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Abstract

In this paper, we present a vague reasoning algorithm
for rule-based systems based on extended fuzzy petri nets.
The proposed algorithm is more flexible than the one we
presented in [7] due to the fact that it allows fuzzy IF-THEN
rules and fuzzy IF-THEN-ELSE rules to appear in the
knowledge base of a rule-based system and it allows the
truth values of the propositions appearing in the rules to be
represented by vague values in [0, 1] rather than real values
between zero and one.
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1. Introduction

Since fuzzy Petri nets provide an effective approach
for representing fuzzy knowledge, the applications of fuzzy
Petri nets have been investigated by many researchers. In [1],
Bugarin et al. developed a representation model for fuzzy
reasoning supported by Petri mets. In [2]), Cao et al
presented a method for task sequence planning using fuzzy
Petri nets. In [8], Garg et al. presented a fuzzy Petri net
model for representing knowledge and presemted an
algorithm for checking the consistency of a fuzzy knowledge
base via a set of reduction rules. In [13], Konar et al.
developed new techniques for uncertainty management in
expert systems using fuzzy Petri nets. In [14], Looney
presented a fuzzy Petri net model for mule-based
decisionmaking. In [15], Looney proposed a fuzzy Petri net
algorithm and investigated a fuzzy logic rule-based control
application based on fuzzy Petri nets, where a fuzzy Petri net
train comtroller is imvestigated. In [17], Pedrycz et .al.
proposed a gencralized fuzzy Petri net model based on the
use of logic based meuroms, where the learning aspects
associated with the nets are investigaied. In [18], Yu
presented a fuzzy Pr/T net-system model (FPM) for
knowledge represenmtation and processing of the fuzzy
proeduction roles in knowledge-based systems, where a fuzzy
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reasoning algorithm for FPM is also proposed. In [7], we
have presenied a fuzzy Petri net model (FPN) to represent
the fuzzy production rules of a rule-based system and
presented an algorithm to perform fuzzy reasoning based on
the fuzzy Petri net model, where the truth value of cach
proposition is represented by a real value between zero and
one. However, this single value combines the degree of truth
and the degree of false of the proposition. Furthermore, the
fuzzy production rules used in [7] are restricted to fuzzy IF-
THEN rules. If we can allow fuzzy IF-THEN-ELSE rules io
be used for knowledge representation and allow the truth
values of the propositions appearing im the rules to be
representied by vague values [9] in [0, 1] rather than real
values between zero and one, then there is room for more
flexibility. According to [9], a vague value x is represented
by [t 1 - £], where t, indicates the degree of truth, f,
indicates the degree of false, 1 - i, - f, indicates the unknown
part, 0, <1-fi<1, and i, + £,< 1.

In {5], we have presented vague reasoning techniques
for rule-based systems. In [6], we have presented an
extended fuzzy Petri net model (EFPN) to model the fuzzy
production rules of a rule-based system. In this paper, we
extend the works of [5], [6], and [7] to propose an efficient
algorithm for performing vague reasoning automatically.
The proposed vague reasoning algorithm can determine
whether there exists an antecedent-consequence relationship
between proposition d, to proposition d;. Furthermore, if the
vague truth value of proposition d, is given, then the vague
truth value of proposition d; can be evaluated by the
proposed algorithm. The proposed algorithm is more
flexible than the one presented in [7] due to the fact that it
allows fuzzy IF-THEN mules and fuzzy IF-THEN-ELSE
rules to be used for knowledge representation and it allows
the truth values of the propositions appearing in the rules to
be represenied by vague values in [0, 1] rather than real
values beiween zero and ome. This vague reasoning
capability allows the compuiers to perform reasoning in a
more flexible and more intelligent manner.

The rest of the paper is organized as follows. In
Section 2, we briefly review the extended fuzzy Peiri net
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model (EFPW) and the vague reasoning techniques from [5]
and [6]. In Section 3, we presen{ a vague reasoming
algorithm for rule-based systems based on the extended
fuzzy Peiri net model. In Section 4, we use an example to
illustrate the vague reasoning process. The conclusions are
discussed in Section 5. .

