properties in CFT routing. It is
interesting to find OCFT number for star graphs for
d(F) > 2. Investigating CFT routing properties and
designing efficient CF'T routing algorithms for other
interconnection networks are certainly worth further
research attention.
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