2. Extended Fuzzy Petri Nets and Vague Reasoming

Technigues

In this section, we briefly review the vague reasoning
techniques from [5] and the extended fuzzy Petri net model
(EFPHN) from [6]. An exiended fuzzy Peiri net is a bipartite
directed graph which contains two types of nodes: places
and transitions, where circles represent places, and bars
Tepresent transitions. Each place may or may not contain a
token associated with a vague truth value in [0, 1]. Each
transition is associated with a certainty factor value between
zero and one. The relationships from places to transitions
and from transitions to places are represented by directed
arcs, There are two kinds of directed arcs from tramsitions to
places, i.e., the positive arcs, denoted by “—”, and the
negative arcs, denoted by “o—”. A generalized extended
fuzzy Petri net structure can be defined as an 8-tuple:

EFPN = (P, T,D,1, 0,135, ),
where
P={p}. ps ... Py} is a finite set of places,
T={T;, Ty, ..., Ty,} is a finite set of transitions,
D = {d;, dy, ..., d,} is a finite set of propositions,
PATnD=0,|P=|D|,

LT - P° is the input function, a mapping from
transitions to bags of places,

0: T — P” is the output function, a mapping from

transitions to bags of places,

f: T — [0, 1] is an association function, a mapping
from trangitions to real values between zero and
one,

&. P — [0, 1] is an association function, a mapping
from places to vague values in [0, 1].

B: P — D is an association function, a bijective
‘mapping from places to propositions.

An extended fuzzy Petri net with some places
containing tokens is called a marked extended fuzzy Peiri
net. In a marked exiended fuzzy Peiri net, the token in a

place p; is represented by a labeled dot 8(5 i) . The token

value in a place p;, p; € P, is denoted by 8(p;), where 8(p;) =
6, 1-,0€1-f58and f; + i< L WS =[¢,1-
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Ji) and B(p;) = dj, then it indicates that the degree of truth
and the degres of false of proposition d; are ¢ and f,
respectively.

By using an extended fuzzy Petri net, the fuzzy
production rule

R;: IF d; THEN dj, ELSE d,, (CF = ;)
can be modeled as shown in Fig. 1.

Fig. 1. An extended fuzzy Petri net.

In an extended fuzzy Petri nei, a transition may be
enabled to fire. A transition T; is enabled if there is a token

in each of its input places. A transition T; fires by removing

the tokens from its input places and then depositing one
token into each of its output places. Firing fuzzy production
rules can be considered as firing transitions. For example,
assume that the vague truth value of the proposition dJ of the

above fuzzy production rule is [tj, 1- j}], then the vague

reasoning process of the above rule can be modeled by a
marked extended fuzzy Petri net as shown in Fig. 2.

L= 0s b

L= 1-(€o i)

ty = ° Ui

l»fwal.(q s pi)

®)
Fig. 2. Firing a marked extended fuzzy Peiri net. (2) Before
firing transition T;. (b) After firing transition T;.



Let T, be a transition, and p;, p;, and py be three places.
¥ piel(T,) and peO(T,), then py is called immediately
reachable [5] from p;. For example, assume that the fuzzy
production rule

Ry: IF d, THEN dz ELSE d; (CF = p.)
has been modeled by an extended fuzzy Peiri net as shown
in Fig. 3. From Fig. 3, we can see that p, and ps are
immediately reachable from py. In this case, p, is also called
immediately direct reachable from py, and p is also called
immediately indirect reachable from m.

Fig. 3. An extended fuzzy Petri net.

If place py is immediately reachable from place p; and
place p; is immediately reachable from place py, then place p;
is called reachable {7] from place p;. The reachability
relationship is the reflexive tramsitive closure of the
immediate reachable relationship. The set of places which is
immediate reachable from a place p; is called the
immediately reachability set [7] of p; and is denoted by
IRS(p). The set of places which is reachable from a place p;
is called the reachability set [7] of p; and is denoted by
RS(p). The set of places which is immediately direct
reachable from a place p; is called the immediately direct
reachability set of p; and is denoted by IDRS(p;). The set of
places which is immediately indirect reachable from a place
i is called the immediately indirect reachable set of p; and is
denoted by IIRS(py). It is obvious that Vp;eP,

IRS(p;) = IDRS(p) v IIRS(py), (15)
where “U” is the union operator befween sets.

The reachability set RS(py), the immediate reachability
set IRS(py), the immediate direct reachability set IDRS(py),
and the immediate indirect reachability set IRS(p;) for each
placs p;, pieP, inFig. 4 are shown in Table 1. From Table 1,
we can see that IDRS(p1) = {p2}, IRS(m) = {ps}, IRS(py) =
{P2 ps}, and RS(@1) = (P2, Ps, P4, Ps. Ps, P73 They indicaie
that the place p, is immediate direct reachable from the
place p, the place ps is immediate indirect reachable from
the place py, the place p. and ps are immediate reachable
from the place py, and the places ps, Ps, Pa, Ps. Ps, and pr are
reachable from the place py.
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Fig. 4. An example of extended fuzzy Petri net.

TABLE 1
Immediate Direct Reachability Set, Immediate Indirect
Reachability Set, Immediate Reachability Set, and The
Reachability Set for Each Place p; in Fig. 4

Placepi IDRS(P,') HRS(P,') IRS(P,‘) R5())

Py s} {3} {p2»p3} Py P3 Py Ps
P& P73

Py {py P5} ¢ Py psy {pPypspgh

P3 {p7} ¢ {r7} {p7}

Py {pg ¢ {rs} {ps}

Ps {pg ¢ {pgt {pgt

Pg 173 B ¢ ¢

Py ¢ ¢ ¢ ¢

Let T, be a transition, p; and p, be places. If piel(T,)
and ppel(T,), then p; and py.are called adjacent places [7]
with respect to T,. For example, from Fig. 4, we can see that
P4 and ps are adjacent places with respect to the transition
Ts.

Let CF; denote the certainty factor value associated
with the transition between places p; and p;, and let AP;
denote a set of adjacent places of p;, where p;eIRS(p). The
certainty factor table and the adjacent places table for Fig. 4
are shown in Table 2 and Table 3, respectively.

TABLE 2
Certainty Factor Table for Fig. 4
Place p; Place P CFij
P; P 0.85
P P3 0.85
Py Py 0.95
Py Ps 0.80
P3 p7 0.90
Py Pg 0.50
Ps Pg 0.30
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TABLE 3
Adjacent Places Table for Fig. 4

Place p; Place p; AP;;

Py P ¢

P P3 o

by Py ¢

P2 Ps ¢

P3 Py ¢

Py Pg {ps5t

ps Ps ipgd

In the next section, we will develop a vague reasoning
algorithm based on [5], [6], and [7].

3. A Vague Reasoning Algorithm

In this section, we extend the works of [5], [6], and [7]
to preseni a vague reasoning algorithm based on the
exiended fuzzy Petri net model (EFFN), where fuzzy IF-
THEN rules and fuzzy IF-THEN-ELSE rules are used for
knowledge representation, and the truth values of the
propositions are represented by vague values in [0, 1]. The
vague reasoning algorithm presented in the paper is an
interactive algorithm. It can determine whether there exists
an antecedent-consequence relationship from proposition dg
1o proposition dj.Furthermore, given the vague truth value of
proposition dg, the algorithm can evaluate the vague truth
value of proposition dj automatically, Assume that the vague
truth value of proposition d;; given by the user is [f;, 1- £,
where 0 < £, < 1- /5 < 1 and g + /5 < 1, and assume that he
wants to ask what vague truth value proposition dJ might
have, then because of B(pg) = dg and B(pj) = c{, place pg and
place pj are associated with the propositions d; and 4,
respectively. In this case, the places pg and pj are called the
starting place and the goal place, respectively. Furthermore,
becaunse the vague truth value of proposition dg given by the
user is [¢; 1 - /5], the token value in the place pgis [ 1- /4],

ie, 8 =t 1-1.

The vague reasoning algorithm proposed in this paper
can automatically generate all the reasoning paths from a
starting place p; to a goal place p; and if the token value in
the starting place p, is known, then the token value in the
goal place p; can be evaluated. This implies that, if the vague
truth value of proposition d; is known, then the vague truth
value of proposition d; can be evaluated by the algorithm.
The vague reasoning algorithm can be expressed by a iree.
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Each node in the tree is denoted by (pp, Spp), IRS(pp),
IDRS(py), IIRS(pp)), where py, € P. Let CFW denote the
certainty value associated with a transition between place p,
and place Py and let AP}:V denote a set of adjacent places of

- Py, Where pye IRS(p,). The algorithm is now presented as

follows:

Vague Reasoning Algorithm:
INPUT: the vague truth value [¢, 1 - f] of proposition dg,

where 0<i, < 1-/,< 1, b5 + [ <1, £ denotes the
degree of truth of proposition d;, and f; denotes
the degree of false of proposition dg.

QUTPUT:the vague truth value [tj, 1- j}] of proposition ab-,

whereOstjsl -];-s l,tj+j}s l,tjdenotesthe

degree of truth of proposition dj, and J} denotes
the degree of false of proposition dJ

Initially, the root mnode (p;, &(pg), IRS(py),

IDRS(p), IIRS(py)) is a nonterminal node, where

i) p; is the starting place, and P(py) = d.

i) 8(pg) = [ts 1 - fgl, and [i 1 - /] is the vague
truth value of proposition dg given by the user,
where 0 <t < 1- /<1, £ + f5 <1, £ denotes
the degree of truth of proposition dg, and jg
denotes the degree of false of proposition dj.

iii) IRS(py) is the immediate reachability set of the
starting place p.

iv) IDRS(p;) is the immediate direct reachability
set of the starting place pg.

v) IIRS(p,) is the immediate indirect reachability
set of the starting place py. '

Select one nomterminal node (p;, 8(pp), IRS(p;),

IDRS(p;), IIRS(p;)), where 8(p;) = [£; 1 /3, 0 < 44

<1-fi<1,4+f;< 1. KIRS(p)) = dor for all py, €

IRS(p;), the goal place pj ¢ RS(pp), then mark the

node as a terminal node.

I the goal place pj€ IRS(p;) and CFij= ., where

p e [0, 1], then ‘

if pj € IDRS(p;), then create a new mode (pj, S(pj),

IRS(pj), ]DRS(pj), IIRS(pj)) in the tree, and
an arc, labeled p, is direcied from the node
((®;, 8(pp), TRS(p), IDRS(p;), LIRS(py) to the
node (p;, 8(pp), IRS(py), IDRS(p)), TIRS(P),

Step 1:

Step 2:



where 8(pj) = [ %, 1-(; * W) In this case,
the mode ((, (), IRS(p), IDRS(p),
HRS(p)) is called a success node
else if pj € MRS(p;), then create a new node (g,-,
8(p;), IRS(p;), IDRS(py), IIRS(p))) in the tree,
and an arc, lebeled p, is directed from the
node (p;, 8(p;), IRS(p;), IDRS(p;), IIRS(p;)) to
the node (p], 8([?]), ]R.S(pj), ]DRS(pj),
IRS(p))), where 8(p) = [f; * p, 1 - (4 * w)]. In
this case, the node (p;, 3(p), IRS(p,
IDRS(p)), IIRS(p)) is called a success node.
Otherwise, for each place pj, € IRS(p;),
if AP;;, = ¢ (i.e., p; does not have any adjacent
place) and the goal place pj€ RS(pp) and
CFj; = u, where p € [0, 1], and p does

not appear in any node on the path
between the root node (pg, 8(pg), IRS(py),

IDRS(pg), IRS(pg)) and the selected node
;. (), IRS(p;), IDRS(p;), IRS(p),

then
if pj € IDRS(p;), then crate a new node

(Pr. S, IRS(pp), IDRS(pp),
IRS(py)) in the tree, and an arc,
labeled p, is directed from the node (p;,
8(pj), TRS(p;), IDRS(p), IIRS(p))) to
the node (pg, 3(pp), IRS(py, IDRS(pp),
TIRS(py)), where 8(pp) = [t; *, 1 - (f;
*1w)]. In this case, the node (py, 8(pp),
IRS(py), IDRS(pp), IIRS(pp)) is called

2 nonterminal node
else if p e IIRS(p;), then creaic a new

node (pg, &(pp), IRS(pp), IDRS(py),
IIRS(py)) in the tree, and an arc,
labeled p, is directed from the node (p;,
5(p;), IRS(p)), IDRS(p)), IIRS(p))) to
the node (pg, 3(pp), IRS(pp), IDRS(pp),
MRS(pp)), where 8(pp) = [/; * 1, 1 - (¢
* w]. In this case, the node (p, 8(pp),
IRS(pp), IDRS(py), IIRS(pp)) is called
a nonterminal node

else if APy, = {pyp Pp - P2} (€, Py
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Pp ---» and p, are adjacent places of p;)
and the goal place pj e RS(pp), then if
the truth values of any propositions d,,,
dp, ..., and d; are unknown, then

request the user to enter the vague
truth values of the propositions.
Suppose that the vague truth values of
the propositions d;, dp, ..., and d;, are

o L-Sol lip, 1= f3), ..,and [1,, 1 -

J5l, respectively. Let

ltg, 1-fg1 =8(@) @ [tg 1-75) @

Ity 11 @ .. @ I,
1-£]

=0, 1-/;1 @ [t5 1- 1]
Qup 1410 .. Q@
PR YR

where “@” is the minimum operator

between the vague values. That is, fg=

Min(t;, t5 tp .., 17) and 1 - fo =

Min(l -f;, 1 -1 1 - /3. s 1-/).

If p, € IDRS(p;) and CFjj, = p, where
p € [0, 1], then create a new node
w1, d(pp). IRS(pp), IDRS(pp),
IIRS(py)) in the tree, and an arc,
labeled p, is direcied from the
node (p;, 8(p;), IRS(p;), IDRS(p;),
IIRS(p;)) to the mode (o, &(pp),
RS(pp), IDRS(pp, URS(pp),
where 8(pp) = [tg #p,1- (r:g ).
In this case, the mode (pg, 3(py),
IRS(py), IDRS(pg), IIRS(py)) is
called a nonterminal node

else if py e IRS(p;) and CFy, = p,
where p € [0, 1], then create a
new mnode (pg, 8(pp), IRS(pp),
IDRS(py), IIRS(py)) in the tree,
and an arc, labeled p, is direcied
from the node (p;, 8(p;), IRS(p;),
IDRS(py), IRS(p;)) to the node
G, Sp). IRS(pp), IDRS(pp).
NRS(py)), where 8(pp) = [Ifg ], 1
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- (tg * )}, In this case, the node
(r. 3pp, IRS(pp, IDRS(pp),
IRS(pp)) is called a nonterminal
node
else mark the node (p;, 8(pp), IRS(p;),
IDRS(p;), IRS(p;)) as a terminal
node.
Step 3: H no nonterminal nodes exist, then go to Step 4.
Otherwise, go to Step 2.
Step 4: I these are no success nodes, then
( * there does not exist an aniecedent-consequence
relationship from proposition d to proposition
%%
siop
else the path from the root node to each success
node is called a reasoning path, Let Q be a set of
success nodes,
Q= {(; 1. 1-/7], IR3(p)), IDRS(p;), IRS(p))),
(pj’ [t21 1 'f2]r ]RS(P]')’ ]])RS(pj)s Ims(Pj))w-,
(pj’ [tma 1 "f m], ]Rs(p])’ IDRS(PJ)’ HRS(PJ))},
where [¢7, 1 - /11, [£5, 1 - /5], ..., and [f,, 1 ]
are vague values in [0, 1]. Let
5. 1-[=tp 1D i1-219 .. O

[ty 1 - fi), where “Q” is the maximum
operator between the vague values. That is
5= Max(ty, L, ... , ta) and
1-fi=Max(1 </, 1-fo, ..., 1= J).
The degree of truth of proposition dj is 4 the
degree of false of proposition d] is ]}-, where i+

j} sL
4. Examples

In this section, we use an example to illusiraie the
vague reasoning process of a rule-based sysiem using
extended fuzzy Petri nets.

Example 4.1: Let dy, ds, d3, dy ds, d6’ dy, and dg be
cight propositions. Assume that the knowledge base of a
rule-based sysiem contains the following fuzzy production
Tales:

R;: IF d; THEN d, ELSE d3 (CF = 0.85)
R: IF d5 THEN d4 (CF = 0.95)

R3: IF d» THEN dy (CF = 0.80)

R4 IF d3 THEN d7 (CF = 0.90)

R IF dy or d5 THEN dg (CF = 0.90)
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Rg: IF dg THEN dg (CF = 0.96)

Assume that the vague truth value of proposition
d; given by the user is [0.80, 0.90], and he wants

to ask the vague truth value of proposition dz

might have, then based on [6] the rules and the
fact can be modeled by the exiended fuzzy Peiri
net model as shown in Fig. 5. Because of f(p)) =
"d and B(py) = dy, the places p; and py are called
the starting place and the goal place, respectively.
The immediaie direct reachability set, the
immediate indirect reachability set, the immediate
reachability set, and the reachability set for each
place p;, p; € P, in Fig. 5 are shown in Table 4.
The adjacent places table for Fig. 5 is shown in

Table 5. The certainty facior table for Fig. 5 is
shown in Table 6.

Case 1:

Fig. 5. Marked extended fuzzy Petri net of Example 4.1.

TABLE 4
Immediate Direct Reachability Set, Immediate Indirect
Reachability Set, Immediate Reachability Set, and
Reachability Set for Each Place p; in Fig. 5

Placep; IDRS(p) IRS(p) IRS(p) RS()

3] {5} {r3} {pspr3} P2 P3 Py Ps
Pg P2 Pgt

2 {pypprst ¢ {py Pst Py ps5 Ps PgY

P3 {p7} b {p7} {p7}

Py 7% B {pst {pg Pg}

Ps {pg} ¢ {pst {pg Pg}

Pg {ps} ¢ {rg} {pgt

Py ¢ ¢ ¢ ¢

Pg ¢ ¢ ¢ ¢




TABLE 5
Adjacent Places Table for Fig. 5

Place p; Place p; APij

P Py ¢

9] b3 ¢

P Py ]

P Ps é

p3 Pz ¢

Py Pg ¢

ps Pg ¢

Pg Pg ¢

TABLE 6
Certainty Factor Table for Fig. 6

Place p; Place pj CF ij
Py Py 0.85
Py P3 0.85
Py by 0.95
Py Ps 0.80
pP3 py 0.%0
Py Pg 0.90
pPs ps 0.90
Pg Pg 0.96

After performing the algorithm, the tree sprouis as
shown in Fig. 6. Because there is one success node in the
tree, we can obtain the following resulis:

Q= {(py [0.077, 0.388], ¢, ¢, §)},

[t7, 1 -f7] = [0.077, 0.388].
Therefore, the vague truth value of proposition d is [0.077,
0.388]. That is, the degres of truth of proposition d,is0.077;
the degree of false of proposition d is 0.612 (ie., 1 - 0.388
=0.612).

Py, [0.80,0.90], (P, , Py }, (P2}, {P3H)

0.85

(®s.(0.085,0.32], {7 }, (Ps}. &)
0.90

® .[0.077,0388L 4. ¢, 9)
success node

Fig. 6. Sprouting tres of Example 4.1 (Case 1).
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Case 2: Assume that the vague truth value of proposition
d; given by the user is [0.80, 0.90], and he wants

to ask the vague truth value proposition dg might
have. Because B(p ) = d; and By = dg, the
places p; and Pg are called the starting place and

the goal place , respectively. After performing the
algorithm, the tre¢ sprouts as shown in Fig. 7.
Because there are two success nodes in the tree, we
can obtain the following resulis: ‘

Q = {(pg [0.5184, 0.9271], ¢, ¢, b), @
[0.4896, 0.9388], ¢, ¢, §)},
[t 1 +/51=10.5184,0.92711 & [0.4896, 0.9388]

=[0.5184, 0.9388].
Therefore, the vague truth value of proposition dg

is [0.5184, 0.9388]. That is, the degree of truth of
proposition dg is 0.5184; the degree of false of

proposition dg is 0.0612 (e, 1 - 09388 =
0.0612),

(1, (0.80,0.90%, P2 , B3 }, (B2}, (B31)

Juo

@2 068,095, (B , s }, 4.2 5}, #)
C .80 ’

0.95

(®;. (0.646,0.919], (B}, (P, #)
0,90

@5, [0.544,0.932), {Bg }, (Ps}. ¢)
0.90

®g. (05814052710 4, #, ) (Pg, [0.4896,0.5388L 4, 4, 6)
-suscess node suscess nods

Fig. 7. Sprouting tree of Example 4.1 (Cass 2).
§.  Conclusions

In this paper, we have extended the work of [5], [6] and
[7] to present a vague reasoning algorithm for rule-based
systems based on the extended fuzzy Petri nets, where fuzzy
IF-THEN rules and fuzzy IF-THEN-ELSE mles are used for
knowledge represemtation, and the truth values of the
propositions appearing in the rules are represenied by vague
values in [0, 1] rather than real values between zero and one.
The proposed vague reasoning algorithm is more flexible
than the one presented in [7] due to the fact that the
proposed algorithm allows fuzzy IF-THEN-ELSE rules to be
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used for knowledge represeniation and allows the truth
values of the propositions appearing in the rules to be
represented by vague values in [0, 1] rather than real values
between zero and one. The upper bound of the time
complexity of the proposed vague reasoning algorithm is
0(nm), where n is the number of places and m is the number
of transitions in an extended fuzzy Petri nets. Its execution
time is propotional to the number of nodes in a sprouting
tree genmerated by the proposed algorithm. This vague
reasoning capability allows the computers to perform
reasoning in a more flexible and more intelligent manner.
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